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Statistical Alignment and 
Machine Translation 

 

(M&S Ch 13) 
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Overview 

• MT is a difficult problem: translation programs 
available today do not perform very well. 

• Different approaches to MT: 

– Word for Word 

– Syntactic Transfer Approaches 

– Semantic Transfer Approaches 

– Interlingua 

•  Most MT systems are a mix of probabilistic and 
non-probabilistic components, though there are a 
few completely statistical translation systems. 
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The Machine Translation Pyramid 
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Overview (cont.) 

• A large part of implementing an MT system [e.g., 
probabilistic parsing, word sense disambiguation] 
is not specific to MT. 

• Nonetheless, parts of MT that are specific to it are: 
text alignment and word alignment. 

• Definition: In the sentence alignment problem,  
one seeks to say that some group of sentences in 
one language corresponds in content to some other 
group of sentences in another language. Such a 
grouping is referred to as a bead of sentences. 
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Overview of the Lecture 

• Text Alignment 

• Word Alignment 

• Fully Statistical Attempt at MT 
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Text Alignment:  

Aligning Sentences and Paragraphs 

• Text alignment is useful for bilingual 

lexicography, MT, but also as a first step to using 

bilingual corpora for other tasks. 

• Text alignment is not trivial because translators do 

not always translate one sentence in the input into 

one sentence in the output, although they do so in 

90% of the cases. 

• Another problem is that of crossing dependencies, 

where the order of  sentences are changed in the 

translation. 
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Different Approached to Text Alignment 

• Length-Based Approaches: short sentences will 

be translated as short sentences and long sentences 

as long sentences. 

• Offset Alignment by Signal Processing 

Techniques: these approaches do not attempt to 

align beads of sentences but rather just to align 

position offsets in the two parallel texts. 

• Lexical Methods: Use lexical information to align 

beads of sentences.  
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Length-Based Methods I:  

General Approach 

• Goal: Find alignment A with highest probability 

given the two parallel texts S and T:                               

argmaxA P(A|S, T)=argmaxA P(A, S, T)  

• To estimate the above probabilities, the aligned 

text is decomposed in a sequence of aligned beads 

where each bead is assumed to be independent of 

the others. Then P(A, S, T)  k=1..K P(Bk). 

• The question, then, is how to estimate the 

probability of a certain type of alignment bead 

given the sentences in that bead.  
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Length-Based Methods II:             

Gale and Church, 1993 

• The algorithm uses sentence length (measured in 
characters) to evaluate how likely an alignment of 
some number of sentences in L1 is with some 
number of sentences in L2. 

• The algorithm uses a Dynamic Programming 
technique that allows the system to efficiently 
consider all possible alignments and find the 
minimum cost alignment. 

• The method performs well (at least on related 
languages). It gets a 4% error rate. It works best on 
1:1 alignments [only 2% error rate]. It has a high 
error rate on more difficult alignments. 
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Length-Based Methods II:      

Other Approaches 

• Brown et al., 1991: Same approach as Gale and 
Church, except that sentence lengths are compared 
in terms of words rather than characters. Other 
difference in goal: Brown et al. didn’t want to 
align entire articles but just a subset of the corpus 
suitable for further research. 

• Wu, 1994: Wu applies Gale and Church’s method 
to a corpus of parallel English and Cantonese text. 
The results are not much worse than on related 
languages. To improve accuracy, Wu uses lexical 
cues. 
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Offset Alignment by Signal Processing 

Techniques I : Church, 1993 

• Church argues that length-based methods work well on 

clean text but may break down in real-world situations 

(noisy OCR or unknown markup conventions) 

• Church’s method is to induce an alignment by using   

cognates (words that are similar across languages) at        

the level of character sequences. 

• The method consists of building a dot-plot, i.e., the      

source and translated text are concatenated and then a 

square graph is made with this text on both axes. A dot        

is placed at (x,y) when there is a match [4-gram char].  
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Offset Alignment by Signal Processing 

Techniques II: Church, 1993 (cont.) 

• Signal processing methods are then used to 

compress the resulting plot. 

• The interesting part in a dot-plot is called the 

bitext maps. These maps show the correspondence 

between the two languages. 

• In the bitext maps, there are faint, roughly straight 

diagonals corresponding to cognates. 

• A heuristic search along this diagonal provides an 

alignment in terms of offsets in the two texts.  
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Offset Alignment by Signal Processing Techniques III: 

Fung & McKeown, 1994 

• Fung and McKeown’s algorithm works: 

– Without having found sentence boundaries. 

– In only roughly parallel text (with certain sections 
missing in one language) 

– With unrelated language pairs. 

• The technique is to infer a small bilingual dictionary 
that will give points of alignment. 

• For each  word, a signal is produced, as an arrival 
vector of integer numbers giving the number of 
words between each occurrence of the word at hand. 
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Lexical Methods of Sentence Alignment I: Kay 

& Roscheisen, 1993 

• Assume the first and last sentences of the texts 
align. These are the initial anchors. 

• Then, until most sentences are aligned: 

1. Form an envelope of possible alignments. 

2. Choose pairs of words that tend to co-occur in 
these potential partial alignments. 

3. Find pairs of source and target sentences which 
contain many possible lexical correspondences. 
The most reliable of these pairs are used to 
induce a set of partial alignments which will 
be part of the final result.  
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Lexical Methods of Sentence Alignment II: 

Chen, 1993 

• Chen does sentence alignment by 

constructing a simple word-to-word 

translation model as he goes along. 

• The best alignment is the one that 

maximizes the likelihood of generating the 

corpus given the translation model. 

• This best alignment is found by using 

dynamic programming. 
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Lexical Methods of Sentence Alignment III: 

Haruno & Yamazaki, 1996 

• Their method is a variant of Kay & Roscheisen 

(1993) with the following differences: 

– For structurally very different languages, 

function words impede alignment. They 

eliminate function words using a POS tagger. 

– If trying to align short texts, there are not 

enough repeated words for reliable alignment 

using Kay & Roscheisen (1993). So they use an 

online dictionary to find matching word pairs. 
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Word Alignment 

• A common use of aligned texts is the derivation of 
bilingual dictionaries and terminology databases. 

• This is usually done in two steps: First, the text 
alignment is extended to a word alignment. Then, 
some criterion, such as frequency is used to select 
aligned pairs for which there is enough evidence 
to include them in the bilingual dictionary. 

• Using a 2  measure works well unless one word 
in L1 occurs with more than one word in L2. 
Then, it is useful to assume a one-to-one 
correspondence.  

• Future work is likely to use existing bilingual 
dictionaries. 
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Fully Statistical MT (I) 

• MT has been attempted using a noisy channel 

model. Such a model requires: 

• A Language Model 

• A Translation Model (Translation Probabilities) 

• A Decoder 

• An evaluation of the model found that only 48% 

of French sentences were translated correctly. The 

errors were either incorrect decodings or 

ungrammatical decodings. 
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Fully Statistical MT (II):  

Problems with the Model 

• Fertility is Asymmetric 

• Independence Assumptions 

• Sensitivity to Training Data 

• Efficiency 

• No Notion of Phrases 

• Non-Local Dependencies 

• Morphology 

• Sparse Data Problems 

• In summary, non-linguistic models are fairly success-
ful for word alignments, but they fail for MT. 
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Evaluation of MT Systems 

• Need to compare the output of the system 

with multiple reference solutions 

 

• NIST score 

• BLEU score 

• Human judges 

• Task-based evaluation 


