Part-of-Speech Tagging

(M&S Ch 10)

Part-of-speech tagging

• Part-of-speech tagging, PoS tagging: Assigning a part-of-speech category to each word-token in a text.

The red ducks can run down steep banks.

- Det – – – –
- noun noun noun noun noun
- – verb verb verb verb verb verb
- adj - adj adj -- - - - prep - -

Tagsets

- Need to agree on exactly what the possible PoS tags are: the tagset.
- Simple part-of-speech categories are not sufficient to describe language.
- Make as many helpful distinctions as possible.
- Major English tagsets: Penn (45 tags); Brown (87 tags); Lancaster: CLAWS series of tagsets, C5, and C7 (for BNC, 146 tags).

The Penn tagset (for words)

CC	coordinating conjunction	and	
CD	cardinal number	1, third	
DT	determiner	the	
EX	existential there	there is	
FW	foreign word	d'hoevre	
IN	preposition/subordinating	conjunction	in, of, like
JJ	adjective	green	
JJR	adjective, comparative	greener	
JJS	adjective, superlative	greenest	
LS	list marker	1)	
MD	modal	could, will	

NN	noun, singular or mass	table
NNS	noun plural	tables
NNP	proper noun, singular	John
NNPS	S proper noun, plural	Vikings
PDT	predeterminer	<i>both</i> the boys
POS	possessive ending	friend's
PRP	personal pronoun	I, he, it
PRP\$	possessive pronoun	my, his
RB	adverb however, usua	ally, naturally, here, good
RBR	adverb, comparative	better
RBS	adverb, superlative	best

RP particle	give <i>up</i>
TO to	to go, to him
UH interjection	uhhuhhuhh
VB verb, base form	take
VBD verb, past tense	took
VBG verb, gerund/present participle	taking
VBN verb, past participle	taken
VBP verb, sing. present, non-3d	take
VBZ verb, 3rd person sing. present	takes
WDT wh-determiner	which
WP wh-pronoun	who, what
WP\$ possessive wh-pronoun	whose
WRB wh-abverb	where, when

Penn tagset (for punctuation)

- # Pound sign
- \$ Dollar sign
- . Sentence-final punctuation
- , Comma
- : Colon, semi-colon, ellipsis
- (Left bracket character
-) Right bracket character Straight double quote
- ' Left open single quote
- " Left open double quote
- ' Right close single quote
- " Right close double quote

Lexical resources for tagging

- Possible starting points:
 - Lexicon giving possible PoS's for each word.
 - Hand-tagged corpus.
- Lexicon could include a priori frequency information.

What counts as good?

- Dumb and easy tagging method: Give each word its most frequent tag.
- Accuracy of this method: about 90%
- But we want 99% or better.

Rule-based tagging

- Dependencies between tags: i.e., DT + VB not allowed; agreement subject verb.
- Rule-based tagging: Use set of rules for what tags can and can't follow or precede other tags.
 - "If this word's possible tags include both verb tags and non-verb tags, and the previous word is a preposition, then eliminate the verb tags from consideration."

... pieces of clean rag ...

• Very specific rules; problems with longdistance dependencies. Tag bigrams

• Choose the most likely tag for the current word given the previous word and tag

$$t_i = \operatorname{argmax}_j P(t^j | t_{i-1}, w_i) =$$

= $\operatorname{argmax}_j P(t^j | t_{i-1}) P(w_i | t^j)$

• Get the probabilities from a tagged corpus.

• For all words
$$w_k$$
 and tags t^k ,
 $P(t^k | t^j) = C(t^j, t^k) / C(t^j)$
 $P(w_k | t^j) = C(w_{k,t^j}) / C(t^j)$

Markov models for tagging

- Markov model: Tags are states; words are output.
 - Find most probable sequence of states (tags) for observed output (sentence to be tagged).
- Parameters of the model determined from pretagged corpus—same as for bigram model.
 - Train as visible model.
- Use Viterbi algorithm to find most likely tag sequence.
 - Use as hidden model.

Unknown words

- In training: word is in lexicon but not in training data, or vice versa.
- In use: word is completely unknown to tagger.
- Heuristics: Unknown capitalized word likely to be NNP; *-ing* likely to indicate VBG; etc.
- Smoothing for possible events not in training data.

Completely hidden models

- Training without a tagged corpus.
 For other genres or languages.
- Use Baum-Welch algorithm to estimate parameters.
- Various possible starting guesses for tag probabilities.

Transformation-based-learning taggers I

- Brill tagger: Starts off with dumb method; then applies ordered sequence of patches to correct the errors.
- Patches are transformations learned from correctly-tagged corpus.
- Pattern–action rules: match present tag and context, change present tag.
 - Change NN to VB if previous tag is TO.
 - Change JJ to NNP if next tag is NNP.

Transformation-based-learning taggers II

- Training method:
 - Get count of each error type for present corpus by comparing with training corpus.
 - Try all applicable transformations; for each, count number of errors removed and errors added.
 - Add the transformation that made the most improvement to the sequence of patches.
- Repeat until no more improvement.

Transformation-based-learning taggers III -Improvements

- Allow lexicalized transformations.
 - Change IN to RB if the second word to the right is *as*.
 - Change VBP to VB if one of the previous two words is *n*'t.
- Learn best treatment of unknown words.
 - Start as NNP or NN. Change NN to NNS if last character is *s*.
 - Change anything to JJ if adding *ly* would make a known word.
 - Change NN to VB if the word *would* ever appears to the left.
- Results: Over 97% accuracy; lexicalized transformations don't help much; resistant to overfitting.

Applications of tagging

- Identifying features in text for classification.
- First step in finding the meaning of a word.
- First step in partial or complete parsing.
- Noun-phrase and named-entity identification.

Noun phrases and named entities

- Non-recursive noun phrases, including named entities. Mark the NPs:
 - The dogs on the other ends of these locking bars are thus forced into notches in other tappets.
 - General Electric Co. agreed to a minority role in a mobile communications joint venture with Telefon AB L.M. Ericsson of Sweden.

Noun-phrase detection

- Detect NPs by looking at sequences of tags.
- Rule for simple NPs: [DT] + JJ* + NN | NNS
- But in practice, it's more complex: proper names, sequences of nouns:

General/NNP Electric/NNP Co./NNP agreed/VBD to/TO a/DT minority/NN role/NN in/IN a/DT mobile/JJ communications/NNS joint/JJ venture/NN with/IN Telefon/NNP AB/NNP L.M./NNP Ericsson/NNP of/IN Sweden/NNP.

• So use HMM, learn from tagged corpus with NPs marked.

HMMs for noun-phrase detection

- Noun-phrase detection as scanning text, inserting markers <NP> and </NP>
- HMM for this:
 - Five states: <NP>, </NP>, </NP>, in-NP, not-in-NP
 - Output is pairs (bigrams) of tags: e.g., DT-NNS, NNS-IN, IN-DT, DT-JJ,
- To find noun phrases in a sentence, represent it as sequence of tag bigrams, and use Viterbi algorithm to find sequence of states that HMM went through to generate it.
- Train the HMM by Baum–Welch algorithm.