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Mathematical Foundations

Elementary Probability Theory

Essential Information Theory
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Motivations 

� Statistical NLP aims to do statistical 
inference for the field of NL

� Statistical inference consists of 
taking some data (generated in 
accordance with some unknown 
probability distribution) and then 
making some inference about this 
distribution.
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Motivations (Cont)

� An example of statistical inference is 
the task of language modeling (ex how 
to predict the next word given the 
previous words)

� In order to do this, we need a model
of the language.

� Probability theory helps us finding 
such model
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Probability Theory

� How likely it is that something will 
happen

� Sample space Ω lists of all possible 
outcomes of an experiment

� The event A is a subset of Ω

� Probability function (or distribution)

[ ]0,1Ω:P →
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Prior Probability

� Prior probability: the probability  
before we consider any additional 
knowledge

)(AP
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Conditional probability

� Sometimes we have partial knowledge 
about the outcome of an experiment

� Conditional (or Posterior) Probability

� Suppose we know that event B is true

� The probability that A is true given 
the knowledge about B is expressed 
by

)|( BAP
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Conditional probability (cont)

)()|(

)()|(),(

APABP

BPBAPBAP

=
=

� Joint probability of A and B.

� 2-dimensional table with a value in every 
cell giving the probability of that specific 
state occurring
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Chain Rule

P(A,B) = P(A|B)P(B)

= P(B|A)P(A)

P(A,B,C,D)  = P(A)P(B|A)P(C|A,B)P(D|A,B,C)
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(Conditional) independence

� Two events A e B are independent of 
each other if 

P(A) = P(A|B)

� Two events A and B are conditionally 
independent of each other given C if

P(A|C) = P(A|B,C)
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Bayes’ Theorem

� Bayes’ Theorem lets us swap the 
order of dependence between events

� We saw that  

� Bayes’ Theorem:
P(B)

B)P(A,
B)|P(A =

P(B)

A)P(A)|P(B
B)|P(A =
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Example 

� S:stiff neck, M: meningitis

� P(S|M) =0.5, P(M) = 1/50,000 
P(S)=1/20

� I have stiff neck, should I worry?

0002.0
20/1

000,50/15.0
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Random Variables

� So far, event space that differs with 
every problem we look at

� Random variables (RV) X allow us to 
talk about the probabilities of 
numerical values that are related to 
the event space

}1,0{:

:

→Ω
ℜ→Ω

X

X
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Expectation

{ }xXA
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� The Expectation is the mean or average of 
a RV
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Variance

� The variance of a RV is a measure of 
whether the values of the RV tend to 
be consistent over trials or to vary a 
lot

� σ is the standard deviation

222

2

2

)()(

)))(((

))()(()(

σ=−=
−=

−= ∑

XEXE

XEXE

XExxpXVar
x



8

1/22/2007 15

Back to the Language Model

� In general, for language events, P is 
unknown

� We need to estimate P, (or model M 
of the language)

� We’ll do this by looking at evidence 
about what P must be, based on a 
sample of data
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Estimation of P

� Frequentist statistics

� Bayesian statistics
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Frequentist Statistics 

� Relative frequency: proportion of times an 
outcome u occurs

� C(u) is the number of times u occurs in N      
trials

� For           the relative frequency tends to 
stabilize around some number: probability 
estimates

N

C(u)
fu =

∞→N
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Frequentist Statistics (cont)

� Two different approach:

� Parametric

� Non-parametric (distribution free)
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Parametric Methods

� Assume that some phenomenon in language 
is acceptably modeled by one of the well-
known family of distributions (such 
binomial, normal)

� We have an explicit probabilistic model of 
the process by which the data was 
generated, and determining a particular 
probability distribution within the family 
requires only the specification of a few 
parameters (less training data)
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Non-Parametric Methods

� No assumption about the underlying 
distribution of the data

� For ex, simply estimate P empirically 
by counting a large number of random 
events is a distribution-free method

� Less prior information, more training 
data needed
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Binomial Distribution 
(Parametric)

� Series of trials with only two 
outcomes, each trial being 
independent from all the others

� Number r of successes out of n trials 
given that the probability of success 
in any trial is p:

rnr pp
r

n
pnrb −−
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� Continuous 

� Two parameters: mean  µ and 
standard deviation σ

� Used in clustering

Normal (Gaussian) 
Distribution (Parametric)
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Frequentist Statistics

� D: data

� M: model (distribution P)

� Θ: parameters (e.g. µ, σ)

� For M fixed: Maximum likelihood 
estimate: choose     such that

θ)M|P(Dargmaxθ
θ

*

,=

*

θ
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Frequentist Statistics

� Model selection, by comparing the 
maximum likelihood: choose     such 
that

*

M








= (M)θM,|DPargmax   M
*

M

*

θ)M|P(Dargmaxθ
θ
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Estimation of P

� Frequentist statistics
� Parametric methods

� Standard distributions:
� Binomial distribution (discrete)
� Normal (Gaussian) distribution (continuous)

� Maximum likelihood 

� Non-parametric methods

� Bayesian statistics
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Bayesian Statistics

� Bayesian statistics measures degrees 
of belief

� Degrees are calculated by starting 
with prior beliefs and updating them 
in face of the evidence, using Bayes
theorem
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Bayesian Statistics (cont)

ondistributi posterioria  maximum is MAP

M)P(M)|P(Dargmax

P(D)

M)P(M)|P(D
argmax

D)|MPargmaxM

M

M

M

*

=

=

= (
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Bayesian Statistics (cont)

� M is the distribution; for fully 
describing the model, we need the 
distribution M and the parameters θ

θM)|θ)P(θM,|P(D

θM|θD,PM|DP

M)P(M)|P(DargmaxM
M

*

d

d

∫

∫
=

=

=

)()(

likelihood marginal the is M)|P(D



15

1/22/2007 29

Frequentist vs. Bayesian

� Bayesian

� Frequentist

θM)|θ)P(θM,|P(DP(M)argmaxM
M

*

d∫=

θ)M|P(Dargmaxθ
θ

*

,=

prior model  theis P(M)

priorparameter   theis M)|P(θ

θ  M,givendata  of likelihood  theis θ) M,|P(D
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Bayesian Updating

� How to update P(M)?

� We start with a priori probability 
distribution P(M), and when a new 
datum comes in, we can update our 
beliefs by calculating the posterior 
probability P(M|D). This then 
becomes the new prior and the 
process repeats on each new datum
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Bayesian Decision Theory

� Suppose we have 2 models      and      ; we 
want to evaluate which model better 
explains some new data.

is the most likely model, otherwise 

1M 2M
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Essential Information 
Theory

� Developed by Shannon in the 40s

� Maximizing the amount of information 
that can be transmitted over an 
imperfect communication channel

� Data compression (entropy)

� Transmission rate (channel capacity)
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Entropy

� X: discrete RV, p(X) 
� Entropy (or self-information)

� Entropy measures the amount of 
information in a RV; it’s the average length 
of the message needed to transmit an 
outcome of that variable using the optimal 
code

p(x)p(x)logH(X)H(p)
Xx

2∑
∈

−==
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Entropy (cont)
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Joint Entropy 

� The joint entropy of 2 RV X,Y is the 
amount of the information needed on 
average to specify both their values

∑∑
∈ ∈

−=
Xx y

y)y)logp(x,p(x,Y)H(X,
Y
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Conditional  Entropy

� The conditional entropy of a RV Y given 
another RV X, expresses how much extra 
information one still needs to supply on 
average to communicate Y given that the 
other party knows X

( )X)|logp(YE   x)|y)logp(yp(x,

x)|x)logp(y|p(yp(x)

x)X|p(x)H(YX)|H(Y

Xx Yy

Xx Yy

Xx
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Chain Rule 

X)|H(Y H(X) Y)H(X, +=

),...XX|H(X....)X|H(X)H(X)X...,H(X 1n1n121n1, −+++=
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Mutual Information

� I(X;Y) is the mutual information between X 
and Y. It is the reduction of uncertainty of 
one RV due to knowing about the other, or 
the amount of information one RV contains 
about the other.

Y)I(X;  X)| H(Y- H(Y) Y)|H(X-H(X)

 Y)|H(X  H(Y) X)|H(Y H(X) Y)H(X,

==
+=+=
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Mutual Information (cont)

� I is 0 only when X,Y are independent: 
H(X|Y)=H(X)

� H(X)=H(X)-H(X|X)=I(X;X)  Entropy is 
the self-information

∑=

==

yx, p(y) p(x)

y)p(x,
 log y)p(x,  Y)I(X;

X)| H(Y- H(Y) Y)|H(X- H(X) Y)I(X;
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Entropy and Linguistics

� Entropy is measure of uncertainty. 
The more we know about something 
the lower the entropy. 

� If a language model captures more of 
the structure of the language, then 
the entropy should be lower.

� We can use entropy as a measure of 
the quality of our models



21

1/22/2007 41

Entropy and Linguistics (cont)

� H: entropy of language; we don’t know 
p(X); so..?

� Suppose our model of the language is 
q(X) 

� How good estimate of p(X) is q(X)?

p(x)p(x)logH(X)H(p)
Xx

2∑
∈

−==
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Entropy and Linguistics
Kullback-Leibler Divergence 

� Relative entropy or KL (Kullback-
Leibler) divergence 









=

=∑
∈

q(X)

p(X)
logE      

q(x)

p(x)
p(x)log q) ||D(p

p

Xx



22

1/22/2007 43

Entropy and Linguistics
KL Divergence (cont)

� Measure of how different two probability 
distributions are

� Average number of bits that are wasted by 
encoding events from a distribution p with 
a code based on a not-quite right 
distribution q

� Goal: minimize relative entropy D(p||q) to 
have a probabilistic model as accurate as 
possible
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The Noisy Channel Model

� The aim is to optimize in terms of 
throughput and accuracy the 
communication of messages in the presence 
of noise in the channel

� Duality between compression (achieved by 
removing all redundancy) and transmission 
accuracy (achieved by adding controlled 
redundancy so that the input can be 
recovered in the presence of noise)
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The Noisy Channel Model (cont)

� Goal: encode the message in such a way 
that it occupies minimal space while still 
containing enough redundancy to be able to 
detect and correct errors

W X W*Y
encoder decoderChannel

p(y|x)message

input to 
channel

Output from
channel

Attempt to 
reconstruct 
message 
based 
on output
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The Noisy Channel Model (cont)

� Channel capacity: rate at which one can 
transmit information through the channel 
with an arbitrary low probability of being 
unable to recover the input from the 
output

�

� We reach a channel capacity if we manage 
to design an input code X whose 
distribution p(X) maximizes I between 
input and output

Y)I(X;max  C
p(X)

=
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Linguistics and the Noisy 
Channel Model

� In linguistic we can’t control the encoding 
phase. We want to decode the output to 
give the most likely input.

i)|p(i)p(oargmax 
p(o)

i)|p(i)p(o
argmax o)|p(iargmax   I

iii

===ˆ

decoder
Noisy Channel

p(o|i)

I O Î

1/22/2007 48

Linguistics and the noisy 
Channel Model (cont)

� p(i) is the language model and          is 
the  channel probability

� Ex: Machine translation, optical 
character recognition, speech 
recognition

i)|p(i)p(oargmax 
p(o)

i)|p(i)p(o
argmax o)|p(iargmax   I

iii

===ˆ

i)|p(o
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Machine Translation
From English into French

decoder
Noisy Channel

p(o|i)

French’English

Decoder
p(f)

Noisy Channel
p(e|f)

French

Estimated from 
parallel corpus

Estimated from 
French corpus
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Noisy channel applications

App. Input Output p(i) p(o|i)

MT L2 word L1 word L2 language Translation 
sequences sequences model model

OCR actual text text with language model of OCR
mistakes model errors

ASR word speech language acoustic
sequences signal model model

POS POS word language p(word|tag) 
tagger sequences sequences model


