Latent semantic indexing

- Relationship between concepts and words is many-to-many.
- Solve problems of synonymy and ambiguity by representing documents as vectors of ideas or concepts, not terms.
- For retrieval, analyze queries the same way, and compute cosine similarity of vectors of ideas.

Latent semantic analysis

■ Latent semantic analysis (LSA).

- ▶ Find the **latent semantic space** that underlies the documents.
- Find the basic (coarse-grained) ideas, regardless of the words used to say them.

A kind of co-occurrence analysis; co-occurring words as "bridges" between non-co-occurring words.

Latent semantic space has many fewer dimensions than term space has.

- ► Space depends on documents from which it is derived.
- Components have no names; can't be interpreted.

Singular value decomposition (1)

- Dimensionality reduction by singular value decomposition (SVD).
- Analogous to least-squares fit: closest fit of a lower-dimensional matrix to a higher-dimensional matrix.
- **Theorem:** Let $A_{t \times d}$ be a real-valued matrix, and let $n = rank(A) \le min(t,d)$. There exist $T_{t \times n}$, diagonal $S_{n \times n}$, and $D_{d \times n}$ such that

$$\blacktriangleright A = TSD^T,$$

- ► $s_{ii} \ge s_{jj}$ for all $1 \le i < j \le n$,
- ▶ the columns of both *T* and *D* are orthonormal.
- Columns of T and D are the singular vectors of A; they represent terms and documents respectively); elements of S are the singular values of A.

Singular value decomposition (2)

$$A_{t \times d} = T_{t \times n}$$

where $n = rank(A) \le \min(t, d)$.

 $S_{n \times n}$

 $D_{d \times n}^{T}$

Singular value decomposition (3)

- For k < n, define $\hat{A}_{t \times d} = T_{t \times k} S_{k \times k} (D_{d \times k})^T$.
 - Although and A are both t × d matrices, Â is really "smaller": has rank k, can be represented as a smaller matrix.
- **Theorem:** \hat{A} is the closest fit to A of a matrix of rank k; i.e., minimizes $||A \hat{A}||_2$.

Singular value decomposition (4)

$$\hat{A}_{t \times d} = T_{t \times k}$$

 $S_{k \times k}$

 $D_{d \times k}^{T}$

Usually choose $k \ll n$.

Using singular vectors

- SVD algorithms.
- The *k* columns of *T* and *D* that remain in $T_{t \times k}$ and $D_{d \times k}$ are the "most important" ones.
- For document \vec{d} in original normalized A, $A^T \vec{d}$ is vector of document similarities with \vec{d} ; $A^T A$ is (symmetrical) matrix of document-to-document similarities.
- Analogously in reduced space,

$$\hat{A}^T \hat{A} = (S_{k \times k} D_{d \times k}{}^T)^T (S_{k \times k} D_{d \times k}{}^T).$$

Term similarity: AA^T approximated by

 $\hat{A}\hat{A}^T = (T_{t\times k}S_{k\times k})(T_{t\times k}S_{k\times k})^T.$

Example (1)

Six documents, five terms.

	(d_1	d_2	d_3	d_4	d_5	d_6
	cosmonaut	1	0	1	0	0	0
A =	astronaut	0	1	0	0	0	0
A =	moon	1	1	0	0	0	0
	car	1	0	0	1	1	0
	truck	0	0	0	1	0	1 /

Example (2)

	(Dim 1	Dim 2	Dim 3	Dim 4	Dim 5	(2.16	0.00	0.00	0.00
A =	cosn	nonaut	-0.44	-0.30	0.57	0.58	0.25			0.00	0.00
	astro	naut	-0.13	-0.33	-0.59	0.00	0.73	0.00	1.59	0.00	0.00
	moon car		-0.48	-0.51	-0.37	0.00	-0.61	0.00	0.00	1.28	0.00
			-0.70	0.35	0.15	-0.58	0.16	0.00	0.00	0.00	1.00
	truck	X	-0.26	0.65	-0.41	0.58	-0.09	0.00	0.00	0.00	0.00
~							/			$S_{5\times 5}$	
		/	I	$T_{5\times 5}$					`		
		[C	l_1 d	d_2 d_2	d_3 d	$l_4 \qquad d_5$	d_6	_)		
		Dim	1 -0.7	5 -0.2	28 -0.2	20 -0.4	5 -0.33	-0.12			
		Dim	2 -0.2	.9 -0.5	53 -0.1	9 0.6	3 0.22	0.41			
		Dim	3 0.2	8 -0.7	0.4	-0.2	0 0.12	-0.33			
		Dim	4 0.0	0 0.0	0.5	68 0.0	0 -0.58	0.58			
	,	Dim	5 -0.5	3 0.2	.0.6	63 0.1	9 0.41	-0.22			
						Т					

 $D_{6\times 5}^{T}$

Example (3)

Choose k = 2.

				,	1					
0.00	0.00	0.00		(d_1	d_2	d_3	d_4	d_5	d
				Dim 1	-0.75	-0.28	-0.20	-0.45	-0.33	-0.1
1.59		0.00		Dim 2	-0.29	-0.53	-0.19	0.63	0.22	0.4
0.00	1.28	0.00	0.00	Dim 3	0.28	-0.75	0.45	-0.20	0.12	-0.3
0.00	0.00	1.00	0.00		0.00	0.00		0.00	-0.58	0.5
0.00	0.00	0.00	0.39							-0.2
	$S_{2\times 2}$				0.00	0.17		0.17	V. II	0.2
							$D_{6\times 2}^{T}$			
				(d_1	d_2	d_3	d_4	d_5	a
			=	Dim 1	-1.62	-0.60	-0.04	-0.97	-0.71	-0.2
				Dim 2	-0.46	-0.84	-0.30	1.00	0.35	0.6
					-		$B_{2\times 6}$			
	5 0.00 1.59 0 0.00 0 0.00 0 0.00	0.00 1.28	1.59 0.00 0.00 0 0.00 1.28 0.00 0 0.00 0.00 1.00 0 0.00 0.00 0.00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} 0 & 1.59 \\ \hline 0 & 0.00 & 1.28 & 0.00 & 0.00 \\ \hline 0 & 0.00 & 0.00 & 1.00 & 0.00 \\ \hline 0 & 0.00 & 0.00 & 0.00 & 0.39 \end{array} \end{array} \begin{bmatrix} \text{Dim 1} \\ \hline \text{Dim 2} \\ \hline \text{Dim 3} \\ \hline \text{Dim 4} \\ \hline \text{Dim 5} \\ \hline S_{2\times 2} \end{bmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Example (4)

Hence inter-document similarity is given by $\hat{A}^T \hat{A} = B^T B =$

(d_1	d_2	d_3	d_4	d_5	d_6
	d_1	1.00					
	d_2	0.78	1.00				
			0.88				
	d_4	0.47	-0.18	-0.62	1.00		
	d_5	0.74	0.16	-0.32	0.94	1.00	
	d_6	0.10	-0.54	-0.87	0.93	0.74	1.00

Queries and new documents

Two problems:

- ▶ Need to represent queries in same space.
- ► Want to add new documents without recomputing SVD.
- "Folding in": Let \vec{q} be the term vector for a query or new document. Then $\hat{\vec{q}}_{k\times 1} = (T_{t\times k})^T \vec{q}_{t\times 1}$

is the vector representing \vec{q} in the reduced space.

- If \vec{q} is a query, $\hat{\vec{q}}$ can be compared to other documents in *D* by cosine similarity.
- If \vec{q} is a new document, $\hat{\vec{q}}$ can be "appended" to *D*; *d* is increased by 1.
- As new documents are added, SVD will become much poorer fit. Eventually need to recompute SVD.

Adding a new document

Choosing a value for k

- **LSI** is useful only if $k \ll n$.
- If *k* is too large, it doesn't capture the underlying latent semantic space; if *k* is too small, too much is lost.
- No principled way of determining the best *k*; need to experiment.

How well does this work?

- Effectiveness of LSI compared to regular term-matching depends on nature of documents.
 - ► Typical improvement: 0 to 30% better precision.
 - Advantage greater for texts in which synonymy and ambiguity are more prevalent.
 - ▶ Best when recall is high.
- Costs of LSI might outweigh improvement.
 - SVD is computationally expensive; limited use for really large document collections (as in TREC).
 - ► Inverted index not possible.

Other applications of LSI and LSA in NLP

Cross-language information retrieval.

- Concatenate multilingual abstracts to act as "bridge" between languages.
- People-retrieval by information retrieval.
- Text segmentation.
- Essay scoring.