Latent semantic indexing

- Relationship between concepts and words is many-to-many.
- Solve problems of synonymy and ambiguity by representing documents as vectors of ideas or concepts, not terms.
- For retrieval, analyze queries the same way, and compute cosine similarity of vectors of ideas.

Latent semantic analysis

- Latent semantic analysis (LSA).
- Find the latent semantic space that underlies the documents.
- Find the basic (coarse-grained) ideas, regardless of the words used to say them.
- A kind of co-occurrence analysis; co-occurring words as "bridges" between non-co-occurring words.

■ Latent semantic space has many fewer dimensions than term space has.

- Space depends on documents from which it is derived.
- Components have no names; can't be interpreted.

Singular value decomposition (1)

- Dimensionality reduction by singular value decomposition (SVD).
- Analogous to least-squares fit: closest fit of a lower-dimensional matrix to a higher-dimensional matrix.
- Theorem: Let $A_{t \times d}$ be a real-valued matrix, and let $n=\operatorname{rank}(A) \leq$ $\min (t, d)$. There exist $T_{t \times n}$, diagonal $S_{n \times n}$, and $D_{d \times n}$ such that
- $A=T S D^{T}$,
- $s_{i i} \geq s_{j j}$ for all $1 \leq i<j \leq n$,
- the columns of both T and D are orthonormal.
\square Columns of T and D are the singular vectors of A; they represent terms and documents respectively); elements of S are the singular values of A.

Singular value decomposition (2)

$$
A_{t \times d}=T_{t \times n}
$$

$S_{n \times n}$
$D_{d \times n}{ }^{T}$
where $n=\operatorname{rank}(A) \leq \min (t, d)$.

Singular value decomposition (3)

■ For $k<n$, define $\hat{A}_{t \times d}=T_{t \times k} S_{k \times k}\left(D_{d \times k}\right)^{T}$.

- Although \hat{A} and A are both $t \times d$ matrices, \hat{A} is really "smaller": has rank k, can be represented as a smaller matrix.
■ Theorem: \hat{A} is the closest fit to A of a matrix of rank k; i.e., minimizes $\|A-\hat{A}\|_{2}$.

Singular value decomposition (4)

$\hat{A}_{t \times d}=T_{t \times k}$
$S_{k \times k}$
$D_{d \times k}{ }^{T}$
Usually choose $k \ll n$.

Using singular vectors

■ SVD algorithms.

- The k columns of T and D that remain in $T_{t \times k}$ and $D_{d \times k}$ are the "most important" ones.
■ For document \vec{d} in original normalized $A, A^{T} \vec{d}$ is vector of document similarities with $\vec{d} ; A^{T} A$ is (symmetrical) matrix of document-to-document similarities.
- Analogously in reduced space,

$$
\hat{A}^{T} \hat{A}=\left(S_{k \times k} D_{d \times k}{ }^{T}\right)^{T}\left(S_{k \times k} D_{d \times k}^{T}\right) .
$$

- Term similarity: $A A^{T}$ approximated by

$$
\hat{A} \hat{A}^{T}=\left(T_{t \times k} S_{k \times k}\right)\left(T_{t \times k} S_{k \times k}\right)^{T}
$$

Example (1)

Six documents, five terms.
$A=\left(\begin{array}{l|llllll} & d_{1} & d_{2} & d_{3} & d_{4} & d_{5} & d_{6} \\ \hline \text { cosmonaut } & 1 & 0 & 1 & 0 & 0 & 0 \\ \text { astronaut } & 0 & 1 & 0 & 0 & 0 & 0 \\ \text { moon } & 1 & 1 & 0 & 0 & 0 & 0 \\ \text { car } & 1 & 0 & 0 & 1 & 1 & 0 \\ \text { truck } & 0 & 0 & 0 & 1 & 0 & 1\end{array}\right)$

Example (2)

Example (3)

Choose $k=2$.

Example (4)

Hence inter-document similarity is given by $\hat{A}^{T} \hat{A}=B^{T} B=$
$\left(\begin{array}{r|rrrrrr} & d_{1} & d_{2} & d_{3} & d_{4} & d_{5} & d_{6} \\ \hline d_{1} & 1.00 & & & & & \\ d_{2} & 0.78 & 1.00 & & & & \\ d_{3} & 0.40 & 0.88 & 1.00 & & & \\ d_{4} & 0.47 & -0.18 & -0.62 & 1.00 & & \\ d_{5} & 0.74 & 0.16 & -0.32 & 0.94 & 1.00 & \\ d_{6} & 0.10 & -0.54 & -0.87 & 0.93 & 0.74 & 1.00\end{array}\right)$

Queries and new documents

- Two problems:
- Need to represent queries in same space.
- Want to add new documents without recomputing SVD.

■ "Folding in": Let \vec{q} be the term vector for a query or new document. Then $\hat{\vec{q}}_{k \times 1}=\left(T_{t \times k}\right)^{T} \vec{q}_{t \times 1}$
is the vector representing \vec{q} in the reduced space.

- If \vec{q} is a query, $\hat{\vec{q}}$ can be compared to other documents in D by cosine similarity.
- If \vec{q} is a new document, $\hat{\vec{q}}$ can be "appended" to $D ; d$ is increased by 1 .
\square As new documents are added, SVD will become much poorer fit. Eventually need to recompute SVD.

Adding a new document

$\hat{A}_{t \times(d+1)}=T_{t \times k}$
$S_{k \times k}$
$D_{(d+l) \times k} T$

Choosing a value for k

■ LSI is useful only if $k \ll n$.

- If k is too large, it doesn't capture the underlying latent semantic space; if k is too small, too much is lost.
- No principled way of determining the best k; need to experiment.

How well does this work?

■ Effectiveness of LSI compared to regular term-matching depends on nature of documents.

- Typical improvement: 0 to 30% better precision.
- Advantage greater for texts in which synonymy and ambiguity are more prevalent.
- Best when recall is high.
- Costs of LSI might outweigh improvement.
- SVD is computationally expensive; limited use for really large document collections (as in TREC).
- Inverted index not possible.

Other applications of LSI and LSA in NLP

- Cross-language information retrieval.
- Concatenate multilingual abstracts to act as "bridge" between languages.
- People-retrieval by information retrieval.
- Text segmentation.

■ Essay scoring.

