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Statistical NLP: Lecture 4

Mathematical Foundations I: 
Probability Theory

(Ch2)
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Notions of Probability Theory

• Probability theory deals with predicting how likely  it is 
that something will happen.

• The process by which an observation is made is called 
an experiment or a trial.

• The collection of basic outcomes (or sample points) for 
our experiment is called the sample space.

• An event is a subset of the sample space.
• Probabilities are numbers between 0 and 1, where          

0 indicates impossibility and 1, certainty.
• A probability function/distribution distributes a 

probability mass of 1 throughout the sample space.
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Conditional Probability and 
Independence

• Conditional probabilities measure the probability of 
events given some knowledge.

• Prior probabilities measure the probabilities of 
events before we consider our additional knowledge.

• Posterior probabilities are probabilities that result 
from using our additional knowledge.

• The chain rule relates intersection with 
conditionalization (important to NLP)

• Independence and conditional independence of 
events are two very important notions in statistics.
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Bayes’ Theorem

• Bayes’ Theorem lets us swap the order of 
dependence between events. This is 
important when the former quantity is 
difficult to determine.

• P(B|A) = P(A|B)P(B)/P(A)
• P(A) is a normalization constant.
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Random Variables

• A random variable is a function                           
X: sample space --> Rn

• A discrete random variable is a function                
X: sample space --> S                                                  
where S is a countable subset of R.

• If X: sample space --> {0,1}, then X is called a 
Bernoulli trial.

• The probability mass function for a random 
variable X gives the probability that the random 
variable has different numeric values.
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Expectation and Variance

• The expectation is the mean or average of a 
random variable.

• The variance of a random variable is a 
measure of whether the values of the 
random variable tend to be consistent over 
trials or to vary a lot.
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Joint and Conditional Distributions

• More than one random variable can be defined 
over a sample space. In this case, we talk about a 
joint or multivariate probability distribution.

• The joint probability mass function for two 
discrete random variables X and Y is: 
p(x,y)=P(X=x, Y=y)

• The marginal probability mass function totals up 
the probability masses for the values of each 
variable separately.

• Similar intersection rules hold for joint 
distributions as for events.
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Estimating Probability Functions

• What is the probability that the sentence “The cow 
chewed its cud” will be uttered? Unknown ==>       
P must be estimated from a sample of data.

• An important measure for estimating P is the 
relative frequency of the outcome, i.e., the 
proportion of times a certain outcome occurs.

• Assuming that certain aspects of language can be 
modeled by one of the well-known distribution is 
called using a parametric approach.

• If no such assumption can be made, we must use a 
non-parametric approach.
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Standard Distributions

• In practice, one commonly finds the same basic 
form of a probability mass function, but with 
different constants employed.

• Families of pmfs are called distributions and the 
constants that define the different possible pmfs in 
one family are called parameters.

• Discrete Distributions: the binomial distribution, 
the multinomial distribution, the Poisson 
distribution.

• Continuous Distributions: the normal distribution, 
the standard normal distribution. 
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Bayesian Statistics I: Bayesian Updating

• Assume that the data are coming in 
sequentially and are independent.

• Given an a-priori probability distribution, 
we can update our beliefs when a new 
datum comes in by calculating the 
Maximum A Posteriori (MAP) distribution.

• The MAP probability becomes the new 
prior and the process repeats on each new 
data.
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Bayesian Statistics II: Bayesian Decision 
Theory

• Bayesian Statistics can be used to evaluate 
which model or family of models better 
explains some data.

• We define two different models of the event 
and calculate the likelihood ratio between 
these two models.


