Statistical NLP: Lecture 4

Mathematical Foundations I:
Probability Theory

(Ch2)

Notions of Probability Theory

Probability theory deals with predicting how likely it is
that something will happen.

The process by which an observation is made is called
an experiment or a trial.

The collection of basic outcomes (or sample points) for
our experiment is called the sample space.

An event is a subset of the sample space.

Probabilities are numbers between 0 and 1, where

0 indicates impossibility and 1, certainty.

A probability function/distribution distributes a
probability mass of 1 throughout the sample space.

Conditional Probability and
Independence

Conditional probabilities measure the probability of
events given some knowledge.

Prior probabilities measure the probabilities of
events before we consider our additional knowledge.
Posterior probabilities are probabilities that result
from using our additional knowledge.

The chain rule relates intersection with
conditionalization (important to NLP)
Independence and conditional independence of
events are two very important notions in statistics.

Bayes’” Theorem

» Bayes’ Theorem lets us swap the order of
dependence between events. This is
important when the former quantity is
difficult to determine.

P(B|A) = P(A|B)P(B)/P(A)

e P(A) is a normalization constant.

.

Random Variables

« A random variable is a function
X: sample space --> R"

e A discrete random variable is a function
X: sample space --> S
where S is a countable subset of R.

« If X: sample space --> {0,1}, then X is called a
Bernoulli trial.

* The probability mass function for a random
variable X gives the probability that the random
variable has different numeric values.

Expectation and Variance

The expectation is the mean or average of a
random variable.

» The variance of a random variable is a
measure of whether the values of the
random variable tend to be consistent over
trials or to vary a lot.




Joint and Conditional Distributions

More than one random variable can be defined
over a sample space. In this case, we talk about a
joint or multivariate probability distribution.
The joint probability mass function for two
discrete random variables X and Y is:
P(x.y)=P(X=x, Y=y)

The marginal probability mass function totals up
the probability masses for the values of each
variable separately.

Similar intersection rules hold for joint
distributions as for events.

Estimating Probability Functions

What is the probability that the sentence “The cow
chewed its cud” will be uttered? Unknown ==>

P must be estimated from a sample of data.

« An important measure for estimating P is the
relative frequency of the outcome, i.e., the
proportion of times a certain outcome occurs.
Assuming that certain aspects of language can be
modeled by one of the well-known distribution is
called using a parametric approach.

« If no such assumption can be made, we must use a
non-parametric approach.

Standard Distributions

In practice, one commonly finds the same basic
form of a probability mass function, but with
different constants employed.

Families of pmfs are called distributions and the
constants that define the different possible pmfs in
one family are called parameters.

Discrete Distributions: the binomial distribution,
the multinomial distribution, the Poisson
distribution.

Continuous Distributions: the normal distribution,
the standard normal distribution.

Bayesian Statistics I: Bayesian Updating

 Assume that the data are coming in
sequentially and are independent.

 Given an a-priori probability distribution,
we can update our beliefs when a new
datum comes in by calculating the
Maximum A Posteriori (MAP) distribution.

» The MAP probability becomes the new
prior and the process repeats on each new
data.

Bayesian Statistics I1: Bayesian Decision
Theory

 Bayesian Statistics can be used to evaluate
which model or family of models better
explains some data.

* We define two different models of the event
and calculate the likelihood ratio between
these two models.




