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Statistical NLP: Lecture 11

Hidden Markov Models

(Ch 9)
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Markov Models

• Markov models are statistical tools that are useful for 
NLP because they can be used for part-of-speech-
tagging and speech recognition.

• Their first use was in modeling the letter sequences in 
works of Russian literature

• They were later developed as a general statistical tool. 
• More specifically, they model a sequence (perhaps 

through time) of random variables that are not   
necessarily independent.

• They rely on two assumptions: Limited Horizon and  
Time Invariant.
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Markov Assumptions

• Let X=(X1, .., Xt) be a sequence of random variables 
taking values in some finite set S={s1, …, sn}, the 
state space, the Markov properties are:

• Limited Horizon: P(Xt+1=sk|X1, .., Xt)=P(X t+1 = sk |Xt) 
i.e., a word’s tag only depends on the previous tag.

• Time Invariant: P(Xt+1=sk|X1, .., Xt)=P(X2 =sk|X1) 
i.e., the dependency does not change over time.

• If X possesses these properties, then X is said to be a 
Markov Chain
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Example of a Markov Chain

1
.4

1

.3
.3

.4

.6 1

.6

.4

te

h a p

i

Start

5

Hidden Markov Models (HMM)

• In an HMM, you don’t know the state sequence that 
the model passes through, but only some 
probabilistic function of it.

• Example: The crazy soft drink machine: it can be in 
two states, cola preferring and iced tea preferring, 
but it switches between them randomly after each 
purchase according to some probabilities. 

• The question is: What is the probability of seeing 
the output sequence {lemonade, iced-tea} if the 
machine always starts off in the cola preferring 
mode.

6

Why Use Hidden Markov Models?

• HMMs are useful when one can think of 
underlying events probabilistically 
generating surface events. Example: Part-
of-Speech-Tagging, Speech Recognition.

• HMMs can efficiently be trained using the 
EM Algorithm.

• Another example where HMMs are useful 
is in generating parameters for generalized 
linear interpolation of n-gram models.
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General Form of an HMM

• An HMM is specified by a five-tuple (S, K, Π, A, B) 
where S and K are the set of states and the output 
alphabet, and Π, A, B are the probabilities for the 
initial state, state transitions, and symbol emissions, 
respectively.

• Given a specification of an HMM, we can simulate 
the running of a Markov process and produce an 
output sequence using the algorithm shown on the 
next page.

• More interesting than a simulation, however, is 
assuming that some set of data was generated by a 
HMM, and then being able to calculate probabilities 
and probable underlying state sequences.
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A Program for a Markov Process

t:= 1;
Start in state si with probability πi (i.e., X1=i)
Forever do

Move from state si to state sj with   
probability aij (i.e., Xt+1 = j)

 Emit observation symbol ot = k with        
probability bijk
t:= t+1

End 
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The Three Fundamental Questions for HMMs

• Given a model µ=(A, B, Π), how do we efficiently 
compute how likely a certain observation is, that 
is, P(O| µ) 

• Given the observation sequence O and a model µ, 
how do we choose a state sequence (X1, …, X T+1) 
that best explains the observations?

• Given an observation sequence O, and a space of 
possible models found by varying the model 
parameters µ = (A, B, π), how do we find the 
model that best explains the observed data?
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Finding the probability of an observation (I)

• Given the observation sequence O=(o1, …, oT) 
and a model µ= (A, B, ∏), we wish to know how 
to efficiently compute P(O| µ). This process is 
called decoding.

• For any state sequence X=(X1, …, XT+1), we find: 
P(O|µ)=Σ X1…XT+1 πX1 ∏t=1

T aXtXt+1 bXtXt+1o_t
• This is simply the sum of the probability of the 

observation occurring according to each possible 
state sequence.

• Direct evaluation of this expression, however, is 
extremely inefficient.
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Finding the probability of an observation (II)

• In order to avoid this complexity, we can use 
dynamic programming or memoization techniques.

• In particular, we use treillis algorithms.
• We make a square array of states versus time and 

compute the probabilities of being in each state at 
each time in terms of the probabilities of being in 
each state at the preceding time.

• A treillis can record the probability of all initial 
subpaths of the HMM that end in a certain state at a 
certain time. The probability of longer subpaths can 
then be worked out in terms of the shorter subpaths.
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Finding the probability of an observation (III): 
The forward procedure

• A forward variable, αi(t)= P(o1o2…o t-1, Xt=i| µ) is 
stored at (si, t) in the trellis and expresses the total 
probability of ending up in state si at time t. 

• Forward variables are calculated as follows:
• Initialization: αi(1)= πi , 1≤ i ≤ N
• Induction: α j(t+1)=Σi=1

Nαi(t)aijbijo_t 1≤ t≤T, 1≤ j≤N
• Total: P(O|µ)= Σi=1

Nαi(T+1)
• This algorithm requires 2N2T multiplications (much 

less than the direct method which takes (2T+1)NT+1
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Finding the probability of an observation (IV): 
The backward procedure

• The backward procedure computes 
backward variables which are the total 
probability of seeing the rest of the 
observation sequence given that we were in 
state si at time t. 

• Backward variables are useful for the 
problem of parameter estimation.
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Finding the probability of an observation (V): 
The backward procedure

• Let βi(t) = P(ot…oT | Xt = i, µ) be the backward 
variables.

• Backward variables can be calculated working 
backward through the treillis as follows:

• Initialization: βi(T+1) = 1, 1≤ i ≤ N
• Induction: βi(t) =Σj=1

N aijbijotβj(t+1), 1≤ t ≤T, 1≤ i ≤ N
• Total: P(O|µ)=Σi=1

Nπiβi(1)
• Backward variables can also be combined with forward 

variables:
 P(O|µ) = Σi=1

N αi(t)βi(t), 1≤ t ≤ T+1
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Finding the Best State Sequence (I)

• One method consists of finding the states individually:
• For each t, 1≤ t≤ T+1, we would like to find Xt that 

maximizes P(Xt|O, µ).
• Let γi(t) = P(Xt = i |O,  µ) = P(Xt = i, O|µ)/P(O|µ) = 
αi(t)βi(t)/Σj=1

N αj(t)βj(t)
• The individually most likely state is                

Xt=argmax1≤i≤N γi(t), 1≤ t≤ T+1
• This quantity maximizes the expected number of 

states that will be guessed correctly. However, it may 
yield a quite unlikely state sequence.

^
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Finding the Best State Sequence (II):
The Viterbi Algorithm

• The Viterbi algorithm efficiently computes the 
most likely state sequence.

• Commonly, we want to find the most likely 
complete path, that is: argmaxX P(X|O,µ)

• To do this, it is sufficient to maximize for a fixed 
O: argmaxX P(X,O|µ)

• We define
δj(t) = maxX1..Xt-1 P(X1…Xt-1, o1..ot-1, Xt=j|µ)     
ψj(t) records the node of the incoming arc that led 
to this most probable path.
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Finding the Best State Sequence (II):
The Viterbi Algorithm

The Viterbi Algorithm works as follows:
• Initialization: δj(1) = πj, 1≤ j≤ N
• Induction: δj(t+1) =  max1≤ i≤N δi(t)aijbijo_t 1≤ j≤ N

Store backtrace:
ψj(t+1) = argmax1≤ i≤N δj(t)aij bijo_t 1≤ j≤ N

• Termination and path readout:                          
XT+1 = argmax1≤ i≤N δj(T+1)                                      
Xt = ψXt+1(t+1)                                                       
P(X) = max1≤ i≤N δj(T+1) 

^
^

^
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Parameter Estimation (I)

• Given a certain observation sequence, we want to 
find the values of the model parameters µ=(A, B, 
π) which best explain what we observed.

• Using Maximum Likelihood Estimation, we can 
want find the values that maximize P(O| µ), i.e.
argmax µ P(Otraining| µ)

• There is no known analytic method to choose µ to 
maximize P(O| µ). However, we can locally 
maximize it by an iterative hill-climbing algorithm 
known as Baum-Welch or Forward-Backward 
algorithm. (special case of the EM Algorithm)
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Parameter Estimation (II): 
Forward-Backward Algorithm

• We don’t know what the model is, but we can 
work out the probability of the observation 
sequence using some (perhaps randomly chosen) 
model.

• Looking at that calculation, we can see which state 
transitions and symbol emissions were probably 
used the most.

• By increasing the probability of those, we can 
choose a revised model which gives a higher 
probability to the observation sequence.


