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« Deep Learning

A set of machine learning algorithms that model high-level
abstractions in data by using model architectures (often
neural networks).

* It has significantly improved the states of the art on many
problems in many fields.

« Natural language processing
« Speech recognition
 Image/video processing
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Deep Learning in Image Processing

Large-Scale Visual Recognition Challenge
(1000 classes, 1.2M training images, 150K testing images)
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System Year Error
SIFT-based 2012 | 26.2%
SuperVision 2012 16.4% ?
Eskimo dog Clarifai 2013 11.7%
GoogleNet 2014 6.6/%
Baidu 2015 5.98% Human:
Microsoft 2015 | 4.94% | >-10%
Google 2015 4.90%
g Applications: automation for vehicles,
2: oboe . . . .
3: panpipe surveillance or patrolling, image understanding,



Deep Learning in Speech Recognition

Automatic Speech Recognition (speech-to-text)
(Switchboard data)
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Brought ASR to more real-life use.

Applications: smart phones/watches, home appliances, cars, speech translation, etc.



Deep Learning in Text Processing

Translating texts from one language to another

Joint Model

System Arabic-English | Chinese-English
OpenMT12 —3rd Place 47.4 30.8
OpenMT12 —-2nd Place | 47.5 32.2
OpenMT12 — 1st Place 49.5 32.6
BBN Neural Network - 247

1 Evaluation matric: BLEU; larger is better
2 NRC hasimplemented the BBN method

>

More recent work from Univ. of Montreal and Google.



Why Now?

e Jurgen Schmidhuber: It is a bit like the last neural network
(NN) resurgence in the 1980s and early 1990s, but with
million-times-faster computers. ... Apparently, we will soon
have the raw computational power of a human brain in a
desktop machine. That is more than enough to solve many
essential pattern recognition problems ...

Recent technical advancement in Deep Learning:
See http://arxiv.org/abs/1404.7828 for a survey.



http://people.idsia.ch/~juergen/raw.html
http://arxiv.org/abs/1404.7828

Who are Working on Deep Learning?

o Researchers and Engineers in both academia and
industry:

e Google(DeepMind), Microsoft, Facebook, Baidu, IBM
(Watson), Universities...



Modeling the Meaning of Natural Languages

Two fundamental questions:

* How to represent the meaning of words?

* How to represent the meaning of sentences or
larger spans of text?



Modeling the Meaning of Natural Languages

Two fundamental questions:

* How to represent the meaning of words?

 How to represent the meaning of sentences or
larger spans of text?
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Can a machine fall in love?

— “The Emotion Machine” by Marvin Minsky



Love:

a (1) : strong affection for another arising out of kinship or personal ties
<maternal fove for a child> (2) : attraction based on sexual desire : affection
and tenderness felt by lovers (3) : affection based on admiration, benevolence,

or common interests </ove for his old schoolmates>

—Merriam-Webster Dictionary

Love, admiration, satisfaction...

Anger, fear, hunger ...

14



— “The Emotion Machine” by Marvin Minsky
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* “You should know a word by the company it keeps”
(Firth, 1957)
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* “You should know a word by the company it keeps”
(Firth, 1957)

— Represent a word by its context (a window of
surrounding words.)
* You obtain a huge matrix.

— Then dimension reduction is often performed, with
different objectives.

 PCA, LLE, SNE, Word2Vec, etc.
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How to model the meaning of natural languages

Two basic questions

* How to represent the meaning of words?

* How to represent the meaning of sentences or
larger spans of text?

19
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Semantic Composition with Distributed Representation
(An example from [Socher et al.’13])
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Figure 1. A dot in the figure corresponds to a

negated phrase (e.g., not very good). The y-
axis is its sentiment value and x-axis the

sentiment of its argument (e.g., very good).

(Zhu al et. ACL-2014)

Even one-layer composition
can be a pretty complicated
mapping/function.

not very good

-

very good
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Case Study |: Using Long-Short Term Memory
(LSTM) to Model Meaning (Semantics)
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Long Short-Term Memory (LSTM)

e LSTM [Hochreiter,’97] has showed to be effectivein a
wide range of problems.

— Machmetranslatlon [Sutskever 14 Cho, '14]

<EOS5>

T

L+ -+ + +—- _+- 1+

|

B C <EOS>

— Image-to-text conversion [Vinyals, '14]
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Linear-Chain LSTM
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Linear-Chain LSTM
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Linear-Chain LSTM
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The model can remember pretty long history.



Recursive LSTM

 Recursion and the structures it forms are common in
different modalities, e.g., trees [Socher, '12; '13].
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e While linear-chain LSTM can be used to model such
problems, we take a different view point.
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Recursive LSTM

 We propose a recursive LSTM (tree here).

* We aim to explore a good way to
consider structures (e.g., invariants
and long-distance interplays over

the structures).

e E.g., the distance/relationship
between n; and n, are invariant if
node p varies (e.g., as a node of noun
or a subtree of a longer phrase).

* Such a model isinteresting to us also
because it recursively summarizes
history over structure constituents.
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The Memory Blocks

- ¢ @

1997

2002

S-LSTM A3
(Our model) '

h%—lhfq C?—1 h?—lcf—l e,
Xiaodan Zhu, Parinaz Sobhani, Hongyu Guo. 2015. Long Short-Term Memory

over Recursive Structures, Proceedings of International Conference on Machine
Learning (ICML). Lille, France.



S-LSTM: Forward Propagation
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S-LSTM: Backpropagation
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Experiments
(Sentiment analysis)
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Experiment Set-up

e Data: Stanford Sentiment Treebank

— Movie reviews
* ## sentences: 8544/1101/2210 (training/dev./test)
* # phrases: 318582/41447/82600

— All phrases, including roots (sentences), are
manually annotated with sentiment labels.

 Evaluation metric

— Classification accuracy (5-category)



Recursive Neural Tensor Network (RNTN)
[Socher et al., "13]
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Recursive Neural Tensor Network (RNTN)
[Socher et al., "13]
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Results
(Default setting)

Performances (accuracies) of different models on the test

set of Stanford Sentiment Treebank, at the sentence level (roots)
and the phrase level. 7 shows the performance are statistically
significantly better (p < 0.05) than the corresponding models.

MODELS ROOTS PHRASES
NB 41.0 67.2
SVM 40.7 64.3
RVNN 43.2 79.0
RNTN 45.7 80.7

S-LSTM 48.9+ 81.9+
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Performances on Phrases of Different Lengths

80 1

accuracy (%)

20 1

2 3 4 5 6+
lengths of nodes

Accuracy on nodes(phrases) of different lengths
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Structures vs. no Structures

Performances of models that do not use the given sentence structures. S-
LSTM-LR is a degenerated version of S-LSTM that reads input words from
left to right, and S-LSTM-RL reads words from right to left.

MODELS ROOTS
S-LSTM-LR 40.2
S-LSTM-RL 40.3
S-LSTM 43.57

40
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Case Study II: Networks for Integrating
Compositional and Non-compositional Meaning
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e A framework that is able to consider both
compositionality/non-compositionality is of
theoretical interest.

* A pragmatic viewpoint:
— If one is able to obtain the sentiment/semantics of

a text span holistically (e.g., for “must try”), it
would be desirable that a composition model has
the ability to decide the sources of knowledge it

will use, softly.



* Integrating compositional and non-
compositional sentiment in the process of
sentiment composition.

* |dea: Enabling individual composition
operations to possess the capability of
choosing and merging information from
different resources locally, to optimize a global
objective.



T
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A framework for considering compositionalityand
non-compositionality in composition.
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Model 1: Regular bilinear merging
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Model 2: Explicitly gated merging
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Model 3: Confined-tensor-based merging
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Model 3: Confined-tensor-based merging
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Experiment set-up

e Data: Stanford Sentiment Treebank

— Movie reviews
* ## sentences: 8544/1101/2210 (training/dev./test)
* # phrases: 318582/41447/82600

— All phrases, including roots (sentences), are
manually annotated with sentiment labels.

 Evaluation metric

— Classification accuracy



Experiment set-up

* Non-compositional sentiment

— Using the human annotation coming with Stanford
Sentiment Treebank for bigrams and trigrams.

— Sentiment of ngrams automatically learned from
tweets (Mohammad et al., 2013b).

* Polled the Twitter APl every four hours from April to
December 2012 in search of tweets with either a positive
word hashtag or a negative word hashtag.

* Using 78 seed hashtags (32 positive and 36 negative) such
as #good, #excellent, and #terrible to annotate sentiment.

e 775,000 tweets that contain at least a positive hashtag or a
negative hashtag were used as the learning corpus.



Experiment set-up

Pointwise mutual information (PMI) is calculated for
each bigrams and trigrams.

score(w) = PMI(w, positive) — PM I (w, negative)

Each sentiment score is converted to a one-hot vector;
e.g. a bigram with a score of -1.5 will be assigned a 5-
dimensional vector [0, 1, O, O, O] (i.e., the e vector).



Results: prediction performance

Models sentence-level (roots) all phrases (all nodes)
(1) RNTN 42.44 79.95
(2) Regular-bilinear (auto) 42.37 79.97
(3) Regular-bilinear (manu) 42.98 80.14
(4) Explicitly-gated (auto) 42.58 80.06
(5) Explicitly-gated (manu) 43.21 80.21
(6) Confined-tensor (auto) 42.99 30.49
(7) Confined-tensor (manu) 43.757 80.667

Table 1: Model performances (accuracies) on predicting 5-category sentiment at
the sentence (root) level and phrase level.

e The results is based on the version 3.3.0 of the Stanford CoreNLP.

e We trained the RNTN models with the default parametersand run the training from
5 different random initializations.
java-mx8g edu.stanford.nlp.sentiment.SentimentTraining -numHid 25 -trainPath
train.txt-devPathdev.txt -train—model model.ser.gz 56



Remarks

* Deep Learning is a set of machine learning algorithms
that model high-level abstractions in data by using
model architectures (often neural networks).

* |t has significantly improved the states of the art on
many problems in many fields.

— Natural language processing
— Speech recognition
— Image/video processing



Remarks

Two fundamental questions:

* How to represent the meaning of words?

* How to represent the meaning of sentences or
larger spans of text?



Remarks

* Arecursive LSTM model to consider input
structures in composition.

* Achieved the state-of-the-art performance on
a semantic composition task.

* Explicitly modeling the structures is helpful.



Remarks

 We are also concerned with integrating
compositionality and non-compositionalityin the
process of composition.

 We discuss how to enable each composition
operation to be able to choose and merge
information from these two types of sources
locally, to optimize a global objective.

— We showed moderate improvement over a baseline
model that does not consider this.



Thank youl!
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