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• Deep Learning 

• A set of machine learning algorithms that model high-level 

abstractions in data by using model architectures (often 

neural networks). 

• It has significantly improved the states of the art on many 
problems in many fields. 

• Natural language processing 

• Speech recognition 

• Image/video processing 

 

 

 

 

 



A network of simple,  
non-intelligent  
decisions can lead to  
intelligence.  

Biological Neuron 

3 



Biological Neuron 

Artificial Neuron 

A network of simple,  
non-intelligent  
decisions can lead to  
intelligence.  
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Deep Learning in Image Processing 
Large-Scale Visual Recognition Challenge 
(1000 classes, 1.2M training images, 150K testing images) 

Siberian husky Eskimo dog 

Applications:  automation for vehicles,  
surveillance or patrolling , image understanding, 
etc. 
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Deep Learning in Speech Recognition 
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Automatic Speech Recognition (speech-to-text) 
(Switchboard data) 
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little progress for 10+ yrs  
Neural-Network Models 

Brought ASR to more real-life use. 
Applications:  smart phones/watches, home appliances, cars, speech translation, etc. 



Deep Learning in Text Processing 
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Translating texts from one language to another 
 
 

More recent work from Univ. of Montreal and Google. 

 1  Evaluation matric: BLEU; larger is better 
 2   NRC has implemented the BBN method 



Why Now? 

• Jürgen Schmidhuber: It is a bit like the last neural network 
(NN) resurgence in the 1980s and early 1990s, but with 
million-times-faster computers. … Apparently, we will soon 
have the raw computational power of a human brain in a 
desktop machine. That is more than enough to solve many 
essential pattern recognition problems … 
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Recent technical advancement in Deep Learning:  

See http://arxiv.org/abs/1404.7828 for a survey. 

 

 

http://people.idsia.ch/~juergen/raw.html
http://arxiv.org/abs/1404.7828


Who are Working on Deep Learning? 

 Researchers and Engineers in both academia and 
industry:  

 Google(DeepMind), Microsoft, Facebook, Baidu, IBM 
(Watson), Universities… 
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Two fundamental questions: 

• How to represent the meaning of words? 

 

• How to represent the meaning of sentences or 
larger spans of text? 
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Modeling the Meaning of Natural Languages 



Two fundamental questions: 

• How to represent the meaning of words? 

 

• How to represent the meaning of sentences or 
larger spans of text? 
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Modeling the Meaning of Natural Languages 



love 
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Can a machine fall in love?  

13 

― “The Emotion Machine” by Marvin Minsky 
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… … 

Love, admiration, satisfaction … 

Anger, fear, hunger … 

―Merriam-Webster Dictionary 

Love: 



― “The Emotion Machine” by Marvin Minsky 
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• “You should know a word by the company it keeps” 
(Firth, 1957) 
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• “You should know a word by the company it keeps” 
(Firth, 1957) 

– Represent a word by its context (a window of 
surrounding words.) 

• You obtain a huge matrix. 

– Then dimension reduction is often performed, with 
different objectives. 

• PCA, LLE, SNE, Word2Vec, etc. 
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• “You should know a word by the company it keeps” 
(Firth, 1957) 

– Represent a word by its context (a window of 
surrounding words.) 

– Then dimension reduction is often performed, with 
different objectives. 

• PCA, LLE, SNE, Word2Vec, etc. 
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Two basic questions 

• How to represent the meaning of words? 

 

• How to represent the meaning of sentences or 
larger spans of text? 
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How to model the meaning of natural languages 



Semantic Composition with Distributed Representation 
(An example from [Socher et al. ’13]) 
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(+, 0, -)   or  (++, +, 0, -, --) 

Semantic Composition with Distributed Representation 
(An example from [Socher et al. ’13]) 
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Figure 1. A dot in the figure corresponds to a 

negated phrase (e.g., not very good). The y-

axis is its sentiment value and x-axis the 

sentiment of its argument (e.g., very good).  

not          very good 

(Zhu al et. ACL-2014) 

• Even one-layer composition 
can be a pretty complicated 
mapping/function. 

not very good 
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Case Study I: Using Long-Short Term Memory 
(LSTM) to Model Meaning (Semantics) 



Long Short-Term Memory (LSTM) 

• LSTM [Hochreiter, ’97] has showed to be effective in a 
wide range of problems. 
– Machine translation [Sutskever, ’14; Cho, ’14] 

 

 

 

– Image-to-text conversion [Vinyals, ’14] 
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Linear-Chain LSTM 
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Output 

Hidden 
Layers 

Input 
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Output 

Hidden 
Layer 

Input 

Linear-Chain LSTM 
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Output 

Hidden 
Layer 

Input 

Linear-Chain LSTM 

The model can remember pretty long history. 



Recursive LSTM 
• Recursion and the structures it forms are common in 

different modalities, e.g., trees [Socher, ’12; ’13]. 

• While linear-chain LSTM can be used to model such 
problems, we take a different view point. 
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n1 

n2 

p 

Recursive LSTM 
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• We aim to explore a good way to 
consider structures (e.g., invariants 
and long-distance interplays over 
the structures). 
• E.g., the distance/relationship 

between n1 and n2 are invariant if 
node p varies (e.g., as a node of noun 
or a subtree of a longer phrase). 

• Such a model is interesting to us also 
because it recursively summarizes 
history over structure constituents. 

• We propose a recursive LSTM (tree here). 



The Memory Blocks 
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LSTM 

S-LSTM 
(Our model) 

Xiaodan Zhu, Parinaz Sobhani, Hongyu Guo. 2015. Long Short-Term Memory 
over Recursive Structures, Proceedings of International Conference on Machine 
Learning (ICML). Lille, France. 



S-LSTM: Forward Propagation 
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S-LSTM: Backpropagation 
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Left child: 

Right child: 

Handling non-binary trees? 



Experiments 
(Sentiment analysis) 
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(++, +, 0, -, --) 

Semantics/sentiment composition  

34 



Experiment Set-up 

• Data: Stanford Sentiment Treebank 

– Movie reviews 

• # sentences: 8544/1101/2210 (training/dev./test) 

• # phrases: 318582/41447/82600 

– All phrases, including roots (sentences), are 
manually annotated with sentiment labels. 

• Evaluation metric 

– Classification accuracy (5-category) 
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Recursive Neural Tensor Network (RNTN)  
[Socher et al., ’13] 

 
p 

a b 
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Recursive Neural Tensor Network (RNTN)  
[Socher et al., ’13] 

 
p 

a b 
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Results 
(Default setting)  
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Performances on Phrases of Different Lengths 

Accuracy on nodes(phrases) of different lengths  
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Structures vs. no Structures 

Performances of models that do not use the given sentence structures. S-
LSTM-LR is a degenerated version of S-LSTM that reads input words from 
left to right, and S-LSTM-RL reads words from right to left. 
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Semantic Composition with Distributed Representation 
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“kick the bucket” 

“must try” 

Semantic Composition with Distributed Representation 
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Case Study II: Networks for Integrating 
Compositional and Non-compositional Meaning 



“kick the bucket” 

“must try” 

Semantic Composition with Distributed Representation 
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• A framework that is able to consider both 
compositionality/non-compositionality is of 
theoretical interest. 

 

• A pragmatic viewpoint:  

– If one is able to obtain the sentiment/semantics of 
a text span holistically (e.g., for “must try”), it 
would be desirable that a composition model has 
the ability to decide the sources of knowledge it 
will use, softly. 
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• Integrating compositional and non-
compositional sentiment in the process of 
sentiment composition. 

 

• Idea: Enabling individual composition 
operations to possess the capability of 
choosing and merging information from 
different resources locally, to optimize a global 
objective. 
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A framework for considering compositionality and 
non-compositionality in composition. 



Model 1: Regular bilinear merging 
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A framework for considering compositionality and 
non-compositionality in composition. 



Model 2: Explicitly gated merging 
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A framework for considering compositionality and 
non-compositionality in composition. 



Model 3: Confined-tensor-based merging 
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Model 3: Confined-tensor-based merging 
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Experiment set-up 

• Data: Stanford Sentiment Treebank 

– Movie reviews 

• # sentences: 8544/1101/2210 (training/dev./test) 

• # phrases: 318582/41447/82600 

– All phrases, including roots (sentences), are 
manually annotated with sentiment labels. 

• Evaluation metric 

– Classification accuracy 
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Experiment set-up 

• Non-compositional sentiment 
– Using the human annotation coming with Stanford 

Sentiment Treebank for bigrams and trigrams. 

– Sentiment of ngrams automatically learned from 
tweets (Mohammad et al., 2013b). 
• Polled the Twitter API every four hours from April to 

December 2012 in search of tweets with either a positive 
word hashtag or a negative word hashtag. 

• Using 78 seed hashtags (32 positive and 36 negative) such 
as #good, #excellent, and #terrible to annotate sentiment. 

• 775,000 tweets that contain at least a positive hashtag or a 
negative hashtag were used as the learning corpus. 
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Experiment set-up 
• Pointwise mutual information (PMI)  is calculated for 

each bigrams and trigrams. 

 

 

• Each sentiment score is converted to a one-hot vector; 
e.g. a bigram with a score of -1.5 will be assigned a 5-
dimensional vector [0, 1, 0, 0, 0] (i.e., the e vector). 
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Results: prediction performance 
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Table 1: Model performances (accuracies) on predicting 5-category sentiment at  
the sentence (root) level and phrase level. 

• The results is based on the version 3.3.0 of the Stanford CoreNLP.  
 

• We trained the RNTN models with the default parameters and run the training from 
5 different random initializations. 

     java -mx8g edu.stanford.nlp.sentiment.SentimentTraining -numHid 25 -trainPath  
     train.txt -devPath dev.txt -train –model model.ser.gz 



Remarks 

• Deep Learning is a set of machine learning algorithms 
that model high-level abstractions in data by using 
model architectures (often neural networks). 

• It has significantly improved the states of the art on 
many problems in many fields. 

– Natural language processing 

– Speech recognition 

– Image/video processing 
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Two fundamental questions: 

• How to represent the meaning of words? 

 

• How to represent the meaning of sentences or 
larger spans of text? 
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Remarks 



Remarks 

• A recursive LSTM model to consider input 
structures in composition. 

• Achieved the state-of-the-art performance on 
a semantic composition task. 

• Explicitly modeling the structures is helpful. 
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Remarks 

• We are also concerned with integrating 
compositionality and non-compositionality in the 
process of composition. 

 

• We discuss how to enable each composition 
operation to be able to choose and merge 
information from these two types of sources 
locally, to optimize a global objective. 
– We showed moderate improvement over a baseline 

model that does not consider this. 
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Thank you! 
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