
Ranking and Learning

Adapted by Diana Inkpen, 2015,

from Tao Yang, 2014.

Partially based on Manning, Raghavan, and

Schütze‘s text book.

Content

• Weighted scoring for ranking

• Learning to rank: A simple example

• Learning to ranking as classification

Scoring

• Similarity-based approach

 Similarity of query features with document features

• Weighted approach: Scoring with weighted

features

 return in order the documents most likely to be

useful to the searcher

 Consider each document has subscores in each

feature or in each subarea.

Simple Model of Ranking with Similarity

Similarity ranking: example

[Croft, Metzler, Strohman‘s textbook slides]

Weighted scoring with linear

combination

• A simple weighted scoring method: use a linear

combination of subscores:

 E.g.,

Score = 0.6*< Title score> + 0.3*<Abstract score> +

0.1*<Body score>

 The overall score is in [0,1].

Example with binary subscores

Query term appears in title and body only

Document score: (0.6・ 1) + (0.1・ 1) = 0.7.

Example

• On the query “bill rights” suppose that we retrieve

the following docs from the various zone indexes:

bill

rights

bill

rights

bill

rights

Title

Abstract

Body

1

5

2

83

3 5 9

2 51

5 83

9

9

Compute the

score

for each doc

based on the

weightings

0.6,0.3,0.1

How to determine weights automatically:

Motivation

• Modern systems – especially on the Web – use a
great number of features:

– Arbitrary useful features – not a single unified model

 Log frequency of query word in anchor text?

 Query word highlighted on page?

 Span of query words on page

 # of (out) links on page?

 PageRank of page?

 URL length?

 URL contains “~”?

 Page edit recency?

 Page length?

• Major web search engines use “hundreds” of
such features – and they keep changing

Machine learning for computing weights

• How do we combine these signals into a good

ranker?

 “machine-learned relevance” or “learning to rank”

• Learning from examples

 These examples are called training data

Sec. 15.4

Training

examples
Ranking

formula

User query and

matched results
Ranked

results

10

Learning weights: Methodology

Given a set of training examples,

each contains (query q, document d, relevance

score r(d,q)).

r(d,q) is relevance judgment for d on q

Simplest scheme

 relevant (1) or nonrelevant (0)

More sophisticated: graded relevance judgments

1 (Bad), 2 (Fair), 3 (Good), 4 (Excellent), 5 (Perfect)

Learn weights from these examples, so that the learned

scores approximate the relevance judgments in the training

examples
10

Simple example

• Each doc has two zones, Title and Body

• For a chosen w[0,1], score for doc d on query q

where:

sT(d, q){0,1} is a Boolean denoting whether q

matches the Title and

sB(d, q){0,1} is a Boolean denoting whether q

matches the Body

Examples of Training Data

w

How?

• For each example t we can compute the score

based on

• We quantify Relevant as 1 and Non-relevant as 0

• Would like the choice of w to be such that the

computed scores are as close to these 1/0

judgments as possible

 Denote by r(dt,qt) the judgment for t

• Then minimize total squared error

Optimizing w

• There are 4 kinds of training examples

• Thus only four possible values for score

 And only 8 possible values for error

• Let n01r be the number of training examples for

which sT(d, q)=0, sB(d, q)=1, judgment = Relevant.

• Similarly define n00r , n10r , n11r , n00i , n01i , n10i , n11i

 w

 w

 ir nn 01

2

01

2
)1(0)1(1 Error:

Total error – then calculus

• Add up contributions from various cases to get
total error

• Now differentiate with respect to w to get
optimal value of w as:

Generalizing this simple example

• More (than 2) features

• Non-Boolean features

 What if the title contains some but not all query

terms …

 Categorical features (query terms occur in plain,

boldface, italics, etc)

• Scores are nonlinear combinations of features

• Multilevel relevance judgments (Perfect, Good,

Fair, Bad, etc.)

• Complex error functions

• Not always a unique, easily computable setting of

score parameters

Framework of Learning to Rank

Learning-based Web Search

• Given features e1,e2,…,eN for each document, learn a
ranking function f(e1,e2,…,eN) that minimizes the loss
function L under a query

• Some related issues

 The functional space F
– linear/non-linear? continuous? Derivative?

 The search strategy

 The loss function

 *

1 2min (, ,...,),N
f F

f L f e e e GroundTruth

A richer example

• Collect a training corpus of (q, d, r) triples

 Relevance r is still binary for now

 Document is represented by a feature vector

– x = (α, ω) α is cosine similarity, ω is minimum query

window size

 ω is the shortest text span that includes all query words (Query term

proximity in the document)

• Train a machine learning model to predict the class r

of a document-query pair

Sec. 15.4.1

Using classification for deciding

relevance
• A linear score function is

Score(d, q) = Score(α, ω) = aα + bω + c

• And the linear classifier is

Decide relevant if Score(d, q) > θ

Otherwise irrelevant

• … just like when we were doing classification

Sec. 15.4.1

Using classification for deciding

relevance

0
2 3 4 5

0.05

0.025

co
si

n
e

sc
o

re

Term proximity

R
R

R

R

R R

R

R
R

R
R

N

N

N

N

N

N

N
N

N

N

Sec. 15.4.1

Decision

surface

More complex example of using

classification for search ranking
[Nallapati SIGIR 2004]

• We can generalize this to classifier functions over

more features

• We can use methods we have seen previously for

learning the linear classifier weights

An SVM classifier for relevance
[Nallapati SIGIR 2004]

• Let g(r|d,q) = wf(d,q) + b

• Derive weights from the training
examples:

 want g(r|d,q) ≤ −1 for nonrelevant
documents

 g(r|d,q) ≥ 1 for relevant documents

• Testing:

 decide relevant iff g(r|d,q) ≥ 0

• Train a classifier as the ranking function

Ranking vs. Classification

• Classification
 Well studied over 30 years

 Bayesian, Neural network, Decision tree, SVM, Boosting, …

 Training data: points

– Pos: x1, x2, x3, Neg: x4, x5

• Ranking
 Less studied: only a few works published in recent years

 Training data: pairs (partial order)

– Correct order: (x1, x2), (x1, x3), (x1, x4), (x1, x5)

(x2, x3), (x2, x4) …

– Other order is incorrect

x1
x2x3x4x5 0

Learning to rank: Classification vs. regression

• Classification probably isn’t the right way to think

about score learning:

 Classification problems: Map to an unordered set of

classes

 Regression problems: Map to a real value

 Ordinal regression problems: Map to an ordered set

of classes

• This formulation gives extra power:

 Relations between relevance levels are modeled

 Some documents are better than other documents

for some queries; not an absolute scale of goodness

Sec. 15.4.2

“Learning to rank”

• Assume a number of categories C of
relevance exist

 These are totally ordered: c1 < c2 < … < cJ

 This is the ordinal regression setup

• Assume training data is available
consisting of document-query pairs
represented as feature vectors ψi and
relevance ranking ci

Modified example

• Collect a training corpus of (q, d, r) triples

 Relevance label r has 4 values

– Perfect, Relevant, Weak, Nonrelevant

• Train a machine learning model to predict the class r

of a document-query pair

Sec. 15.4.1

Perfect

Nonrelevant

Relevant

Weak

Relevant

Perfect

Nonrelevant

“Learning to rank”

• Point-wise learning

 Given a query-document pair, predict a
score (e.g., relevancy score)

• Pair-wise learning

 the input is a pair of results for a query,
and the class is the relevance ordering
relationship between them

• List-wise learning

 Directly optimize the ranking metric for
each query

Point-wise learning: Example

• Goal is to learn a threshold to separate each rank

The Ranking SVM : Pairwise Learning
[Herbrich et al. 1999, 2000; Joachims et al. KDD 2002]

• Aim is to classify instance pairs as

 correctly ranked

 or incorrectly ranked

• This turns an ordinal regression problem back into

a binary classification problem

• We want a ranking function f such that ci is ranked

before ck :

ci < ck iff f(ψi) > f(ψk)

• Suppose that f is a linear function

f(ψi) = wψi

• Thus

ci < ck iff w(ψi-ψk)>0

Sec. 15.4.2

Ranking SVM

• Training Set

 for each query q, we have a ranked list of
documents totally ordered by a person for relevance
to the query.

• Features

 vector of features for each document/query pair

 feature differences for two documents di and dj

• Classification

 if di is judged more relevant than dj, denoted di ≺ dj

 then assign the vector Φ(di, dj, q) the class yijq =+1;
otherwise −1.

Ranking SVM

Optimization problem is equivalent to

that of a classification SVM on

pairwise difference vectors Φ(qk, di) -

Φ (qk, dj)

