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Content

• Weighted scoring for ranking

• Learning to rank: A simple example

• Learning to ranking as classification



Scoring

• Similarity-based approach

 Similarity of query features with document features

• Weighted approach: Scoring with weighted 

features

 return in order the documents most likely to be 

useful to the searcher

 Consider each document has subscores in each 

feature or in each subarea.



Simple Model of Ranking with Similarity



Similarity ranking: example

[ Croft, Metzler, Strohman‘s textbook slides]



Weighted  scoring with linear 

combination

• A simple weighted scoring method: use a linear 

combination of subscores:

 E.g., 

Score = 0.6*< Title score> + 0.3*<Abstract score> + 

0.1*<Body score>

 The overall score is in [0,1].

Example with binary subscores

Query term appears in title and body only

Document score: (0.6・ 1) + (0.1・ 1) = 0.7.



Example

• On the query “bill rights” suppose that we retrieve 

the following docs from the various zone indexes:
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Compute the 

score

for each doc 

based on the 

weightings 

0.6,0.3,0.1



How to determine weights automatically: 

Motivation

• Modern systems – especially on the Web – use a 
great number of features:

– Arbitrary useful features – not a single unified model

 Log frequency of query word in anchor text?

 Query word highlighted on page?

 Span of query words on page

 # of (out) links on page?

 PageRank of page?

 URL length?

 URL contains “~”?

 Page edit recency?

 Page length?

• Major web search engines use “hundreds” of 
such features – and they keep changing



Machine learning for computing weights

• How do we combine these signals into a good 

ranker?

 “machine-learned relevance” or “learning to rank”

• Learning from examples

 These examples are called training data

Sec. 15.4

Training 

examples
Ranking 

formula

User query and 

matched results
Ranked 

results
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Learning weights: Methodology

Given a set of training examples, 

each  contains (query q, document d,  relevance  

score r(d,q)).

r(d,q) is relevance judgment for d on q

Simplest scheme

 relevant (1) or nonrelevant (0)

More sophisticated: graded relevance judgments

1 (Bad), 2 (Fair), 3 (Good), 4 (Excellent), 5 (Perfect)

Learn weights from these examples, so that the learned 

scores approximate the relevance judgments in the training 

examples
10



Simple example

• Each doc has two zones, Title and Body

• For a chosen w[0,1], score for doc d on query q

where:

sT(d, q){0,1} is a Boolean denoting whether q

matches the Title and

sB(d, q){0,1} is a Boolean denoting whether q

matches the Body



Examples of Training Data

w



How?

• For each example t we can compute the score 

based on

• We quantify Relevant as 1 and Non-relevant as 0

• Would like the choice of w to be such that the 

computed scores are as close to these 1/0 

judgments as possible

 Denote by r(dt,qt) the judgment for t

• Then minimize total squared error



Optimizing w

• There are 4 kinds of training examples

• Thus only four possible values for score

 And only 8 possible values for error

• Let n01r be the number of training examples for 

which sT(d, q)=0, sB(d, q)=1, judgment = Relevant.

• Similarly define n00r , n10r , n11r , n00i , n01i , n10i , n11i
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Total error – then calculus

• Add up contributions from various cases to get 
total error

• Now differentiate with respect to w to get 
optimal value of w as:



Generalizing this simple example

• More (than 2) features

• Non-Boolean features

 What if the title contains some but not all query 

terms …

 Categorical features (query terms occur in plain, 

boldface, italics, etc)

• Scores are nonlinear combinations of features

• Multilevel relevance judgments (Perfect, Good, 

Fair, Bad, etc.)

• Complex error functions

• Not always a unique, easily computable setting of 

score parameters



Framework of Learning to Rank



Learning-based Web Search

• Given features e1,e2,…,eN for each document, learn a 
ranking function f(e1,e2,…,eN) that minimizes the loss 
function L under a query 

• Some related issues

 The functional space F
– linear/non-linear? continuous? Derivative?

 The search strategy

 The loss function

 *

1 2min ( , ,..., ),N
f F

f L f e e e GroundTruth






A richer example

• Collect a training corpus of (q, d, r) triples

 Relevance r is still binary for now

 Document is represented by a feature vector 

– x = (α, ω) α is cosine similarity, ω is minimum query 

window size

 ω is the shortest text span that includes all query words (Query term 

proximity in the document)

• Train a machine learning model to predict the class r 

of a document-query pair 

Sec. 15.4.1



Using classification for deciding 

relevance
• A linear score function is

Score(d, q) = Score(α, ω) = aα + bω + c

• And the linear classifier is

Decide relevant if Score(d, q) > θ

Otherwise irrelevant

• … just like when we were doing classification

Sec. 15.4.1



Using classification for deciding 

relevance
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More complex example of using 

classification for search ranking  
[Nallapati SIGIR 2004]

• We can generalize this to classifier functions over 

more features

• We can use methods we have seen previously for 

learning the linear classifier weights



An SVM classifier for relevance 
[Nallapati SIGIR 2004]

• Let  g(r|d,q) = wf(d,q) + b

• Derive weights from the training 
examples: 

 want g(r|d,q) ≤ −1 for nonrelevant 
documents 

 g(r|d,q) ≥ 1 for relevant documents

• Testing: 

 decide relevant iff g(r|d,q) ≥ 0

• Train a classifier as the ranking function



Ranking vs. Classification

• Classification
 Well studied over 30 years

 Bayesian, Neural network, Decision tree, SVM, Boosting, …

 Training data: points

– Pos: x1, x2, x3, Neg: x4, x5

• Ranking
 Less studied: only a few works published in recent years

 Training data: pairs (partial order)

– Correct order:   (x1, x2), (x1, x3), (x1, x4), (x1, x5)

(x2, x3), (x2, x4) …

– Other order is incorrect

x1
x2x3x4x5 0



Learning to rank: Classification vs. regression

• Classification probably isn’t the right way to think 

about score learning:

 Classification problems: Map to an unordered set of 

classes

 Regression problems: Map to a real value

 Ordinal regression problems: Map to an ordered set 

of classes

• This formulation gives extra power:

 Relations between relevance levels are modeled

 Some documents are better than other documents 

for some queries; not an absolute scale of goodness

Sec. 15.4.2



“Learning to rank”

• Assume a number of categories C of 
relevance exist

 These are totally ordered: c1 < c2 < … < cJ

 This is the ordinal regression setup

• Assume training data is available 
consisting of document-query pairs 
represented as feature vectors ψi and 
relevance ranking ci



Modified example

• Collect a training corpus of (q, d, r) triples

 Relevance label r has 4 values

– Perfect, Relevant, Weak, Nonrelevant

• Train a machine learning model to predict the class r 

of a document-query pair 

Sec. 15.4.1
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“Learning to rank”

• Point-wise learning

 Given a query-document pair, predict a 
score  (e.g., relevancy score)

• Pair-wise learning 

 the input is a pair of results for a query, 
and the class is the relevance ordering 
relationship between them

• List-wise learning

 Directly optimize the ranking metric for 
each query



Point-wise learning: Example

• Goal is to learn a threshold to separate each rank



The Ranking SVM : Pairwise Learning
[Herbrich et al. 1999, 2000; Joachims et al. KDD 2002]

• Aim is to classify instance pairs as

 correctly ranked 

 or incorrectly ranked

• This turns an ordinal regression problem back into 

a binary classification problem

• We want a ranking function f such that ci is ranked 

before ck :

ci < ck iff f(ψi) > f(ψk)

• Suppose that f is a linear function 

f(ψi) = wψi

• Thus 

ci < ck iff w(ψi-ψk)>0

Sec. 15.4.2



Ranking SVM

• Training Set

 for each query q, we have a ranked list of 
documents totally ordered by a person for relevance 
to the query.

• Features

 vector of features for each document/query pair

 feature differences for two documents di and dj

• Classification

 if di  is judged more relevant than dj, denoted di ≺ dj

 then assign the vector Φ(di, dj, q) the class yijq =+1; 
otherwise −1.



Ranking SVM

Optimization problem is equivalent to 

that of a classification SVM on 

pairwise difference vectors Φ(qk, di) -

Φ (qk, dj)


