Ranking and Learning

Adapted by Diana Inkpen, 2015, from Tao Yang, 2014. Partially based on Manning, Raghavan, and Schütze's text book.

- Weighted scoring for ranking
- Learning to rank: A simple example
- Learning to ranking as classification

- Similarity-based approach
 - Similarity of query features with document features
- Weighted approach: Scoring with weighted features
 - return in order the documents most likely to be useful to the searcher
 - Consider each document has subscores in each feature or in each subarea.

Simple Model of Ranking with Similarity

Similarity ranking: example [Croft, Metzler, Strohman's textbook slides]

$$R(Q,D) = \sum_{i} g_i(Q) f_i(D)$$

 f_i is a document feature function g_i is a query feature function

Weighted scoring with linear combination

- A simple weighted scoring method: use a linear combination of subscores:
 - E.g.,

Score = 0.6*< <u>Title score></u> + 0.3*<<u>Abstract score></u> +

0.1*<<u>Body score</u>>

The overall score is in [0,1].

Example with binary subscores

Query term appears in title and body only Document score: $(0.6 \cdot 1) + (0.1 \cdot 1) = 0.7$.

• On the query "*bill rights*" suppose that we retrieve the following docs from the various zone indexes:

How to determine weights automatically: Motivation

- Modern systems especially on the Web use a great number of features:
 - Arbitrary useful features not a single unified model
 - Log frequency of query word in anchor text?
 - Query word highlighted on page?
 - Span of query words on page
 - # of (out) links on page?
 - PageRank of page?
 - URL length?
 - URL contains "~"?
 - Page edit recency?
 - Page length?
- Major web search engines use "hundreds" of such features – and they keep changing

Machine learning for computing weights

- How do we combine these signals into a good ranker?
 - "machine-learned relevance" or "learning to rank"
- Learning from examples
 - These examples are called training data

Learning weights: Methodology

•Given a set of training examples,

- each contains (query q, document d, relevance score r(d,q)).
- r(d,q) is relevance judgment for d on q
 - Simplest scheme
 - relevant (1) or nonrelevant (0)
 - More sophisticated: graded relevance judgments
 - 1 (Bad), 2 (Fair), 3 (Good), 4 (Excellent), 5 (Perfect)

 Learn weights from these examples, so that the learned scores approximate the relevance judgments in the training examples

Simple example

- Each doc has two zones, <u>Title</u> and <u>Body</u>
- For a chosen $w \in [0,1]$, score for doc d on query q

$$score(d,q) = w \cdot s_T(d,q) + (1-w)s_B(d,q)$$

where:

- $s_T(d, q) \in \{0, 1\}$ is a Boolean denoting whether q matches the <u>Title</u> and
- $s_B(d, q) \in \{0,1\}$ is a Boolean denoting whether q matches the <u>Body</u>

Examples of Training Data

Example	DocID	Query	s_T	s_B	Judgment
Φ_1	37	linux	1	1	Relevant
Φ_2	37	penguin	0	1	Non-relevant
Φ_3	238	system	0	1	Relevant
Φ_4	238	penguin	0	0	Non-relevant
Φ_5	1741	kernel	1	1	Relevant
Φ_6	2094	driver	0	1	Relevant
Φ_7	3191	driver	1	0	Non-relevant

From these 7 examples, learn the best value of w.

- For each example Φ_t we can compute the score based or $score(d_t, q_t) = w \cdot s_T(d_t, q_t) + (1 - w)s_B(d_t, q_t)$.
- We quantify Relevant as 1 and Non-relevant as 0
- Would like the choice of w to be such that the computed scores are as close to these 1/0 judgments as possible
 - Denote by $r(d_t, q_t)$ the judgment for Φ_t
- Then minimize total squared error

$$\sum_{\Phi_t} (r(d_t, q_t) - score(d_t, q_t))^2$$

Optimizing *w*

- There are 4 kinds of training examples
- Thus only four possible values for score
 - And only 8 possible values for error
- Let n_{01r} be the number of training examples for which $s_T(d, q)=0$, $s_B(d, q)=1$, judgment = Relevant.
- Similarly define n_{00r} , n_{10r} , n_{11r} , n_{00i} , n_{01i} , n_{10i} , n_{11i}

Total error – then calculus

 Add up contributions from various cases to get total error

 $(n_{01r} + n_{10i})w^2 + (n_{10r} + n_{01i})(1 - w)^2 + n_{00r} + n_{11i}$

 Now differentiate with respect to w to get optimal value of w as:

$$\frac{n_{10r} + n_{01i}}{n_{10r} + n_{10i} + n_{01r} + n_{01i}}.$$

Generalizing this simple example

- More (than 2) features
- Non-Boolean features
 - What if the title contains some but not all query terms ...
 - Categorical features (query terms occur in plain, boldface, italics, etc)
- Scores are nonlinear combinations of features
- Multilevel relevance judgments (Perfect, Good, Fair, Bad, etc.)
- Complex error functions
- Not always a unique, easily computable setting of score parameters

Framework of Learning to Rank

Learning-based Web Search

• Given features $e_1, e_2, ..., e_N$ for each document, learn a ranking function $f(e_1, e_2, ..., e_N)$ that minimizes the loss function *L* under a query

$$f^* = \min_{f \in F} L(f(e_1, e_2, ..., e_N), GroundTruth)$$

- Some related issues
 - The functional space F
 - linear/non-linear? continuous? Derivative?
 - The search strategy
 - The loss function

A richer example

- Collect a training corpus of (q, d, r) triples
 - Relevance r is still binary for now
 - Document is represented by a feature vector
 - $\mathbf{x} = (\alpha, \omega)$ α is cosine similarity, ω is minimum query window size
 - ω is the shortest text span that includes all query words (Query term proximity in the document)
- Train a machine learning model to predict the class r of a document-query pair

example	docID	query	cosine score	ω	judgment
Φ_1	37	linux operating system	0.032	3	relevant
Φ_2	37	penguin logo	0.02	4	nonrelevant
Φ_3	238	operating system	0.043	2	relevant
Φ_4	238	runtime environment	0.004	2	nonrelevant
Φ_5	1741	kernel layer	0.022	3	relevant
Φ_6	2094	device driver	0.03	2	relevant
Φ_7	3191	device driver	0.027	5	nonrelevant

Using classification for deciding relevance

• A linear score function is

Score(d, q) = Score(α , ω) = $a\alpha$ + $b\omega$ + c

And the linear classifier is

Decide relevant if $Score(d, q) > \theta$ Otherwise irrelevant

• ... just like when we were doing classification

Using classification for deciding relevance

More complex example of using classification for search ranking [Nallapati SIGIR 2004]

- We can generalize this to classifier functions over more features
- We can use methods we have seen previously for learning the linear classifier weights

An SVM classifier for relevance [Nallapati SIGIR 2004]

- Let $g(r|d,q) = w \cdot f(d,q) + b$
- Derive weights from the training examples:
 - want g(r|d,q) ≤ -1 for nonrelevant documents
 - $g(r|d,q) \ge 1$ for relevant documents
- Testing:
 - decide relevant iff $g(r|d,q) \ge 0$
- Train a classifier as the ranking function

Ranking vs. Classification

Classification

- Well studied over 30 years
- Bayesian, Neural network, Decision tree, SVM, Boosting, ...
- Training data: points

– Pos: x1, x2, x3, Neg: x4, x5

 $x_5 \quad x_4 \quad 0 \quad x_3 \, x_2 \quad x_1$

Ranking

- Less studied: only a few works published in recent years
- Training data: pairs (partial order)
 - Correct order: (x1, x2), (x1, x3), (x1, x4), (x1, x5)
 - (x2, x3), (x2, x4) ...
 - Other order is incorrect

Learning to rank: Classification vs. regression

- Classification probably isn't the right way to think about score learning:
 - Classification problems: Map to an unordered set of classes
 - Regression problems: Map to a real value
 - Ordinal regression problems: Map to an ordered set of classes
- This formulation gives extra power:
 - Relations between relevance levels are modeled
 - Some documents are better than other documents for some queries; not an absolute scale of goodness

"Learning to rank"

- Assume a number of categories C of relevance exist
 - These are totally ordered: $c_1 < c_2 < \ldots < c_J$
 - This is the ordinal regression setup
- Assume training data is available consisting of document-query pairs represented as feature vectors ψ_i and relevance ranking c_i

Modified example

• Collect a training corpus of (q, d, r) triples

- Relevance label r has 4 values
 - Perfect, Relevant, Weak, Nonrelevant
- Train a machine learning model to predict the class r of a document-query pair

example	docID	query	cosine score	ω	judgment
Φ ₁	37	linux operating system	0.032	3	Perfect
Φ_2	37	penguin logo	0.02	4	Nonrelevant
Φ_3	238	operating system	0.043	2	Relevant
Φ_4	238	runtime environment	0.004	2	Weak
Φ_5	1741	kernel layer	0.022	3	Relevant
Φ_6	2094	device driver	0.03	2	Perfect
Φ_7	3191	device driver	0.027	5	Nonrelevant

"Learning to rank"

- Point-wise learning
 - Given a query-document pair, predict a score (e.g., relevancy score)
- Pair-wise learning
 - the input is a pair of results for a query, and the class is the relevance ordering relationship between them
- List-wise learning
 - Directly optimize the ranking metric for each query

Point-wise learning: Example

Goal is to learn a threshold to separate each rank

The Ranking SVM : Pairwise Learning [Herbrich et al. 1999, 2000; Joachims et al. KDD 2002]

- Aim is to classify instance pairs as
 - correctly ranked
 - or incorrectly ranked
- This turns an ordinal regression problem back into a binary classification problem
- We want a ranking function f such that c_i is ranked before c_k:

 $c_i < c_k \text{ iff } f(\psi_i) > f(\psi_k)$

• Suppose that *f* is a linear function

$$f(\mathbf{\psi}_i) = \mathbf{w} \bullet \mathbf{\psi}_i$$

• Thus

 $c_i < c_k \text{ iff } w(\psi_i - \psi_k) > 0$

Ranking SVM

- Training Set
 - for each query q, we have a ranked list of documents totally ordered by a person for relevance to the query.
- Features
 - vector of features for each document/query pair

$$\psi_j = \psi(d_j, q)$$

• feature differences for two documents d_i and d_i

$$\Phi(d_i, d_j, q) = \psi(d_i, q) - \psi(d_j, q)$$

- Classification
 - if d_i is judged more relevant than d_i , denoted $d_i < d_i$
 - then assign the vector Φ(d_i, d_j, q) the class y_{ijq} =+1; otherwise -1.

Optimization problem is equivalent to that of a classification SVM on pairwise difference vectors $\Phi(q_k, d_i) - \Phi(q_k, d_j)$

