Neural Information Retrieval

Prepared by Diana Inkpen, University of Ottawa, 2021, (partly based on Pretrained Transformers for Text Ranking: BERT and Beyond, by Jimmy Lin, Rodrigo Nogueira, and Andrew Yates, 2020

Neural IR systems

- Pre-BERT models
- Using BERT-like models

Corpus	$ \mathcal{C} $	$\overline{L}(\mathcal{C})$
MS MARCO passage corpus	8,841,823	57.3
MS MARCO document corpus	3,213,835	1128.7
Robust04 corpus (TREC disks 4&5)	528,155	530.2

- Three corpora: size of the collection and average document length.
- The MS MARCO document corpus was also used for TREC 2019 Deep Learning Track document retrieval task.
- The MS MARCO passage corpus was also used for the TREC 2019 Deep Learning Track
- passage retrieval task. Passage relevance taken from document relevance.
- Training, development and test queries. Large number of queries.

Large collections, many queries

Dataset	q	$\overline{L}(q)$	J	J /q	Rel /q
MS MARCO passage retrieval (train)	502,939	6.06	532,761	1.06	1.06
MS MARCO passage retrieval (development)	6,980	5.92	7,437	1.07	1.07
MS MARCO passage retrieval (test)	6,837	5.85	-	-	-
MS MARCO document retrieval (train)	367,013	5.95	367,013	1.0	1.0
MS MARCO document retrieval (development	5,193	5.89	5,193	1.0	1.0
MS MARCO document retrieval (test)	5,793	5.85	-	-	-
TREC 2019 DL passage	43	5.39	9,260	215.4	95.4
TREC 2019 DL document	43	5.51	16,258	378.1	153.4
Robust04	249	(title) 2.7 (narr.) 15.3 (desc.) 40.2	311,410	1250.6	69.9

- Size of the set of evaluation topics, in terms of the number of queries and the average length of each query L(q).
- The amount of relevance judgments available, in terms of positive and negative labels. Average number of judgments per query, and the number of relevant labels per query.

Pre-BERT models

(a) a generic representation-based neural ranking model (b) a generic interaction-based neural ranking model

Representation-based models (left)

- independently learn vector representations of query and documents that can be compared to compute
- relevance scores using simple metrics such as cosine similarity.

Interaction-based models (right)

- explicitly model term interactions in a similarity matrix that undergoes further processing to arrive at
- a relevance score.

Using BERT for IR

		MS MARCO Passage		
Method		Development MRR@10	Test MRR@10	
BM25 (Microsoft Baseline)		0.167	0.165	
IRNet (Deep CNN/IR Hybrid Network) BERT [Nogueira and Cho, 2019]	January 2nd, 2019 January 7th, 2019	0.278 0.365	0.281 0.359	

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

by Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova,

Oct 2018, Google

Large pre-trained language model, available for download, started to be used in many NLP applications.

More IR evaluation measures

- Mean Reciprocal Rank mean over all queries of Reciprocal Rank (RR)
 - RR (q) = 1 / rank i

where ranki is the smallest rank number of a relevant document.

- if a relevant document appears in the first position, reciprocal rank = 1, 1=2 if it appears in the second position, 1=3 if it appears in the third position, etc.
- Normalized Discounted Cumulative Gain (nDCG)
 - used to measure the quality of web search results
 - designed for graded relevance judgements
 - https://en.wikipedia.org/wiki/Discounted_cumulative_gain

Retrieve then re-rank using BERT

- Candidate texts are retrieved from the document collection, typically with exact-match bag-of-words queries against inverted indexes.
- These candidates are then re-ranked with a transformer model such as BERT.

Learning to Rank: monoBERT

Learning to Re-Rank with BERT

- monoBERT adapts BERT for relevance classification by taking as input the query and a candidate text (surrounding by appropriate special tokens).
- The input vector representations comprise the element-wise summation of token embeddings, segment embeddings, and position embeddings.
- The output of the BERT model is a contextual embedding for each input token.
- The final representation of [CLS] token is fed to a fully-connected layer that produces the relevance score s of that text to the query.
- P(Relevant=1|di,q)

Performance improvements

		TREC 2019 DL Passage			
Meth	od	nDCG@10	MAP	Recall@1k	
(3a)	BM25 (Anserini, $k = 1000$)	0.5058	0.3773	0.7389	
(3b)	+ monoBERT _{Large}	0.7383	0.5058	0.7389	
(4a)	$\begin{array}{l} \text{BM25} + \text{RM3} \text{ (Anserini, } k = 1000) \\ + \text{monoBERT}_{\text{Large}} \end{array}$	0.5180	0.4270	0.7882	
(4b)		0.7421	0.5291	0.7882	

• The effectiveness of monoBERT on the TREC 2019 Deep Learning Track passage retrieval test collection

Extensions

- BERT is restricted to short texts (512 tokens).
- Sentence models.
- Extension to work with longer documents.

Examples of results for longer documents.

		Robust04		Core17		Core18	
Method		MAP	nDCG@20	MAP	nDCG@20	MAP	nDCG@20
(1)	BM25 + RM3	0.2903	0.4407	0.2823	0.4467	0.3135	0.4604
(2a)	1S: BERT(MB)	0.3408†	0.4900†	0.3091†	0.4628	0.3393†	0.4848 [†]
(2b)	2S: BERT(MB)	0.3435 [†]	0.4964†	0.3137 [†]	0.4781	0.3421 [†]	0.4857 [†]
(2c)	3S: BERT(MB)	0.3434†	0.4998†	0.3154†	0.4852 [†]	0.3419†	0.4878†
(3a)	1S: BERT(MS MARCO)	0.3028^{\dagger}	0.4512	0.2817^{\dagger}	0.4468	0.3121	0.4594
(3b)	2S: BERT(MS MARCO)	0.3028 [†]	0.4512	0.2817^{\dagger}	0.4468	0.3121	0.4594
(3c)	3S: BERT(MS MARCO)	0.3028†	0.4512	0.2817†	0.4468	0.3121	0.4594
(4a)	1S: BERT(MS MARCO \rightarrow MB)	0.3676†	0.5239†	0.3292^{\dagger}	0.5061 [†]	0.3486†	0.4953 [†]
(4b)	2S: BERT(MS MARCO \rightarrow MB)	0.3697 [†]	0.5324†	0.3323 [†]	0.5092†	0.3496†	0.4899†
(4c)	3S: BERT(MS MARCO \rightarrow MB)	0.3691†	0.5325†	0.3314†	0.5070 [†]	0.3522†	0.4899†