Web Search

Advances &
Link Analysis

This material was prepared by Diana Inkpen, University of Ottawa, 2005, updated 2021. Some of these slides were originally prepared by Raymond Mooney, University of Texas Austin.
Meta-Search Engines

• Search engine that passes query to several other search engines and integrate results.
 – Submit queries to host sites.
 – Parse resulting HTML pages to extract search results.
 – Integrate multiple rankings into a “consensus” ranking.
 – Present integrated results to user.

• Examples:
 – Metacrawler
 – SavvySearch
 – Dogpile
HTML Structure & Feature Weighting

• Weight tokens under particular HTML tags more heavily:
 – `<TITLE>` tokens (Google seems to like title matches)
 – `<H1>`, `<H2>`… tokens
 – `<META>` keyword tokens

• Parse page into conceptual sections (e.g. navigation links vs. page content) and weight tokens differently based on section.
Bibliometrics: Citation Analysis

- Many standard documents include bibliographies (or references), explicit citations to other previously published documents.
- Using citations as links, standard corpora can be viewed as a graph.
- The structure of this graph, independent of content, can provide interesting information about the similarity of documents and the structure of information.
- CF corpus includes citation information.
Impact Factor

• Developed by Garfield in 1972 to measure the importance (quality, influence) of scientific journals.

• Measure of how often papers in the journal are cited by other scientists.

• Computed and published annually by the Institute for Scientific Information (ISI).

• The *impact factor* of a journal J in year Y is the average number of citations (from indexed documents published in year Y) to a paper published in J in year $Y-1$ or $Y-2$.

• Does not account for the quality of the citing article.
Bibliographic Coupling

- Measure of similarity of documents introduced by Kessler in 1963.
- The bibliographic coupling of two documents \(A \) and \(B \) is the number of documents cited by both \(A \) and \(B \).
- Size of the intersection of their bibliographies.
- Maybe want to normalize by size of bibliographies?
Co-Citation

• An alternate citation-based measure of similarity introduced by Small in 1973.
• Number of documents that cite both A and B.
• Maybe want to normalize by total number of documents citing either A or B?
Citations vs. Links

• Web links are a bit different than citations:
 – Many links are navigational.
 – Many pages with high in-degree are portals not content providers.
 – Not all links are endorsements.
 – Company websites don’t point to their competitors.
 – Citations to relevant literature is enforced by peer-review.
Authorities

• *Authorities* are pages that are recognized as providing significant, trustworthy, and useful information on a topic.

• *In-degree* (number of pointers to a page) is one simple measure of authority.

• However in-degree treats all links as equal.

• Should links from pages that are themselves authoritative count more?
Hubs

- *Hubs* are index pages that provide lots of useful links to relevant content pages (topic authorities).
HITS

- Algorithm developed by Kleinberg in 1998.
- Attempts to computationally determine hubs and authorities on a particular topic through analysis of a relevant subgraph of the web.
- Based on mutually recursive facts:
 - Hubs point to lots of authorities.
 - Authorities are pointed to by lots of hubs.
Hubs and Authorities

- Together they tend to form a bipartite graph:
HITS Algorithm

- Computes hubs and authorities for a particular topic specified by a normal query.
- First determines a set of relevant pages for the query called the base set S.
- Analyze the link structure of the web subgraph defined by S to find authority and hub pages in this set.
Constructing a Base Subgraph

• For a specific query Q, let the set of documents returned by a standard search engine (e.g. VSR) be called the *root* set R.

• Initialize S to R.

• Add to S all pages pointed to by any page in R.

• Add to S all pages that point to any page in R.

![Diagram](image_url)
Base Limitations

• To limit computational expense:
 – Limit number of root pages to the top 200 pages retrieved for the query.
 – Limit number of “back-pointer” pages to a random set of at most 50 pages returned by a “reverse link” query.

• To eliminate purely navigational links:
 – Eliminate links between two pages on the same host.

• To eliminate “non-authority-conveying” links:
 – Allow only m ($m \approx 4–8$) pages from a given host as pointers to any individual page.
Authorities and In-Degree

• Even within the base set S for a given query, the nodes with highest in-degree are not necessarily authorities (may just be generally popular pages like Yahoo or Amazon).

• True authority pages are pointed to by a number of hubs (i.e. pages that point to lots of authorities).
Iterative Algorithm

• Use an iterative algorithm to slowly converge on a mutually reinforcing set of hubs and authorities.

• Maintain for each page $p \in S$:
 – Authority score: a_p (vector a)
 – Hub score: h_p (vector h)

• Initialize all $a_p = h_p = 1$

• Maintain normalized scores:

$$\sum_{p \in S} (a_p)^2 = 1 \quad \sum_{p \in S} (h_p)^2 = 1$$
HITS Update Rules

- Authorities are pointed to by lots of good hubs:

\[a_p = \sum_{q: q \rightarrow p} h_q \]

- Hubs point to lots of good authorities:

\[h_p = \sum_{q: p \rightarrow q} a_q \]
Illustrated Update Rules

\[a_4 = h_1 + h_2 + h_3 \]

\[h_4 = a_5 + a_6 + a_7 \]
HITS Iterative Algorithm

Initialize for all \(p \in S \): \(a_p = h_p = 1 \)

For \(i = 1 \) to \(k \):

For all \(p \in S \):

\[
\text{update auth. scores}
\]

\[
a_p = \frac{\sum_{q \in S} h_q}{c}
\]

(\(c \) is the total number of links)

For all \(p \in S \):

\[
\text{update hub scores}
\]

\[
h_p = \frac{\sum_{q \in S} a_q}{c}
\]

(\(c \) is the total number of links)

For all \(p \in S \):

\[
\text{normalize}\ a
\]

\[
\sum_{p \in S} \left(a_p / c \right)^2 = 1
\]

For all \(p \in S \):

\[
\text{normalize}\ h
\]

\[
\sum_{p \in S} \left(h_p / c \right)^2 = 1
\]
Convergence

- Algorithm converges to a \textit{fix-point} if iterated indefinitely.
- Define A to be the adjacency matrix for the subgraph defined by S.
 - $A_{ij} = 1$ for $i \in S, j \in S$ iff $i \rightarrow j$
- Authority vector, a, converges to the principal eigenvector of $A^T A$
- Hub vector, h, converges to the principal eigenvector of $A A^T$
- In practice, 20 iterations produces fairly stable results.
Results

- Authorities for query: “Java”
 - java.sun.com
 - comp.lang.java FAQ
- Authorities for query “search engine”
 - Yahoo.com
 - Excite.com
 - Lycos.com
 - Altavista.com
- Authorities for query “Gates”
 - Microsoft.com
 - roadahead.com
Result Comments

• In most cases, the final authorities were not in the initial root set generated using Altavista.

• Authorities were brought in from linked and reverse-linked pages and then HITS computed their high authority score.
Finding Similar Pages Using Link Structure

- Given a page, P, let R (the root set) be t (e.g. 200) pages that point to P.
- Grow a base set S from R.
- Run HITS on S.
- Return the best authorities in S as the best similar-pages for P.
- Finds authorities in the “link neighborhood” of P.
Similar Page Results

• Given “honda.com”
 – toyota.com
 – ford.com
 – bmwusa.com
 – saturncars.com
 – nissanmotors.com
 – audi.com
 – volvocars.com
HITS for Clustering

• An ambiguous query can result in the principal eigenvector only covering one of the possible meanings.
• Non-principal eigenvectors may contain hubs & authorities for other meanings.
• Example: “jaguar”:
 – Atari video game (principal eigenvector)
 – NFL Football team (2nd non-princ. eigenvector)
 – Automobile (3rd non-princ. eigenvector)
PageRank

• Alternative link-analysis method used by Google (Brin & Page, 1998).

• Does not attempt to capture the distinction between hubs and authorities.

• Ranks pages just by authority.

• Applied to the entire web rather than a local neighborhood of pages surrounding the results of a query.
Initial PageRank Idea

• Just measuring in-degree (citation count) doesn’t account for the authority of the source of a link.

• Initial page rank equation for page p:

$$R(p) = c \sum_{q:q\rightarrow p} \frac{R(q)}{N_q}$$

 – N_q is the total number of out-links from page q.
 – A page, q, “gives” an equal fraction of its authority to all the pages it points to (e.g. p).
 – c is a normalizing constant set so that the rank of all pages always sums to 1.
Initial PageRank Idea (cont.)

- Can view it as a process of PageRank “flowing” from pages to the pages they cite.
Initial Algorithm

- Iterate rank-flowing process until convergence:
 Let S be the total set of pages.
 Initialize $\forall p \in S$: $R(p) = 1/|S|$
 Until ranks do not change (much) \textit{(convergence)}
 For each $p \in S$:
 \[
 R'(p) = \sum_{q:q \rightarrow p} \frac{R(q)}{N_q}
 \]
 \[
 c = 1/\sum_{p \in S} R'(p)
 \]
 For each $p \in S$: $R(p) = cR'(p)$ \textit{(normalize)}
Sample Stable Fixpoint

```
0.4  0.2  0.2
\downarrow  \downarrow  \downarrow
0.2  0.4  0.4
```

• Treat \mathbf{R} as a vector over web pages.
• Let \mathbf{A} be a 2-d matrix over pages where
 \[A_{vu} = \frac{1}{N_u} \text{ if } u \rightarrow v \text{ else } A_{vu} = 0 \]
• Then $\mathbf{R}=c\mathbf{A}\mathbf{R}$
• \mathbf{R} converges to the principal eigenvector of \mathbf{A}.
Problem with Initial Idea

- A group of pages that only point to themselves but are pointed to by other pages act as a “rank sink” and absorb all the rank in the system.

Rank flows into cycle and can’t get out
Introduce a “rank source” E that continually replenishes the rank of each page, p, by a fixed amount $E(p)$.

$$R(p) = c \left(\sum_{q: q \rightarrow p} \frac{R(q)}{N_q} + E(p) \right)$$
PageRank Algorithm

Let S be the total set of pages.

Let $\forall p \in S: E(p) = \alpha / |S|$ (for some $0 < \alpha < 1$, e.g. 0.15)

Initialize $\forall p \in S: R(p) = 1 / |S|

Until ranks do not change (much) (convergence)

For each $p \in S$: $R'(p) = \sum_{q:q \rightarrow p} \frac{R(q)}{N_q} + E(p)$

$c = 1 / \sum_{p \in S} R'(p)$

For each $p \in S: R(p) = c R'(p)$ (normalize)
Linear Algebra Version

- \(\mathbf{R} = c(\mathbf{A}\mathbf{R} + \mathbf{E}) \)
- Since \(\|\mathbf{R}\|_1 = 1 \): \(\mathbf{R} = c(\mathbf{A} + \mathbf{E} \times \mathbf{1})\mathbf{R} \)
 - Where \(\mathbf{1} \) is the vector consisting of all 1’s.
- So \(\mathbf{R} \) is an eigenvector of \((\mathbf{A} + \mathbf{E} \times \mathbf{1}) \)
Random Surfer Model

- PageRank can be seen as modeling a “random surfer” that starts on a random page and then at each point:
 - With probability $E(p)$ randomly jumps to page p.
 - Otherwise, randomly follows a link on the current page.

- $R(p)$ models the probability that this random surfer will be on page p at any given time.

- “E jumps” are needed to prevent the random surfer from getting “trapped” in web sinks with no outgoing links.
Speed of Convergence

- Early experiments on Google used 322 million links.
- PageRank algorithm converged (within small tolerance) in about 52 iterations.
- Number of iterations required for convergence is empirically $O(\log n)$ (where n is the number of links).
- Therefore calculation is quite efficient.
Simple Title Search with PageRank

• Use simple Boolean search to search web-page titles and rank the retrieved pages by their PageRank.

• Sample search for “university”:
 – Altavista returned a random set of pages with “university” in the title (seemed to prefer short URLs).
 – Primitive Google returned the home pages of top universities.
Google Ranking

• Complete Google ranking includes (based on university publications prior to commercialization).
 – Vector-space similarity component.
 – Keyword proximity component.
 – HTML-tag weight component (e.g. title preference).
 – PageRank component.

• Details of current commercial ranking functions are trade secrets.
Personalized PageRank

• PageRank can be biased (personalized) by changing E to a non-uniform distribution.
• Restrict “random jumps” to a set of specified relevant pages.
• For example, let $E(p) = 0$ except for one’s own home page, for which $E(p) = \alpha$
• This results in a bias towards pages that are closer in the web graph to your own homepage.
Google PageRank-Biased Spidering

• Use PageRank to direct (focus) a spider on “important” pages.
• Compute page-rank using the current set of crawled pages.
• Order the spider’s search queue based on current estimated PageRank.
Link Analysis Conclusions

- Link analysis uses information about the structure of the web graph to aid search.
- It is one of the major innovations in web search.
- It is the primary reason for Google’s success.