
Latent semantic indexing
� Relationship between concepts and words is many-to-many.

� Solve problems of synonymy and ambiguity by representing documents
as vectors of ideas or concepts, not terms.

� For retrieval, analyze queries the same way, and compute cosine similarity
of vectors of ideas.

Latent semantic analysis
� Latent semantic analysis (LSA).

� Find the latent semantic space that underlies the documents.

� Find the basic (coarse-grained) ideas, regardless of the words used to
say them.

� A kind of co-occurrence analysis; co-occurring words as “bridges”
between non–co-occurring words.

� Latent semantic space has many fewer dimensions than term space has.

� Space depends on documents from which it is derived.

� Components have no names; can’t be interpreted.

Singular value decomposition (1)
� Dimensionality reduction by singular value decomposition (SVD).

� Analogous to least-squares fit: closest fit of a lower-dimensional matrix to
a higher-dimensional matrix.

� Theorem: Let At� d be a real-valued matrix, and let n � rank� A � �

min� t � d � . There exist Tt� n, diagonal Sn� n, and Dd� n such that

� A � TSDT ,

� sii� s jj for all 1 � i � j � n,

� the columns of both T and D are orthonormal.

� Columns of T and D are the singular vectors of A; they represent terms
and documents respectively); elements of S are the singular values of A.

Singular value decomposition (2)

TAt×d S Dt×n n×n
T

d×n=
where n � rank � A ��� min � t � d � .

Singular value decomposition (3)
� For k � n, define Ât� d � Tt� kSk� k� Dd� k �

T .

� Although Â and A are both t � d matrices, Â is really “smaller”: has
rank k, can be represented as a smaller matrix.

� Theorem: Â is the closest fit to A of a matrix of rank k; i.e., minimizes

�

A� Â

� 2.

Singular value decomposition (4)

t×d d×kk×kt×kÂ = TDST
Usually choose k n.

Using singular vectors
� SVD algorithms.

� The k columns of T and D that remain in Tt� k and Dd� k are the “most
important” ones.

� For document

�

d in original normalized A, AT �

d is vector of document
similarities with

�

d; AT A is (symmetrical) matrix of document-to-document
similarities.

� Analogously in reduced space,

ÂT Â � � Sk� kDd� k
T

�

T

� Sk� kDd� k
T

� �

� Term similarity: AAT approximated by

ÂÂT � � Tt� kSk� k �� Tt� kSk� k �

T�

Example (1)

Six documents, five terms.

A �
�

�
�

�
�

�
�

�
�

�

d1 d2 d3 d4 d5 d6

cosmonaut 1 0 1 0 0 0

astronaut 0 1 0 0 0 0

moon 1 1 0 0 0 0

car 1 0 0 1 1 0

truck 0 0 0 1 0 1

�
�

�
�

�
�

�
�

�
�

Example (2)

A �

�
�

�
�

�
�

�
�

�
�

�
�

�
Dim 1 Dim 2 Dim 3 Dim 4 Dim 5

cosmonaut � 0 � 44 � 0 � 30 0.57 0.58 0.25

astronaut � 0 � 13 � 0 � 33 � 0 � 59 0.00 0.73

moon � 0 � 48 � 0 � 51 � 0 � 37 0.00 � 0 � 61

car � 0 � 70 0.35 0.15 � 0 � 58 0.16

truck � 0 � 26 0.65 � 0 � 41 0.58 � 0 � 09

�
�

�
�

�
�

�
�

�
�

�
�

�	
� �

T5
 5

�
�

�
�

�
�

�
�

�
�

2 � 16 0 � 00 0 � 00 0 � 00 0 00

0 � 00 1 � 59 0 � 00 0 � 00 0 00

0 � 00 0 � 00 1 � 28 0 � 00 0 00

0 � 00 0 � 00 0 � 00 1 � 00 0 00

0 � 00 0 � 00 0 � 00 0 � 00 0 39

	
�

S5
 5

�
�

�
�

�
�

�
�

�
�

�
�

�

d1 d2 d3 d4 d5 d6

Dim 1 � 0 � 75 � 0 � 28 � 0 � 20 � 0 � 45 � 0 � 33 � 0 � 12

Dim 2 � 0 � 29 � 0 � 53 � 0 � 19 0.63 0.22 0.41

Dim 3 0 � 28 � 0 � 75 0 � 45 � 0 � 20 0 � 12 � 0 � 33

Dim 4 0 � 00 0.00 0.58 0.00 � 0 � 58 0.58

Dim 5 � 0 � 53 0.29 0 � 63 0.19 0.41 � 0 � 22

�
�

�
�

�
�

�
�

�
�

�
�

�	
� �

D6
 5
T

Example (3)

Choose k � 2.

�
�

�
�

�
�

�
�

�
�

2 � 16 0 � 00 0 � 00 0 � 00 0 � 00

0 � 00 1 � 59 0 � 00 0 � 00 0 � 00

0 � 00 0 � 00 1 � 28 0 � 00 0 � 00

0 � 00 0 � 00 0 � 00 1 � 00 0 � 00

0 � 00 0 � 00 0 � 00 0 � 00 0 � 39
�

�
�

�
�

�
�

�
�

�	
� �
S2
 2

�
�

�
�

�
�

�
�

�
�

�
�

�

d1 d2 d3 d4 d5 d6

Dim 1 � 0 � 75 � 0 � 28 � 0 � 20 � 0 � 45 � 0 � 33 � 0 � 12

Dim 2 � 0 � 29 � 0 � 53 � 0 � 19 0.63 0.22 0.41

Dim 3 0 � 28 � 0 � 75 0 � 45 � 0 � 20 0 � 12 � 0 � 33

Dim 4 0 � 00 0.00 0.58 0.00 � 0 � 58 0.58

Dim 5 � 0 � 53 0.29 0 � 63 0.19 0.41 � 0 � 22
	
�

D6
 2
T

�
�

�
�

�

d1 d2 d3 d4 d5 d6

Dim 1 � 1 � 62 � 0 � 60 � 0 � 04 � 0 � 97 � 0 � 71 � 0 � 26

Dim 2 � 0 � 46 � 0 � 84 � 0 � 30 1.00 0.35 0.65

	
�

B2
 6

Example (4)

Hence inter-document similarity is given by ÂT Â � BT B �

�
�

�
�

�
�

�
�

�
�

�
�

�

d1 d2 d3 d4 d5 d6

d1 1.00

d2 0.78 1.00

d3 0.40 0.88 1.00

d4 0.47 � 0� 18 � 0� 62 1.00

d5 0.74 0.16 � 0� 32 0.94 1.00

d6 0.10 � 0� 54 � 0� 87 0.93 0.74 1.00

�
�

�
�

�
�

�
�

�
�

�
�

�

Queries and new documents
� Two problems:

� Need to represent queries in same space.

� Want to add new documents without recomputing SVD.

� “Folding in”: Let �q be the term vector for a query or new document. Then

ˆ�qk� 1 � � Tt� k �

T �qt� 1

is the vector representing �q in the reduced space.

� If �q is a query, ˆ�q can be compared to other documents in D by cosine
similarity.

� If �q is a new document, ˆ�q can be “appended” to D; d is increased by 1.

� As new documents are added, SVD will become much poorer fit.
Eventually need to recompute SVD.

Adding a new document

T S= (()t×k k×kÂ D d+1 ×k
T

t× d+1)

Choosing a value for k
� LSI is useful only if k � n.

� If k is too large, it doesn’t capture the underlying latent semantic space; if
k is too small, too much is lost.

� No principled way of determining the best k; need to experiment.

How well does this work?
� Effectiveness of LSI compared to regular term-matching depends on

nature of documents.

� Typical improvement: 0 to 30% better precision.

� Advantage greater for texts in which synonymy and ambiguity are
more prevalent.

� Best when recall is high.

� Costs of LSI might outweigh improvement.

� SVD is computationally expensive; limited use for really large
document collections (as in TREC).

� Inverted index not possible.

Other applications of LSI and LSA in NLP
� Cross-language information retrieval.

� Concatenate multilingual abstracts to act as “bridge” between
languages.

� People-retrieval by information retrieval.

� Text segmentation.

� Essay scoring.

