Text Clustering
Clustering

• Partition unlabeled examples into disjoint subsets of clusters, such that:
 – Examples within a cluster are very similar
 – Examples in different clusters are very different
• Discover new categories in an unsupervised manner (no sample category labels provided).
Hierarchical Clustering

- Build a tree-based hierarchical taxonomy (dendrogram) from a set of unlabeled examples.

- Recursive application of a standard clustering algorithm can produce a hierarchical clustering.
Aglommerative vs. Divisive Clustering

• **Aglomerative** (*bottom-up*) methods start with each example in its own cluster and iteratively combine them to form larger and larger clusters.

• **Divisive** (*partitional, top-down*) separate all examples immediately into clusters.
Direct Clustering Method

• *Direct clustering* methods require a specification of the number of clusters, k, desired.

• A *clustering evaluation function* assigns a real-value quality measure to a clustering.

• The number of clusters can be determined automatically by explicitly generating clusterings for multiple values of k and choosing the best result according to a clustering evaluation function.
Hierarchical Agglomerative Clustering (HAC)

- Assumes a *similarity function* for determining the similarity of two instances.
- Starts with all instances in a separate cluster and then repeatedly joins the two clusters that are most similar until there is only one cluster.
- The history of merging forms a binary tree or hierarchy.
HAC Algorithm

Start with all instances in their own cluster. Until there is only one cluster:

Among the current clusters, determine the two clusters, c_i and c_j, that are most similar.

Replace c_i and c_j with a single cluster $c_i \cup c_j$
Cluster Similarity

• Assume a similarity function that determines the similarity of two instances: \(\text{sim}(x,y) \).
 – Cosine similarity of document vectors.

• How to compute similarity of two clusters each possibly containing multiple instances?
 – Single Link: Similarity of two most similar members.
 – Complete Link: Similarity of two least similar members.
 – Group Average: Average similarity between members.
Single Link Agglomerative Clustering

• Use maximum similarity of pairs:
 \[sim(c_i, c_j) = \max_{x \in c_i, y \in c_j} sim(x, y) \]

• Can result in “straggly” (long and thin) clusters due to *chaining effect*.
 – Appropriate in some domains, such as clustering islands.
Single Link Example
Complete Link Agglomerative Clustering

- Use minimum similarity of pairs:

\[\text{sim}(c_i, c_j) = \min_{x \in c_i, y \in c_j} \text{sim}(x, y) \]

- Makes more “tight,” spherical clusters that are typically preferable.
Complete Link Example
Computing Cluster Similarity

After merging c_i and c_j, the similarity of the resulting cluster to any other cluster, c_k, can be computed by:

- **Single Link:**
 \[
 \text{sim}((c_i \cup c_j), c_k) = \max(\text{sim}(c_i, c_k), \text{sim}(c_j, c_k))
 \]

- **Complete Link:**
 \[
 \text{sim}((c_i \cup c_j), c_k) = \min(\text{sim}(c_i, c_k), \text{sim}(c_j, c_k))
 \]
Group Average Agglomerative Clustering

• Use average similarity across all pairs within the merged cluster to measure the similarity of two clusters.

\[sim(c_i, c_j) = \frac{1}{|c_i \cup c_j|(|c_i \cup c_j|-1)} \sum \sum sim(\bar{x}, \bar{y}) \]

\[\bar{x} \in (c_i \cup c_j) \quad \bar{y} \in (c_i \cup c_j) : \bar{y} \neq \bar{x} \]

• Compromise between single and complete link.
Non-Hierarchical Clustering

- Typically must provide the number of desired clusters, k.
- Randomly choose k instances as *seeds*, one per cluster.
- Form initial clusters based on these seeds.
- Iterate, repeatedly reallocating instances to different clusters to improve the overall clustering.
- Stop when clustering converges or after a fixed number of iterations.
K-Means

- Assumes instances are real-valued vectors.
- Clusters based on *centroids, center of gravity*, or mean of points in a cluster, c:

$$\tilde{\mu}(c) = \frac{1}{|c|} \sum_{\tilde{x} \in c} \tilde{x}$$

- Reassignment of instances to clusters is based on distance to the current cluster centroids.
Distance Metrics

- Euclidian distance (L_2 norm):
 \[L_2(\vec{x}, \vec{y}) = \sum_{i=1}^{m} (x_i - y_i)^2 \]

- L_1 norm:
 \[L_1(\vec{x}, \vec{y}) = \sum_{i=1}^{m} |x_i - y_i| \]

- Cosine Similarity (transform to a distance by subtracting from 1):
 \[1 - \frac{\vec{x} \cdot \vec{y}}{||\vec{x}|| \cdot ||\vec{y}||} \]
K-Means Algorithm

Let d be the distance measure between instances. Select k random instances $\{s_1, s_2, \ldots, s_k\}$ as seeds. Until clustering converges or other stopping criterion:

For each instance x_i:

Assign x_i to the cluster c_j such that $d(x_i, s_j)$ is minimal.

Update the seeds to the centroid of each cluster:

For each cluster c_j

\[s_j = \mu(c_j) \]
K Means Example
(K=2)

Pick seeds
Reassign clusters
Compute centroids
Reassign clusters
Compute centroids
Reassign clusters
Converged!
Seed Choice

- Results can vary based on random seed selection.
- Some seeds can result in poor convergence rate, or convergence to sub-optimal clusterings.
- Select good seeds using a heuristic or the results of another method.
Text Clustering

• HAC and K-Means have been applied to text in a straightforward way.
• Typically use normalized, TF/IDF-weighted vectors and cosine similarity.
• Optimize computations for sparse vectors.
• Applications:
 – During retrieval, add other documents in the same cluster as the initial retrieved documents to improve recall.
 – Clustering of results of retrieval to present more organized results to the user (à la Northernlight folders).
 – Automated production of hierarchical taxonomies of documents for browsing purposes (à la Yahoo & DMOZ).
Soft Clustering

• Clustering typically assumes that each instance is given a “hard” assignment to exactly one cluster.
• Does not allow uncertainty in class membership or for an instance to belong to more than one cluster.
• *Soft clustering* gives probabilities that an instance belongs to each of a set of clusters.
• Each instance is assigned a probability distribution across a set of discovered categories (probabilities of all categories must sum to 1).
Exercise (exam preparation :-)

Cluster to following documents using K-means with K=2 and cosine similarity.

- Doc1: “go monster go”
- Doc2: “go karting”
- Doc3: “karting monster”
- Doc4: “monster monster”

Assume Doc1 and Doc3 are chosen as initial seeds. Use tf (no idf). Show the clusters and their centroids for each iteration. The algorithm should converge after 2 iterations.