Text Categorization
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Categorization

* Glven:
— A description of an instance, xe X, where X Is
the instance language or instance space.
— A fixed set of categories:
C={c,, C,,...C.}
» Determine:
— The category of x: ¢c(x)eC, where c(x) Is a
categorization function whose domain is X and
whose range is C.



Learning for Categorization

A training example Is an instance xe X,
paired with Its correct category c(X):

<X, ¢(x)> for an unknown categorization
function, c.

 Glven a set of training examples, D.

 Find a hypothesized categorization function,
h(x), such that:

V < X,c(X) >e€ D:h(x)=c(x)
Consistency



Sample Category Learning Problem

* |nstance language: <size, color, shape>

— size € {small, medium, large}

— color € {red, blue, green}

— shape e {square, circle, triangle}

« C = {positive, negative}

 D:

Example |Size Color Shape Category
1 small red circle positive
2 large red circle positive
3 small red triangle | negative
4 large blue circle negative




Another Example

 Predict stock market profits based on the age of

the company, whether the company has
competition, and the market sector):

Example | Age | Competition | Sector Category
1 old |yes software down

2 old |no hardware down

3 new |yes software up

4 mid |no hardware up




General Learning Issues

« Many hypotheses are usually consistent with the
training data.

« Bias

— Any criteria other than consistency with the training
data that is used to select a hypothesis.

 Classification accuracy (% of instances classified
correctly).

— Measured on independent test data.
 Training time (efficiency of training algorithm).

 Testing time (efficiency of subsequent
classification).



Text Categorization

 Assigning documents to a fixed set of categories.

 Applications:

— Web pages

« Recommending

* Yahoo-like classification
— News articles

* Personalized newspaper
— Email messages

 Routing

* Prioritizing

» Folderizing

* spam filtering



Learning for Text Categorization

» Manual development of text categorization
functions is difficult.

» Machine Learning Algorithms:
— Decision Trees
— Nalve Bayes
— Neural Networks
— Relevance Feedback (Rocchio)
— Rule based (Ripper)
— K Nearest Neighbor (case based)
— Support Vector Machines (SVM)



Decision Trees

* Information-gain algorithms for building decision
tree from training data.

— Greedy algorithm builds tree top down.

— At each node, determine the test that “best”
splits the remaining data.

— “Best” split 1s the one that adds the most
Information.

 Avoid overfitting by pruning the tree.
« ML tools: C4.5, C5.0, Weka.
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Decision Tree Example

nor—up (100%)

mid

—{competition?

New

—up (100%)

old ——down {100%)

yes —down (100%)
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Using Relevance Feedback (Rocchio)

Relevance feedback methods can be adapted for
text categorization.

Use standard TF/IDF weighted vectors to
represent text documents (normalized by
maximum term frequency).

For each category, compute a prototype vector by
summing the vectors of the training documents in
the category.

Assign test documents to the category with the
closest prototype vector based on cosine
similarity.
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Rocchio Text Categorization Algorithm

gTrainingz

Assume the set of categories is {c,, C,,...C.}
For 1 from 1 to n let p, = <0, 0,...,0>
(initialize prototype vectors)
For each training example <x, ¢(x)> € D
Let d be the frequency normalized TF/IDF term vector
for doc x
For all It (c; = ¢c(x))
(sum all the document vectors in class c; to get p;)
Letp;=p;+d
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Rocchio Text Categorization Algorithm

gTestz

Given test document x
_et d be the TF/IDF weighted term vector for x
Letm=-2  (init. minimum cosSim)
~or 1 from 1 to n:
(compute similarity to each prototype vector)
Let s = cosSim(d, p;)
ifs>m
letm=s
let r = ¢; (update most similar class prototype)
Return class r
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[llustration of Rocchio Text Categorization
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Exercise 1 (exam preparation :-)

Consider the problem of classifying a name as being
Food or Beverage.

Assume the following training set:
— Food: “turkey stuffing”
— Food: “buffalo wings”
— Beverage: “cream soda”
— Beverage: “orange soda”

Apply the Rocchio algorithm to classify a new name:
— “turkey soda”
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Rocchio Properties

 Does not guarantee a consistent hypothesis.

» Forms a simple generalization of the examples in
each class (a prototype).

* Prototype vector does not need to be averaged or
otherwise normalized for length since cosine
similarity 1s insensitive to vector length.

« Classification is based on similarity to class
prototypes.
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Nearest-Neighbor Learning Algorithm

 Learning Is just storing the representations of the
training examples in D.

 Testing Instance X:
— Compute similarity between x and all examples in D.
— Assign x the category of the most similar example in D.

» Does not explicitly compute a generalization or
category prototypes.

« Also called:
— Case-based

— Memory-based
— Lazy learning
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K Nearest-Neighbor

 Using only the closest example to determine
categorization Is subject to errors due to:

— A single atypical example.
— Noise (i.e. error) in the category label of a
single training example.

» More robust alternative is to find the k most-
similar examples and return the majority category
of these k examples.

« Value of k is typically odd to avoid ties, 3 and 5
are most common.
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Similarity Metrics

 Nearest neighbor method depends on a similarity
(or distance) metric.

« Simplest for continuous m-dimensional instance
space Is Euclidian distance.

* For text, cosine similarity of TF-IDF weighted
vectors Is typically most effective.
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3 Nearest Neighbor Illustration
(Euclidian Distance)
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K Nearest Neighbor for Text

Training:
For each each training example <x, c(x)> € D
Compute the corresponding TF-IDF vector, d,, for document x

Test instance y:
Compute TF-IDF vector d for document y
For each <x, c(x)> € D
Lets, =cosSim(d, d,)
Sort examples, x, in D by decreasing value of s,
Let N be the first k examples in D.  (get most similar neighbors)
Return the majority class of examples in N
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[llustration of 3 Nearest Neighbor for Text
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Nearest Neighbor with Inverted Index

 Determining k nearest neighbors Is the same as
determining the k best retrievals using the test

document as a query to a database of training
documents.

« Use standard VSR inverted index methods to find
the k nearest neighbors.
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Exercise 2 (exam preparation :-)

Assume the following training set (2 classes):
— Food: “turkey stuffing”
— Food: “buffalo wings”
— Beverage: “cream soda”
— Beverage: “orange soda”

Apply kNN with k=3 to classify a new name:
— “turkey soda”

Use tf without 1df, with cosine similarity. Would the
result be the same If k=1? Why?
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Accuracy

Evaluation: Sample Learning Curve
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Evaluating the results of categorization

Results on training corpus might not be mirrored
In the real world.

Want to avoid overfitting.
Need separate test data (hold out 20% of corpus).

Use N-fold cross-validation (N-1 parts for training
and 1 for test, repeat for all partitions)

Separate development and validation test sets.

Need measure of performance and comparison to
baseline.
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Measures of performance

* |If binary classification of M texts as members or
not members of class c

Predicted C not c
Actual
C True Positive | False Negative
TP FN
not c False Positive | True Negative
FP TN
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Measures of performance

Accuracy = TP + TN / (TP+FP+TN+FN)
Precision=TP / (TP + FP)

Recall =TP /(TP + FN)

—-measure: trade-off between recall and precision:

~2PR 2
P+R -+

R P

F

What about more than 2 classes?
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Baseline performance

 Baseline: The minimum performance level that
you’re trying to improve on.

» Could be performance of competing system.

* Could be performance of dumb but easy method:

— Random choice, most-frequent answer, very
simple heuristic, ...

« Comparison should be made on the same test data
for results to be fully meaningful.
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