
1

Web Search. Web Spidering

Introduction

This material was prepared by Diana Inkpen, University of Ottawa, 2005,

updated 2021. Some of these slides were originally prepared by Raymond

Mooney, University of Texas Austin.

2

Outline

• Information Retrieval applied on the Web

• The Web – the largest collection of

documents available today

– Still, a collection

– Should be able to apply “traditional” IR

techniques, with few changes

• Web Search

• Spidering

3

Web Search Using IR

Query

String

IR

System

Ranked

Documents

1. Page1

2. Page2

3. Page3

.

.

Document

corpus

Web Spider

the spider represents the main

difference compared to

traditional IR

4

The World Wide Web

• Developed by Tim Berners-Lee in 1990 at

CERN to organize research documents

available on the Internet.

• Combined idea of documents available by

FTP with the idea of hypertext to link

documents.

• Developed initial HTTP network protocol,

URLs, HTML, and first “web server.”

5

Web Pre-History

• Ted Nelson developed idea of hypertext in 1965.

• Doug Engelbart invented the mouse and built the first

implementation of hypertext in the late 1960’s at SRI.

• ARPANET was developed in the early 1970’s.

– For what main reason?

• The basic technology was in place in the 1970’s; but

it took the PC revolution and widespread networking

to inspire the web and make it practical.

6

Web Browser History

• Early browsers were developed in 1992 (Erwise,
ViolaWWW).

• In 1993, Marc Andreessen and Eric Bina at UIUC
NCSA developed the Mosaic browser and distributed
it widely.

• Andreessen joined with James Clark (Stanford Prof.
and Silicon Graphics founder) to form Mosaic
Communications Inc. in 1994 (which became
Netscape to avoid conflict with UIUC).

• Microsoft licensed the original Mosaic from UIUC

and used it to build Internet Explorer in 1995.

7

Search Engine Early History

• By late 1980’s many files were available by

anonymous FTP.

• In 1990, Alan Emtage of McGill Univ.

developed Archie (short for “archives”)

– Assembled lists of files available on many FTP

servers.

– Allowed regex search of these file names.

• In 1993, Veronica and Jughead were

developed to search names of text files

available through Gopher servers.

8

Web Search History

• In 1993, early web robots (spiders) were

built to collect URL’s:

– Wanderer

– ALIWEB (Archie-Like Index of the WEB)

– WWW Worm (indexed URL’s and titles for

regex search)

• In 1994, Stanford grad students David Filo

and Jerry Yang started manually collecting

popular web sites into a topical hierarchy

called Yahoo.

9

Web Search History (cont)

• In early 1994, Brian Pinkerton developed WebCrawler

as a class project at U Wash. (eventually became part

of Excite and AOL).

• A few months later, Fuzzy Maudlin, a grad student at

CMU developed Lycos. First to use a standard IR

system as developed for the DARPA Tipster project.

First to index a large set of pages.

• In late 1995, DEC developed Altavista. Used many

Alpha machines to quickly process large numbers of

queries. Supported boolean operators, phrases.

10

Web Search Recent History

• In 1998, Larry Page and Sergey Brin, Ph.D.

students at Stanford, started Google. Main

advance is use of link analysis to rank results

partially based on authority.

• Conclusions:

– Most popular search engines were developed by

graduate students

– Don’t wait too long to develop your own search

engine! 

11

Web Challenges for IR

• Distributed Data: Documents spread over millions of

different web servers.

• Volatile Data: Many documents change or disappear

rapidly (e.g. dead links).

• Large Volume: Billions of separate documents.

• Unstructured and Redundant Data: No uniform structure,

HTML errors, up to 30% (near) duplicate documents.

• Quality of Data: No editorial control, false information,

poor quality writing, typos, etc.

• Heterogeneous Data: Multiple media types (images,

video, VRML), languages, character sets, etc.

12

Number of Web Servers

13

Number of Web Pages

14

Number of Web Pages Indexed

Assuming about 20KB per page,

1 billion pages is about 20 terabytes of data.

SearchEngineWatch, Aug. 15, 2001

15

Growth of Web Pages Indexed

Google lists current number of pages searched.

SearchEngineWatch, Aug. 15, 2001

http://www.google.com/

16

Graph Structure in the Web

http://www9.org/w9cdrom/160/160.html

http://www9.org/w9cdrom/160/160.html

17

Zipf’s Law on the Web

• Length of web pages has a Zipfian

distribution.

• Number of hits to a web page has a Zipfian

distribution.

18

Manual Hierarchical

Web Taxonomies

• Yahoo approach of using human editors to

assemble a large hierarchically structured

directory of web pages.

– http://www.yahoo.com/

• Open Directory Project is a similar

approach based on the distributed labor of

volunteer editors (“net-citizens provide the

collective brain”). Used by most other

search engines. Started by Netscape.

– http://www.dmoz.org/

http://www.yahoo.com/
http://www.dmoz.org/

19

Web Search Using IR

Query

String

IR

System

Ranked

Documents

1. Page1

2. Page2

3. Page3

.

.

Document

corpus

Web Spider

the spider represents the main

difference compared to

traditional IR

20

Spiders (Robots/Bots/Crawlers)

• Start with a comprehensive set of root URL’s
from which to start the search.

• Follow all links on these pages recursively to
find additional pages.

• Index/Process all novel found pages in an
inverted index as they are encountered.

• May allow users to directly submit pages to be
indexed (and crawled from).

21

Search Strategies

Breadth-first Search

22

Search Strategies (cont)

Depth-first Search

23

Search Strategy Trade-Off’s

• Breadth-first explores uniformly outward

from the root page but requires memory of

all nodes on the previous level (exponential

in depth). Standard spidering method.

• Depth-first requires memory of only depth

times branching-factor (linear in depth) but

gets “lost” pursuing a single thread.

• Both strategies can be easily implemented

using a queue of links (URL’s).

24

Avoiding Page Duplication

• Must detect when revisiting a page that has

already been spidered (web is a graph not a tree).

• Must efficiently index visited pages to allow rapid

recognition test.

– Tree indexing (e.g. trie), Hashtable

• Index page using URL as a key.

– Must canonicalize URL’s (e.g. delete ending “/”)

– Not detect duplicated or mirrored pages.

• Index page using textual content as a key.

– Requires first downloading page.

25

Spidering Algorithm

Initialize queue (Q) with initial set of known URL’s.

Until Q empty or page or time limit exhausted:

Pop URL, L, from front of Q.

If L is not to an HTML page (.gif, .jpeg, .ps, .pdf, .ppt…)

continue loop.

If already visited L, continue loop.

Download page, P, for L.

If cannot download P (e.g. 404 error, robot excluded)

continue loop.

Index P (e.g. add to inverted index or store cached copy).

Parse P to obtain list of new links N.

Append N to the end of Q.

26

Queueing Strategy

• How new links are added to the queue

determines search strategy.

• FIFO (append to end of Q) gives breadth-

first search.

• LIFO (add to front of Q) gives depth-first

search.

• Heuristically ordering the Q gives a

“focused crawler” that directs its search

towards “interesting” pages.

27

Restricting Spidering

• You can restrict spider to a particular site.

– Remove links to other sites from Q.

• You can restrict spider to a particular

directory.

– Remove links not in the specified directory.

• Obey page-owner restrictions (robot

exclusion).

28

Link Extraction

• Must find all links in a page and
extract URLs.
–

– <frame src=“site-index.html”>

• Must complete relative URL’s using
current page URL:
– to

http://www.site.uottawa.ca/~diana/csi4107/A1.htm

– to

http://www.site.uottawa.ca/~diana/csi4107/paper-
presentations.html

29

URL Syntax

• A URL has the following syntax:
– <scheme>://<authority><path>?<query>#<fragment>

• A query passes variable values from an

HTML form and has the syntax:

– <variable>=<value>&<variable>=<value>…

• A fragment is also called a reference or a

ref and is a pointer within the document to a

point specified by an anchor tag of the

form:

– <A NAME=“<fragment>”>

30

Link Canonicalization

• Equivalent variations of ending directory

normalized by removing ending slash.

– http://www.site.uottawa.ca/~diana/

– http://www.site.uottawa.ca/~diana

• Internal page fragments (ref’s) removed:

– http://www.site.uottawa.ca/~diana/csi1102/index.

html#Eval

– http://www.site.uottawa.ca/~diana/csi1102/index.

html

31

Anchor Text Indexing

• Extract anchor text (between <a> and) of

each link followed.

• Anchor text is usually descriptive of the document

to which it points.

• Add anchor text to the content of the destination

page to provide additional relevant keyword

indices.

– Evil Empire

– IBM

32

Anchor Text Indexing (cont’d)

• Helps when descriptive text in destination

page is embedded in image logos rather

than in accessible text.

• Many times anchor text is not useful:

– “click here”

• Increases content more for popular pages

with many in-coming links, increasing

recall of these pages.

• May even give higher weights to tokens

from anchor text.

33

Robot Exclusion

• Web sites and pages can specify that robots

should not crawl/index certain areas.

• Two components:

– Robots Exclusion Protocol: Site wide

specification of excluded directories.

– Robots META Tag: Individual document tag to

exclude indexing or following links.

34

Robots Exclusion Protocol

• Site administrator puts a “robots.txt” file at

the root of the host’s web directory.

– http://www.ebay.com/robots.txt

– http://www.cnn.com/robots.txt

• File is a list of excluded directories for a

given robot (user-agent).

– Exclude all robots from the entire site:

User-agent: *

Disallow: /

http://www.ebay.com/robots.txt
http://www.cnn.com/robots.txt

35

Robot Exclusion Protocol Examples

• Exclude specific directories:

User-agent: *

Disallow: /tmp/

Disallow: /cgi-bin/

Disallow: /users/paranoid/

• Exclude a specific robot:

User-agent: GoogleBot

Disallow: /

• Allow a specific robot:

User-agent: GoogleBot

Disallow:

36

Robot Exclusion

Protocol Details

• Only use blank lines to separate different

User-agent disallowed directories.

• One directory per “Disallow” line.

• No regex patterns in directories.

37

Robots META Tag

• Include META tag in HEAD section of a

specific HTML document.

– <meta name=“robots” content=“none”>

• Content value is a pair of values for two

aspects:

– index | noindex: Allow/disallow indexing of this

page.

– follow | nofollow: Allow/disallow following

links on this page.

38

Robots META Tag (cont)

• Special values:

– all = index,follow

– none = noindex,nofollow

• Examples:

<meta name=“robots” content=“noindex,follow”>

<meta name=“robots” content=“index,nofollow”>

<meta name=“robots” content=“none”>

39

Robot Exclusion Issues

• META tag is newer and less well-adopted

than “robots.txt”.

• Standards are conventions to be followed by

“good robots.”

• Companies have been prosecuted for

“disobeying” these conventions and

“trespassing” on private cyberspace.

40

Multi-Threaded Spidering

• Bottleneck is network delay in downloading

individual pages.

• Best to have multiple threads running in parallel

each requesting a page from a different host.

• Distribute URL’s to threads to guarantee equitable

distribution of requests across different hosts to

maximize through-put and avoid overloading any

single server.

• Early Google spider had multiple co-ordinated

crawlers with about 300 threads each, together

able to download over 100 pages per second.

41

Directed/Focused Spidering

• Sort queue to explore more “interesting”

pages first.

• Two styles of focus:

– Topic-Directed

– Link-Directed

42

Topic-Directed Spidering

• Assume desired topic description or sample

pages of interest are given.

• Sort queue of links by the similarity (e.g.

cosine metric) of their source pages and/or

anchor text to this topic description.

– Related to Topic Tracking and Detection

43

Link-Directed Spidering

• Monitor links and keep track of in-degree

and out-degree of each page encountered.

• Sort queue to prefer popular pages with

many in-coming links (authorities).

• Sort queue to prefer summary pages with

many out-going links (hubs).

– Google’s PageRank algorithm

44

Keeping Spidered Pages

Up to Date
• Web is very dynamic: many new pages, updated

pages, deleted pages, etc.

• Periodically check spidered pages for updates and
deletions:
– Just look at header info (e.g. META tags on last

update) to determine if page has changed, only reload
entire page if needed.

• Track how often each page is updated and
preferentially return to pages which are
historically more dynamic.

• Preferentially update pages that are accessed more
often to optimize freshness of popular pages.

