Text Properties and Languages

This material was prepared by Diana Inkpen, University of Ottawa, 2005, updated 2021. Some of these slides were originally prepared by Raymond Mooney, University of Texas Austin.

Statistical Properties of Text

- How is the frequency of different words distributed?
- How fast does vocabulary size grow with the size of a corpus?
- Such factors affect the performance of information retrieval and can be used to select appropriate term weights and other aspects of an IR system.

Word Frequency

- A few words are very common.
 - 2 most frequent words (e.g. "the", "of") can account for about 10% of word occurrences.
- Most words are very rare.
 - Half the words in a corpus appear only once, called *hapax legomena* (Greek for "read only once")
- Called a "heavy tailed" distribution, since most of the probability mass is in the "tail"

Sample Word Frequency Data (from B. Croft, UMass)

Frequent	Number of	Percentage
Word	Occurrences	of Total
the	7,398,934	5.9
of	3,893,790	3.1
to	3,364,653	2.7
and	3,320,687	2.6
in	2,311,785	1.8
is	1,559,147	1.2
for	1,313,561	1.0
The	1,144,860	0.9
that	1,066,503	0.8
said	1,027,713	0.8

Frequencies from 336,310 documents in the 1GB TREC Volume 3 Corpus 125,720,891 total word occurrences; 508,209 unique words

Zipf's Law

- Rank (*r*): The numerical position of a word in a list sorted by decreasing frequency (*f*).
- Zipf (1949) "discovered" that: $f \propto \frac{1}{r}$ $f \cdot r = k$ (for constant k)
- If probability of word of rank *r* is *p_r* and *N* is the total number of word occurrences:

$$p_r = \frac{f}{N} = \frac{A}{r}$$
 for corpus indp. const. $A \approx 0.1$

Zipf and Term Weighting

• Luhn (1958) suggested that both extremely common and extremely uncommon words were not very useful for indexing.

Predicting Occurrence Frequencies

- By Zipf, a word appearing *n* times has rank $r_n = AN/n$
- Several words may occur *n* times, assume rank r_n applies to the last of these.
- Therefore, r_n words occur *n* or more times and r_{n+1} words occur n+1 or more times.
- So, the number of words appearing **exactly** *n* times is:

$$I_n = r_n - r_{n+1} = \frac{AN}{n} - \frac{AN}{n+1} = \frac{AN}{n(n+1)}$$

Predicting Word Frequencies (cont)

- Assume highest ranking term occurs once and therefore has rank D = AN/1
- Fraction of words with frequency *n* is:

$$\frac{I_n}{D} = \frac{1}{n(n+1)}$$

• Fraction of words appearing only once is therefore ¹/₂.

Occurrence Frequency Data

(from B. Croft, UMass)

Number of Occurrences (n)	Predicted Proportion of Occurrences	Actual Proportion occurring n times In/D	Actual Number of Words occurring n
	1/n(n+1)		times
1	.500	.402	204,357
2	.167	.132	67,082
3	.083	.069	35,083
4	.050	.046	23,271
5	.033	.032	16,332
6	.024	.024	12,421
7	.018	.019	9,766
8	.014	.016	8,200
9	.011	.014	6,907
10	.009	.012	5,893

Frequencies from 336,310 documents in the 1GB TREC Volume 3 Corpus 125,720,891 total word occurrences; 508,209 unique words

Does Real Data Fit Zipf's Law?

- A law of the form *y* = *kx^c* is called a power law.
- Zipf's law is a power law with c = -1
- On a log-log plot, power laws give a straight line with slope *c*.

$$\log(y) = \log(kx^c) = \log k + c\log(x)$$

• Zipf is quite accurate except for very high and low rank.

Fit to Zipf for Brown Corpus

Mandelbrot (1954) Correction

• The following more general form gives a bit better fit:

$$f = P(r + \rho)^{-B}$$
 ForconstantsP,B, ρ

Mandelbrot Fit

Explanations for Zipf's Law

- Zipf's explanation was his "principle of least effort." Balance between speaker's desire for a small vocabulary and hearer's desire for a large one.
- Debate (1955-61) between Mandelbrot and H. Simon over explanation.
- Li (1992) shows that just random typing of letters including a space will generate "words" with a Zipfian distribution.
 - <u>http://linkage.rockefeller.edu/wli/zipf/</u>

Zipf's Law Impact on IR

- Good News: Stopwords will account for a large fraction of text so eliminating them greatly reduces inverted-index storage costs.
- Bad News: For most words, gathering sufficient data for meaningful statistical analysis (e.g. for correlation analysis for query expansion) is difficult since they are extremely rare.

Vocabulary Growth

- How does the size of the overall vocabulary (number of unique words) grow with the size of the corpus?
- This determines how the size of the inverted index will scale with the size of the corpus.
- Vocabulary not really upper-bounded due to proper names, typos, etc.

Heaps' Law

• If *V* is the size of the vocabulary and the *N* is the length of the corpus in words:

 $V = KN^{\beta}$ with constants K, $0 < \beta < 1$

- Typical constants:
 - $-K \approx 10 100$
 - $-\beta \approx 0.4-0.6$

Vocabulary grows approx. with square-root of N

Heaps' Law Data

Metadata

- Information about a document that may not be a part of the document itself (data about data).
- *Descriptive* metadata is external to the meaning of the document:
 - Author
 - Title
 - Source (book, magazine, newspaper, journal)
 - Date
 - ISBN
 - Publisher
 - Length

Metadata (cont)

- *Semantic* metadata concerns the content:
 - Abstract
 - Keywords
 - Subject Codes
 - Library of Congress
 - Dewey Decimal
 - UMLS (Unified Medical Language System)
- Subject terms may come from specific *ontologies* (hierarchical taxonomies of standardized semantic terms).

Web Metadata

- META tag in HTML
 - <META NAME="keywords"
 CONTENT="pets, cats, dogs">
- META "HTTP-EQUIV" attribute allows server or browser to access information:
 - <META HTTP-EQUIV="content-type" CONTENT="text/tml; charset=EUC-2">
 - <META HTTP-EQUIV="expires" CONTENT="Tue, 01 Jan 02">
 - <META HTTP-EQUIV="creation-date" CONTENT="23-Sep-01">

Content Rating Metadata

- PICS (Platform for Internet Content Selection)
- Rating system to allow censoring based on sexual, violent, language etc. content.
 - <META HTTP-EQUIV="PICS-label" CONTENT="PG13: SEX, VIOLENCE">

RDF

- Resource Description Framework.
- XML compatible metadata format.
- New standard for web metadata.
 - Content description
 - Collection description
 - Privacy information
 - Intellectual property rights (e.g. copyright)
 - Content ratings
 - Digital signatures for authority

Markup Languages

- Language used to annotate documents with "tags" that indicate layout or semantic information.
- Most document languages (Word, RTF, Latex, HTML) primarily define *layout*.
- History of Generalized Markup Languages:

Standard eXtensible $GML(1969) \longrightarrow SGML(1985)$ XML (1998) HTML (1993 HyperText

Basic SGML Document Syntax

- Blocks of text surrounded by start and end tags.
 - <tagname attribute=value attribute=value ...>
 - </tagname>
- Tagged blocks can be nested.
- In HTML end tag is not always necessary, but in XML it is.

HTML

- Developed for hypertext on the web.

- May include code such as Javascript in Dynamic HTML (DHTML).
- Separates layout somewhat by using style sheets (Cascade Style Sheets, CSS).
- However, primarily defines layout and formatting.

XML

- Like SGML, a metalanguage for defining specific document languages.
- Simplification of original SGML for the web promoted by WWW Consortium (W3C).
- Fully separates semantic information and layout.
- Provides structured data (such as a relational DB) in a document format.
- Replacement for an explicit database schema.

XML (cont)

- Allows *programs* to easily interpret information in a document, as opposed to HTML intended as layout language for formatting docs for human consumption.
- New tags are defined as needed.
- Structures can be nested arbitrarily deep.
- Separate (optional) *Document Type Definition* (DTD) defines tags and document grammar.

XML Example

<tag/> is shorthand for empty tag <tag></tag> Tag names are case-sensitive (unlike HTML) A tagged piece of text is called an *element*.

XML Example with Attributes

<product type="food">
 <name language="Spanish">arroz con pollo</name>
 <price currency="peso">2.30</price>
 </product>

Attribute values must be strings enclosed in quotes. For a given tag, an attribute name can only appear once.

XML Miscellaneous

- XML Document must start with a special tag. - <?XML VERSION="1.0">
- Tag "id" and "idref" attributes allows specifying graphstructured data as well as tree-structured data.

```
<state id="s2">
```

```
<abbrev> TX</abbrev>
```

```
<name>Texas</abbrev>
```

```
</state>
```

```
<city id="c2">
```

```
<aircode> AUS </aircode>
<name> Austin </name>
<state idref="s2"/>
```

</city>

Document Type Definition (DTD)

- Grammar or schema for defining the tags and structure of a particular document type.
- Allows defining structure of a document element using a regular expression.
- Expression defining an element can be recursive, allowing the expressive power of a context-free grammar.

DTD Example

<!DOCTYPE db [<!ELEMENT db (person*)> <!ELEMENT person (name,age,(parent | guardian)?> <!ELEMENT name (#PCDATA)> <!ELEMENT age (#PCDATA)> <!ELEMENT parent (person)> <!ELEMENT guardian (person)>

*: 0 or more repetitions
?: 0 or 1 (optional)
|: alternation (or)
PCDATA: Parsed Character Data (may contain tags)

Sample Valid Document for DTD

< db >

<person>

<name> <firstname>John</firstname> <lastname>Doe</lastname>

</name>

<age> 26 </age>

<parent>

<person>

<name><firstname>Robert</firstname> <lastname>Doe</firstname>

</name>

```
<age> 55</age>
```

</person>

</parent>

</person>

</db>

DTD (cont)

• Tag attributes are also defined:

<!ATTLIS name language CDATA #REQUIRED> <!ATTLIS price currency CDATA #IMPLIED> CDATA: Character data (string) IMPLIED: Optional

• Can define DTD in a separate file:

<!DOCTYPE db SYSTEM ''/u/doe/xml/db.dtd">

XSL (Extensible Style-Sheet Language)

- Defines layout for XML documents.
- Defines how to translate XML into HTML.
- Define style sheet in document:

- <?xml-stylesheet href="mystyle.css" type="text/css">

XML Standardized DTD's

- MathML: For mathematical formulae.
- SMIL (Synchronized Multimedia Integration Language): Scheduling language for web-based multi-media presentations.
- RDF
- TEI (Text Encoding Initiative): For literary works.
- NITF: For news articles.
- CML: For chemicals.
- AIML: For astronomical instruments.

Parsing XML

- Process XML file into an internal data format for further processing.
- SAX (Simple API for XML): Reads the flow of XML text, detecting *events* (e.g. tag start and end) that are sent back to the application for processing.
- DOM (Document Object Model): Parses XML text into a tree-structured objectoriented data structure.

DOM

- XML document represented as a tree of Node objects (e.g. Java objects).
- Node class has subclasses:
 - Element
 - Attribute
 - CharacterData
- Node has methods:
 - getParentNode()
 - getChildNodes()

Sample DOM Tree

More Node Methods

- Element node
 - getTagName()
 - getAttributes()
 - getAttribute(String name)
- CharacterData node
 - getData()
- Also methods for adding and deleting nodes and text in the DOM tree, setting attributes, etc.

Apache Xerxes XML Parser

- Parser for creating DOM trees for XML documents.
- Java version available at
 - <u>http://xml.apache.org/xerces2-j</u>
- Full Javadoc available at:
 - <u>http://xml.apache.org/xerces2-j/api.html</u>