
1

Text Properties and Languages

This material was prepared by Diana Inkpen, University of Ottawa, 2005,

updated 2021. Some of these slides were originally prepared by Raymond

Mooney, University of Texas Austin.

2

Statistical Properties of Text

• How is the frequency of different words

distributed?

• How fast does vocabulary size grow with

the size of a corpus?

• Such factors affect the performance of

information retrieval and can be used to

select appropriate term weights and other

aspects of an IR system.

3

Word Frequency

• A few words are very common.

– 2 most frequent words (e.g. “the”, “of”) can

account for about 10% of word occurrences.

• Most words are very rare.

– Half the words in a corpus appear only once,

called hapax legomena (Greek for “read only

once”)

• Called a “heavy tailed” distribution, since

most of the probability mass is in the “tail”

4

Sample Word Frequency Data
(from B. Croft, UMass)

5

Zipf’s Law

• Rank (r): The numerical position of a word

in a list sorted by decreasing frequency (f).

• Zipf (1949) “discovered” that:

• If probability of word of rank r is pr and N

is the total number of word occurrences:

r
f

1
)constant (for kkrf

1.0 const. indp. corpusfor A
r

A

N

f
pr

6

Zipf and Term Weighting

• Luhn (1958) suggested that both extremely

common and extremely uncommon words were

not very useful for indexing.

7

Predicting Occurrence Frequencies

• By Zipf, a word appearing n times has rank rn=AN/n

• Several words may occur n times, assume rank rn

applies to the last of these.

• Therefore, rn words occur n or more times and rn+1

words occur n+1 or more times.

• So, the number of words appearing exactly n times is:

)1(1
1

nn

AN

n

AN

n

AN
rrI nnn

8

Predicting Word Frequencies (cont)

• Assume highest ranking term occurs once

and therefore has rank D = AN/1

• Fraction of words with frequency n is:

• Fraction of words appearing only once is

therefore ½.

)1(

1

nnD

In

9

Occurrence Frequency Data

(from B. Croft, UMass)

10

Does Real Data Fit Zipf’s Law?

• A law of the form y = kxc is called a power
law.

• Zipf’s law is a power law with c = –1

• On a log-log plot, power laws give a
straight line with slope c.

• Zipf is quite accurate except for very high
and low rank.

)log(log)log()log(xckkxy c

11

Fit to Zipf for Brown Corpus

k = 100,000

12

Mandelbrot (1954) Correction

• The following more general form gives a bit

better fit:

ρB, P,constants For)(BrPf

13

Mandelbrot Fit

P = 105.4, B = 1.15, = 100

14

Explanations for Zipf’s Law

• Zipf’s explanation was his “principle of least

effort.” Balance between speaker’s desire for a

small vocabulary and hearer’s desire for a large

one.

• Debate (1955-61) between Mandelbrot and H.

Simon over explanation.

• Li (1992) shows that just random typing of letters

including a space will generate “words” with a

Zipfian distribution.

– http://linkage.rockefeller.edu/wli/zipf/

http://linkage.rockefeller.edu/wli/zipf/

15

Zipf’s Law Impact on IR

• Good News: Stopwords will account for a

large fraction of text so eliminating them

greatly reduces inverted-index storage costs.

• Bad News: For most words, gathering

sufficient data for meaningful statistical

analysis (e.g. for correlation analysis for

query expansion) is difficult since they are

extremely rare.

16

Vocabulary Growth

• How does the size of the overall vocabulary

(number of unique words) grow with the

size of the corpus?

• This determines how the size of the inverted

index will scale with the size of the corpus.

• Vocabulary not really upper-bounded due to

proper names, typos, etc.

17

Heaps’ Law

• If V is the size of the vocabulary and the N

is the length of the corpus in words:

• Typical constants:

– K 10100

– 0.40.6

Vocabulary grows approx. with square-root of N

10 , constants with KKNV

18

Heaps’ Law Data

19

Metadata

• Information about a document that may not be a
part of the document itself (data about data).

• Descriptive metadata is external to the meaning of
the document:

– Author

– Title

– Source (book, magazine, newspaper, journal)

– Date

– ISBN

– Publisher

– Length

20

Metadata (cont)

• Semantic metadata concerns the content:

– Abstract

– Keywords

– Subject Codes

• Library of Congress

• Dewey Decimal

• UMLS (Unified Medical Language System)

• Subject terms may come from specific
ontologies (hierarchical taxonomies of
standardized semantic terms).

21

Web Metadata

• META tag in HTML
– <META NAME=“keywords”

CONTENT=“pets, cats, dogs”>

• META “HTTP-EQUIV” attribute allows
server or browser to access information:
– <META HTTP-EQUIV=“content-type”

CONTENT=“text/tml; charset=EUC-2”>

– <META HTTP-EQUIV=“expires”
CONTENT=“Tue, 01 Jan 02”>

– <META HTTP-EQUIV=“creation-date”
CONTENT=“23-Sep-01”>

22

Content Rating Metadata

• PICS (Platform for Internet Content

Selection)

• Rating system to allow censoring based on

sexual, violent, language etc. content.
– <META HTTP-EQUIV=“PICS-label”

CONTENT=“PG13: SEX, VIOLENCE”>

23

RDF

• Resource Description Framework.

• XML compatible metadata format.

• New standard for web metadata.

– Content description

– Collection description

– Privacy information

– Intellectual property rights (e.g. copyright)

– Content ratings

– Digital signatures for authority

24

Markup Languages

• Language used to annotate documents with

“tags” that indicate layout or semantic

information.

• Most document languages (Word, RTF,

Latex, HTML) primarily define layout.

• History of Generalized Markup Languages:

GML(1969) SGML (1985)

HTML (1993)

XML (1998)

Standard

HyperText

eXtensible

25

Basic SGML Document Syntax

• Blocks of text surrounded by start and end

tags.

– <tagname attribute=value attribute=value …>

– </tagname>

• Tagged blocks can be nested.

• In HTML end tag is not always necessary,

but in XML it is.

26

HTML

• Developed for hypertext on the web.

–

• May include code such as Javascript in

Dynamic HTML (DHTML).

• Separates layout somewhat by using style

sheets (Cascade Style Sheets, CSS).

• However, primarily defines layout and

formatting.

27

XML

• Like SGML, a metalanguage for defining
specific document languages.

• Simplification of original SGML for the web
promoted by WWW Consortium (W3C).

• Fully separates semantic information and
layout.

• Provides structured data (such as a relational
DB) in a document format.

• Replacement for an explicit database schema.

28

XML (cont)

• Allows programs to easily interpret
information in a document, as opposed to
HTML intended as layout language for
formatting docs for human consumption.

• New tags are defined as needed.

• Structures can be nested arbitrarily deep.

• Separate (optional) Document Type
Definition (DTD) defines tags and
document grammar.

29

XML Example

<person>

<name> <firstname>John</firstname>

<middlename/>

<lastname>Doe</lastname>

</name>

<age> 38 </age>

<email> jdoe@austin.rr.com</email>

</person>

<tag/> is shorthand for empty tag <tag></tag>

Tag names are case-sensitive (unlike HTML)

A tagged piece of text is called an element.

30

XML Example with Attributes

<product type=“food”>

<name language=“Spanish”>arroz con pollo</name>

<price currency=“peso”>2.30</price>

</product>

Attribute values must be strings enclosed in quotes.

For a given tag, an attribute name can only appear once.

31

XML Miscellaneous

• XML Document must start with a special tag.

– <?XML VERSION=“1.0”>

• Tag “id” and “idref” attributes allows specifying graph-
structured data as well as tree-structured data.

<state id=“s2”>

<abbrev> TX</abbrev>

<name>Texas</abbrev>

</state>

<city id=“c2”>

<aircode> AUS </aircode>

<name> Austin </name>

<state idref=“s2”/>

</city>

32

Document Type Definition (DTD)

• Grammar or schema for defining the tags

and structure of a particular document type.

• Allows defining structure of a document

element using a regular expression.

• Expression defining an element can be

recursive, allowing the expressive power of

a context-free grammar.

33

DTD Example

<!DOCTYPE db [

<!ELEMENT db (person*)>

<!ELEMENT person (name,age,(parent | guardian)?>

<!ELEMENT name (#PCDATA)>

<!ELEMENT age (#PCDATA)>

<!ELEMENT parent (person)>

<!ELEMENT guardian (person)>

]>

*: 0 or more repetitions

?: 0 or 1 (optional)

| : alternation (or)

PCDATA: Parsed Character Data (may contain tags)

34

Sample Valid Document for DTD

<db>

<person>

<name> <firstname>John</firstname> <lastname>Doe</lastname>

</name>

<age> 26 </age>

<parent>

<person>

<name><firstname>Robert</firstname> <lastname>Doe</firstname>

</name>

<age> 55</age>

</person>

</parent>

</person>

</db>

35

DTD (cont)

• Tag attributes are also defined:

<!ATTLIS name language CDATA #REQUIRED>

<!ATTLIS price currency CDATA #IMPLIED>

CDATA: Character data (string)

IMPLIED: Optional

• Can define DTD in a separate file:

<!DOCTYPE db SYSTEM “/u/doe/xml/db.dtd”>

36

XSL (Extensible Style-Sheet Language)

• Defines layout for XML documents.

• Defines how to translate XML into HTML.

• Define style sheet in document:
– <?xml-stylesheet href=“mystyle.css” type=“text/css”>

37

XML Standardized DTD’s

• MathML: For mathematical formulae.

• SMIL (Synchronized Multimedia Integration

Language): Scheduling language for web-based

multi-media presentations.

• RDF

• TEI (Text Encoding Initiative): For literary works.

• NITF: For news articles.

• CML: For chemicals.

• AIML: For astronomical instruments.

38

Parsing XML

• Process XML file into an internal data

format for further processing.

• SAX (Simple API for XML): Reads the

flow of XML text, detecting events (e.g. tag

start and end) that are sent back to the

application for processing.

• DOM (Document Object Model): Parses

XML text into a tree-structured object-

oriented data structure.

39

DOM

• XML document represented as a tree of
Node objects (e.g. Java objects).

• Node class has subclasses:

– Element

– Attribute

– CharacterData

• Node has methods:

– getParentNode()

– getChildNodes()

40

Sample DOM Tree

55

person

name age parent

person
lastnamefirstname

name

firstname

age

lastname

John Doe

26

DoeRobert

Element

Character-Data

41

More Node Methods

• Element node

– getTagName()

– getAttributes()

– getAttribute(String name)

• CharacterData node

– getData()

• Also methods for adding and deleting nodes
and text in the DOM tree, setting attributes,
etc.

42

Apache Xerxes XML Parser

• Parser for creating DOM trees for XML

documents.

• Java version available at

– http://xml.apache.org/xerces2-j

• Full Javadoc available at:

– http://xml.apache.org/xerces2-j/api.html

http://xml.apache.org/xerces2-j
http://xml.apache.org/xerces2-j/api.html

