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Query Languages

This material was prepared by Diana Inkpen, University of Ottawa, 2005, 

updated 2021. Some of these slides were originally prepared by Raymond 

Mooney, University of Texas Austin.
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Boolean Queries

• Keywords combined with Boolean operators:

– OR:  (e1 OR e2)

– AND: (e1 AND e2)

– BUT: (e1 BUT e2) Satisfy e1 but not e2

• Negation only allowed using BUT to allow 

efficient use of inverted index by filtering 

another efficiently retrievable set.

• Naïve users have trouble with Boolean logic.
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Boolean Retrieval with Inverted Indices

• Primitive keyword: Retrieve containing 

documents using the inverted index.

• OR:  Recursively retrieve e1 and e2 and take 

union of results.

• AND: Recursively retrieve e1 and e2 and 

take intersection of results.

• BUT: Recursively retrieve e1 and e2 and 

take set difference of results.
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“Natural Language” Queries 

• Full text queries as arbitrary strings.

• Typically just treated as a bag-of-words for 

a vector-space model.

• Typically processed using standard vector-

space retrieval methods.
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Phrasal Queries

• Retrieve documents with a specific phrase 

(ordered list of contiguous words)

– “information theory”

• May allow intervening stop words and/or 

stemming.

– “buy camera” matches:                                     

“buy a camera”                                                 

“buying the cameras”                                                

etc.
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Phrasal Retrieval with Inverted Indices

• Must have an inverted index that also stores 

positions of each keyword in a document.

• Retrieve documents and positions for each 

individual word, intersect documents, and 

then finally check for ordered contiguity of 

keyword positions.

• Best to start contiguity check with the least 

common word in the phrase.
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Phrasal Search

Find set of documents D in which all keywords (k1…km) in phrase occur 

(using AND query processing).

Intitialize empty set, R, of retrieved documents.

For each document, d, in D:

Get array, Pi ,of positions of occurrences for each ki in d

Find shortest array Ps of the Pi’s

For each position p of keyword ks in Ps

For each keyword ki except ks

Use binary search to find a position (p – s + i) in the array Pi

If correct position for every keyword found, add d to R

Return R
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Proximity Queries

• List of words with specific maximal 

distance constraints between terms.

• Example: “dogs” and “race” within 4 words           

match “…dogs will begin the race…”

• May also perform stemming and/or not 

count stop words.
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Proximity Retrieval with Inverted Index

• Use approach similar to phrasal search to 

find documents in which all keywords are 

found in a context that satisfies the 

proximity constraints.

• During binary search for positions of 

remaining keywords, find closest position 

of ki to p and check that it is within 

maximum allowed distance.
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Pattern Matching

• Allow queries that match strings rather than 

word tokens.

• Requires more sophisticated data structures 

and algorithms than inverted indices to 

retrieve efficiently. 
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Simple Patterns

• Prefixes: Pattern that matches start of word.

– “anti” matches “antiquity”, “antibody”, etc.

• Suffixes: Pattern that matches end of word:

– “ix” matches “fix”, “matrix”, etc.

• Substrings: Pattern that matches arbitrary 

subsequence of characters.

– “rapt” matches “enrapture”, “velociraptor” etc.

• Ranges: Pair of strings that matches any word 

lexicographically (alphabetically) between them.

– “tin” to “tix” matches “tip”, “tire”, “title”, etc.
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Allowing Errors

• What if query or document contains typos 

or misspellings?

• Judge similarity of words (or arbitrary 

strings) using:

– Edit distance (Levenstein distance) 

– Longest Common Subsequence (LCS)

• Allow proximity search with bound on 

string similarity.
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Edit (Levenstein) Distance

• Minimum number of character deletions, 
additions, or replacements needed to make 
two strings equivalent.

– “misspell” to “mispell” is distance 1

– “misspell” to “mistell” is distance 2

– “misspell” to “misspelling” is distance 3

• Can be computed efficiently using dynamic 
programming in O(mn) time where m and n
are the lengths of the two strings being 
compared. 
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Longest Common Subsequence (LCS)

• Length of the longest subsequence of 

characters shared by two strings.

• A subsequence of a string is obtained by 

deleting zero or more characters.

• Examples:

– “misspell” to “mispell” is 7

– “misspelled” to “misinterpretted” is 7                                           

“mis…p…e…ed”
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Regular Expressions

• Language for composing complex patterns from 
simpler ones.

– An individual character is a regex.

– Union: If e1 and e2 are regexes, then (e1 | e2 ) is a regex 
that matches whatever either e1 or e2 matches.

– Concatenation: If e1 and e2 are regexes, then e1 e2 is a 
regex that matches a string that consists of a substring that 
matches e1 immediately followed by a substring that 
matches e2 

– Repetition (Kleene closure): If e1 is a regex, then e1* is a 
regex that matches a sequence of zero or more strings that 
match e1
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Regular Expression Examples

• (u|e)nabl(e|ing) matches

– unable

– unabling

– enable

– enabling

• (un|en)*able matches

– able

– unable

– unenable

– enununenable
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Enhanced Regex’s (Perl)

• Special terms for common sets of characters, such 
as alphabetic or numeric or general “wildcard”.

• Special repetition operator (+) for 1 or more 
occurrences.

• Special optional operator (?) for 0 or 1 
occurrences.

• Special repetition operator for specific range of 
number of occurrences: {min,max}.

– A{1,5}  One to five A’s.

– A{5,}    Five or more A’s

– A{5}     Exactly five A’s



18

Perl Regex’s

• Character classes:

– \w (word char) Any alpha-numeric (not: \W)

– \d (digit char) Any digit (not: \D)

– \s (space char) Any whitespace (not: \S)

– . (wildcard) Anything

• Anchor points:

– \b (boundary) Word boundary

– ^ Beginning of string

– $ End of string
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Perl Regex Examples

• U.S. phone number with optional area code:

– /\b(\(\d{3}\)\s?)?\d{3}-\d{4}\b/

• Email address:

– /\b\S+@\S+(\.com|\.edu|\.gov|\.org|\.net)\b/

Note: Packages available to support Perl regex’s in Java
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Structural Queries

• Assumes documents have structure that can 

be exploited in search.

• Structure could be:

– Fixed set of fields, e.g. title, author, abstract, etc.

– Hierarchical (recursive) tree structure:

chapter

title section title section

title subsection

chapter

book
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Queries with Structure

• Allow queries for text appearing in specific 

fields:

– “nuclear fusion” appearing in a chapter title

• SFQL: Relational database query language 

SQL enhanced with “full text” search.

– Select abstract from journal.papers where                  

author contains “Teller” and                           

title contains “nuclear fusion” and                              

date < 1/1/1950
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Query Operations

Relevance Feedback &

Query Expansion
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Relevance Feedback

• After initial retrieval results are presented, 
allow the user to provide feedback on the 
relevance of one or more of the retrieved 
documents.

• Use this feedback information to reformulate 
the query.

• Produce new results based on reformulated 
query.

• Allows more interactive, multi-pass process.
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Relevance Feedback Architecture
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Query Reformulation

• Revise query to account for feedback:

– Query Expansion: Add new terms to query 

from relevant documents.

– Term Reweighting: Increase weight of terms in 

relevant documents and decrease weight of 

terms in irrelevant documents.

• Several algorithms for query reformulation.



26

Query Reformulation for VSR

• Change query vector using vector algebra.

• Add the vectors for the relevant documents 

to the query vector.

• Subtract the vectors for the irrelevant docs 

from the query vector.

• This adds both positive and negative  

weighted terms to the query, as well as 

reweighting the initial terms.
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Optimal Query

• Assume that the relevant set of documents 

Cr are known.

• Then the best query that ranks all and only 

the relevant queries at the top is:
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Where N is the total number of documents.
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Standard Rochio Method

• Since all relevant documents unknown, just 

use the known relevant (Dr) and irrelevant 

(Dn) sets of documents and include the 

initial query q.






njrj Dd

j

nDd

j

r

m d
D

d
D

qq


 


:  Tunable weight for initial query.

:  Tunable weight for relevant documents.

:  Tunable weight for irrelevant documents. 
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Ide Regular Method

• Since more feedback should perhaps 

increase the degree of reformulation, do not 

normalize for amount of feedback:






njrj Dd

j

Dd

jm ddqq





:  Tunable weight for initial query.

:  Tunable weight for relevant documents.

:  Tunable weight for irrelevant documents. 
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Ide “Dec Hi” Method

• Bias towards rejecting just the highest 

ranked of the irrelevant documents:

)(max jrelevantnon
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:  Tunable weight for initial query.

:  Tunable weight for relevant documents.

:  Tunable weight for irrelevant document. 
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Comparison of Methods

• Overall, experimental results indicate no 

clear preference for any one of the specific 

methods.

• All methods generally improve retrieval 

performance (recall & precision) with 

feedback.

• Generally just let tunable constants equal 1.
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Evaluating Relevance Feedback

• By construction, reformulated query will rank 

explicitly-marked relevant documents higher and 

explicitly-marked irrelevant documents lower.

• Method should not get credit for improvement on 

these documents, since it was told their relevance.

• In machine learning, this error is called “testing on 

the training data.”

• Evaluation should focus on generalizing  to other

un-rated documents.
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Fair Evaluation of Relevance Feedback

• Remove from the corpus any documents for which 

feedback was provided.

• Measure recall/precision performance on the 

remaining residual collection.

• Compared to complete corpus, specific 

recall/precision numbers may decrease since 

relevant documents were removed.

• However, relative performance on the residual 

collection provides fair data on the effectiveness 

of relevance feedback.
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Why is Feedback Not Widely Used

• Users sometimes reluctant to provide 

explicit feedback.

• Results in long queries that require more 

computation to retrieve, and search engines 

process lots of queries and allow little time 

for each one.

• Makes it harder to understand why a 

particular document was retrieved.
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Pseudo Feedback

• Use relevance feedback methods without 

explicit user input.

• Just assume the top m retrieved documents 

are relevant, and use them to reformulate 

the query.

• Allows for query expansion that includes 

terms that are correlated with the query 

terms.
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Pseudo Feedback Architecture

Rankings
IR

System

Document

corpus

Ranked

Documents

1. Doc1 

2. Doc2 

3. Doc3 

.

.

Query 

String

Revise

d

Query

ReRanked

Documents

1. Doc2 

2. Doc4 

3. Doc5 

.

.

Query

Reformulation

1. Doc1  

2. Doc2  

3. Doc3  

.

.

Pseudo

Feedback



37

PseudoFeedback Results

• Found to improve performance on TREC 

competition ad-hoc retrieval task.

• Works even better if top documents must 

also satisfy additional boolean constraints in 

order to be used in feedback.
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Thesaurus

• A thesaurus provides information on 

synonyms and semantically related words 

and phrases.

• Example:

physician 

syn: ||croaker, doc, doctor, MD, 

medical, mediciner, medico, ||sawbones

rel: medic, general practitioner, 

surgeon
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Thesaurus-based Query Expansion

• For each term, t, in a query, expand the query with 

synonyms and related words of t from the 

thesaurus.

• May weight added terms less than original query 

terms.

• Generally increases recall.

• May significantly decrease precision, particularly 

with ambiguous terms.

– “interest rate”  “interest rate fascinate evaluate”
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WordNet

• A more detailed database of semantic 
relationships between English words.

• Developed by famous cognitive 
psychologist George Miller and a team at 
Princeton University.

• About 152,059 English words.

• Nouns, adjectives, verbs, and adverbs 
grouped into about 115,424  synonym sets 
called synsets.
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WordNet Synset Relationships

• Antonym: front  back

• Attribute: benevolence  good (noun to adjective)

• Pertainym: alphabetical  alphabet (adjective to noun)

• Similar: unquestioning  absolute

• Cause: kill  die

• Entailment: breathe  inhale

• Holonym: chapter  text (part-of)

• Meronym: computer  cpu (whole-of)

• Hyponym: tree  plant (specialization)

• Hypernym: fruit  apple (generalization)
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WordNet Query Expansion

• Add synonyms in the same synset.

• Add  hyponyms to add specialized terms.

• Add hypernyms to generalize a query.

• Add other related terms to expand query.
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Statistical Thesaurus

• Existing human-developed thesauri are not 

easily available in all languages.

• Human thesauri are limited in the type and 

range of synonymy and semantic relations 

they represent.

• Semantically related terms can be 

discovered from statistical analysis of 

corpora.



44

Automatic Global Analysis

• Determine term similarity through a pre-

computed statistical analysis of the 

complete corpus.

• Compute association matrices which 

quantify term correlations in terms of how 

frequently they co-occur.

• Expand queries with statistically most 

similar terms.
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Association Matrix
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Normalized Association Matrix

• Frequency based correlation factor favors 

more frequent terms.

• Normalize association scores:

• Normalized score is 1 if two terms have the 

same frequency in all documents.
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Metric Correlation Matrix

• Association correlation does not account for 

the proximity of terms in documents, just co-

occurrence frequencies within documents.

• Metric correlations account for term 

proximity.
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Vi:  Set of all occurrences of term i in any document.

r(ku,kv): Distance in words between word occurrences ku and kv

( if ku and kv are occurrences in different documents).
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Normalized Metric Correlation Matrix 

• Normalize scores to account for term 

frequencies:
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Query Expansion with Correlation Matrix

• For each term i in query, expand query with 

the n terms, j, with the highest value of cij

(sij).

• This adds semantically related terms in the 

“neighborhood” of the query terms.
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Problems with Global Analysis

• Term ambiguity may introduce irrelevant 

statistically correlated terms.

– “Apple computer”  “Apple red fruit computer”

• Since terms are highly correlated anyway, 

expansion may not retrieve many additional 

documents.
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Automatic Local Analysis

• At query time, dynamically determine similar 

terms based on analysis of top-ranked retrieved 

documents.

• Base correlation analysis on only the “local” set of 

retrieved documents for a specific query.

• Avoids ambiguity by determining similar 

(correlated) terms only within relevant documents.

– “Apple computer” 

“Apple computer Powerbook laptop”



52

Global vs. Local Analysis

• Global analysis requires intensive term 

correlation computation only once at system 

development time.

• Local analysis requires intensive term 

correlation computation for every query at 

run time (although number of terms and 

documents is less than in global analysis).

• But local analysis gives better results.
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Global Analysis Refinements

• Only expand query with terms that are similar to 

all terms in the query.

– “fruit” not added to “Apple computer” since it is far 

from “computer.”

– “fruit” added to “apple pie” since “fruit” close to both 

“apple” and “pie.”

• Use more sophisticated term weights (instead of 

just frequency) when computing term correlations.
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Query Expansion Conclusions

• Expansion of queries with related terms can 

improve performance, particularly recall.

• However, must select similar terms very 

carefully to avoid problems, such as loss of 

precision.


