
1

Query Languages

This material was prepared by Diana Inkpen, University of Ottawa, 2005,

updated 2021. Some of these slides were originally prepared by Raymond

Mooney, University of Texas Austin.

2

Boolean Queries

• Keywords combined with Boolean operators:

– OR: (e1 OR e2)

– AND: (e1 AND e2)

– BUT: (e1 BUT e2) Satisfy e1 but not e2

• Negation only allowed using BUT to allow

efficient use of inverted index by filtering

another efficiently retrievable set.

• Naïve users have trouble with Boolean logic.

3

Boolean Retrieval with Inverted Indices

• Primitive keyword: Retrieve containing

documents using the inverted index.

• OR: Recursively retrieve e1 and e2 and take

union of results.

• AND: Recursively retrieve e1 and e2 and

take intersection of results.

• BUT: Recursively retrieve e1 and e2 and

take set difference of results.

4

“Natural Language” Queries

• Full text queries as arbitrary strings.

• Typically just treated as a bag-of-words for

a vector-space model.

• Typically processed using standard vector-

space retrieval methods.

5

Phrasal Queries

• Retrieve documents with a specific phrase

(ordered list of contiguous words)

– “information theory”

• May allow intervening stop words and/or

stemming.

– “buy camera” matches:

“buy a camera”

“buying the cameras”

etc.

6

Phrasal Retrieval with Inverted Indices

• Must have an inverted index that also stores

positions of each keyword in a document.

• Retrieve documents and positions for each

individual word, intersect documents, and

then finally check for ordered contiguity of

keyword positions.

• Best to start contiguity check with the least

common word in the phrase.

7

Phrasal Search

Find set of documents D in which all keywords (k1…km) in phrase occur

(using AND query processing).

Intitialize empty set, R, of retrieved documents.

For each document, d, in D:

Get array, Pi ,of positions of occurrences for each ki in d

Find shortest array Ps of the Pi’s

For each position p of keyword ks in Ps

For each keyword ki except ks

Use binary search to find a position (p – s + i) in the array Pi

If correct position for every keyword found, add d to R

Return R

8

Proximity Queries

• List of words with specific maximal

distance constraints between terms.

• Example: “dogs” and “race” within 4 words

match “…dogs will begin the race…”

• May also perform stemming and/or not

count stop words.

9

Proximity Retrieval with Inverted Index

• Use approach similar to phrasal search to

find documents in which all keywords are

found in a context that satisfies the

proximity constraints.

• During binary search for positions of

remaining keywords, find closest position

of ki to p and check that it is within

maximum allowed distance.

10

Pattern Matching

• Allow queries that match strings rather than

word tokens.

• Requires more sophisticated data structures

and algorithms than inverted indices to

retrieve efficiently.

11

Simple Patterns

• Prefixes: Pattern that matches start of word.

– “anti” matches “antiquity”, “antibody”, etc.

• Suffixes: Pattern that matches end of word:

– “ix” matches “fix”, “matrix”, etc.

• Substrings: Pattern that matches arbitrary

subsequence of characters.

– “rapt” matches “enrapture”, “velociraptor” etc.

• Ranges: Pair of strings that matches any word

lexicographically (alphabetically) between them.

– “tin” to “tix” matches “tip”, “tire”, “title”, etc.

12

Allowing Errors

• What if query or document contains typos

or misspellings?

• Judge similarity of words (or arbitrary

strings) using:

– Edit distance (Levenstein distance)

– Longest Common Subsequence (LCS)

• Allow proximity search with bound on

string similarity.

13

Edit (Levenstein) Distance

• Minimum number of character deletions,
additions, or replacements needed to make
two strings equivalent.

– “misspell” to “mispell” is distance 1

– “misspell” to “mistell” is distance 2

– “misspell” to “misspelling” is distance 3

• Can be computed efficiently using dynamic
programming in O(mn) time where m and n
are the lengths of the two strings being
compared.

14

Longest Common Subsequence (LCS)

• Length of the longest subsequence of

characters shared by two strings.

• A subsequence of a string is obtained by

deleting zero or more characters.

• Examples:

– “misspell” to “mispell” is 7

– “misspelled” to “misinterpretted” is 7

“mis…p…e…ed”

15

Regular Expressions

• Language for composing complex patterns from
simpler ones.

– An individual character is a regex.

– Union: If e1 and e2 are regexes, then (e1 | e2) is a regex
that matches whatever either e1 or e2 matches.

– Concatenation: If e1 and e2 are regexes, then e1 e2 is a
regex that matches a string that consists of a substring that
matches e1 immediately followed by a substring that
matches e2

– Repetition (Kleene closure): If e1 is a regex, then e1* is a
regex that matches a sequence of zero or more strings that
match e1

16

Regular Expression Examples

• (u|e)nabl(e|ing) matches

– unable

– unabling

– enable

– enabling

• (un|en)*able matches

– able

– unable

– unenable

– enununenable

17

Enhanced Regex’s (Perl)

• Special terms for common sets of characters, such
as alphabetic or numeric or general “wildcard”.

• Special repetition operator (+) for 1 or more
occurrences.

• Special optional operator (?) for 0 or 1
occurrences.

• Special repetition operator for specific range of
number of occurrences: {min,max}.

– A{1,5} One to five A’s.

– A{5,} Five or more A’s

– A{5} Exactly five A’s

18

Perl Regex’s

• Character classes:

– \w (word char) Any alpha-numeric (not: \W)

– \d (digit char) Any digit (not: \D)

– \s (space char) Any whitespace (not: \S)

– . (wildcard) Anything

• Anchor points:

– \b (boundary) Word boundary

– ^ Beginning of string

– $ End of string

19

Perl Regex Examples

• U.S. phone number with optional area code:

– /\b(\(\d{3}\)\s?)?\d{3}-\d{4}\b/

• Email address:

– /\b\S+@\S+(\.com|\.edu|\.gov|\.org|\.net)\b/

Note: Packages available to support Perl regex’s in Java

20

Structural Queries

• Assumes documents have structure that can

be exploited in search.

• Structure could be:

– Fixed set of fields, e.g. title, author, abstract, etc.

– Hierarchical (recursive) tree structure:

chapter

title section title section

title subsection

chapter

book

21

Queries with Structure

• Allow queries for text appearing in specific

fields:

– “nuclear fusion” appearing in a chapter title

• SFQL: Relational database query language

SQL enhanced with “full text” search.

– Select abstract from journal.papers where

author contains “Teller” and

title contains “nuclear fusion” and

date < 1/1/1950

22

Query Operations

Relevance Feedback &

Query Expansion

23

Relevance Feedback

• After initial retrieval results are presented,
allow the user to provide feedback on the
relevance of one or more of the retrieved
documents.

• Use this feedback information to reformulate
the query.

• Produce new results based on reformulated
query.

• Allows more interactive, multi-pass process.

24

Relevance Feedback Architecture

Rankings
IR

System

Document

corpus

Ranked

Documents

1. Doc1

2. Doc2

3. Doc3

.

.
1. Doc1 

2. Doc2 

3. Doc3 

.

.

Feedback

Query

String

Revise

d

Query

ReRanked

Documents

1. Doc2

2. Doc4

3. Doc5

.

.

Query

Reformulation

25

Query Reformulation

• Revise query to account for feedback:

– Query Expansion: Add new terms to query

from relevant documents.

– Term Reweighting: Increase weight of terms in

relevant documents and decrease weight of

terms in irrelevant documents.

• Several algorithms for query reformulation.

26

Query Reformulation for VSR

• Change query vector using vector algebra.

• Add the vectors for the relevant documents

to the query vector.

• Subtract the vectors for the irrelevant docs

from the query vector.

• This adds both positive and negative

weighted terms to the query, as well as

reweighting the initial terms.

27

Optimal Query

• Assume that the relevant set of documents

Cr are known.

• Then the best query that ranks all and only

the relevant queries at the top is:


 



rjrj Cd

j

rCd

j

r

opt d
CN

d
C

q


 11

Where N is the total number of documents.

28

Standard Rochio Method

• Since all relevant documents unknown, just

use the known relevant (Dr) and irrelevant

(Dn) sets of documents and include the

initial query q.






njrj Dd

j

nDd

j

r

m d
D

d
D

qq


 


: Tunable weight for initial query.

: Tunable weight for relevant documents.

: Tunable weight for irrelevant documents.

29

Ide Regular Method

• Since more feedback should perhaps

increase the degree of reformulation, do not

normalize for amount of feedback:






njrj Dd

j

Dd

jm ddqq





: Tunable weight for initial query.

: Tunable weight for relevant documents.

: Tunable weight for irrelevant documents.

30

Ide “Dec Hi” Method

• Bias towards rejecting just the highest

ranked of the irrelevant documents:

)(max jrelevantnon

Dd

jm ddqq
rj


 



  

: Tunable weight for initial query.

: Tunable weight for relevant documents.

: Tunable weight for irrelevant document.

31

Comparison of Methods

• Overall, experimental results indicate no

clear preference for any one of the specific

methods.

• All methods generally improve retrieval

performance (recall & precision) with

feedback.

• Generally just let tunable constants equal 1.

32

Evaluating Relevance Feedback

• By construction, reformulated query will rank

explicitly-marked relevant documents higher and

explicitly-marked irrelevant documents lower.

• Method should not get credit for improvement on

these documents, since it was told their relevance.

• In machine learning, this error is called “testing on

the training data.”

• Evaluation should focus on generalizing to other

un-rated documents.

33

Fair Evaluation of Relevance Feedback

• Remove from the corpus any documents for which

feedback was provided.

• Measure recall/precision performance on the

remaining residual collection.

• Compared to complete corpus, specific

recall/precision numbers may decrease since

relevant documents were removed.

• However, relative performance on the residual

collection provides fair data on the effectiveness

of relevance feedback.

34

Why is Feedback Not Widely Used

• Users sometimes reluctant to provide

explicit feedback.

• Results in long queries that require more

computation to retrieve, and search engines

process lots of queries and allow little time

for each one.

• Makes it harder to understand why a

particular document was retrieved.

35

Pseudo Feedback

• Use relevance feedback methods without

explicit user input.

• Just assume the top m retrieved documents

are relevant, and use them to reformulate

the query.

• Allows for query expansion that includes

terms that are correlated with the query

terms.

36

Pseudo Feedback Architecture

Rankings
IR

System

Document

corpus

Ranked

Documents

1. Doc1

2. Doc2

3. Doc3

.

.

Query

String

Revise

d

Query

ReRanked

Documents

1. Doc2

2. Doc4

3. Doc5

.

.

Query

Reformulation

1. Doc1 

2. Doc2 

3. Doc3 

.

.

Pseudo

Feedback

37

PseudoFeedback Results

• Found to improve performance on TREC

competition ad-hoc retrieval task.

• Works even better if top documents must

also satisfy additional boolean constraints in

order to be used in feedback.

38

Thesaurus

• A thesaurus provides information on

synonyms and semantically related words

and phrases.

• Example:

physician

syn: ||croaker, doc, doctor, MD,

medical, mediciner, medico, ||sawbones

rel: medic, general practitioner,

surgeon

39

Thesaurus-based Query Expansion

• For each term, t, in a query, expand the query with

synonyms and related words of t from the

thesaurus.

• May weight added terms less than original query

terms.

• Generally increases recall.

• May significantly decrease precision, particularly

with ambiguous terms.

– “interest rate”  “interest rate fascinate evaluate”

40

WordNet

• A more detailed database of semantic
relationships between English words.

• Developed by famous cognitive
psychologist George Miller and a team at
Princeton University.

• About 152,059 English words.

• Nouns, adjectives, verbs, and adverbs
grouped into about 115,424 synonym sets
called synsets.

41

WordNet Synset Relationships

• Antonym: front  back

• Attribute: benevolence  good (noun to adjective)

• Pertainym: alphabetical  alphabet (adjective to noun)

• Similar: unquestioning  absolute

• Cause: kill  die

• Entailment: breathe  inhale

• Holonym: chapter  text (part-of)

• Meronym: computer  cpu (whole-of)

• Hyponym: tree  plant (specialization)

• Hypernym: fruit  apple (generalization)

42

WordNet Query Expansion

• Add synonyms in the same synset.

• Add hyponyms to add specialized terms.

• Add hypernyms to generalize a query.

• Add other related terms to expand query.

43

Statistical Thesaurus

• Existing human-developed thesauri are not

easily available in all languages.

• Human thesauri are limited in the type and

range of synonymy and semantic relations

they represent.

• Semantically related terms can be

discovered from statistical analysis of

corpora.

44

Automatic Global Analysis

• Determine term similarity through a pre-

computed statistical analysis of the

complete corpus.

• Compute association matrices which

quantify term correlations in terms of how

frequently they co-occur.

• Expand queries with statistically most

similar terms.

45

Association Matrix

w1 w2 w3 …………………..wn

w1

w2

w3

.

.

wn

c11 c12 c13…………………c1n

c21

c31

.

.

cn1

cij: Correlation factor between term i and term j





Dd

jkikij

k

ffc

fik : Frequency of term i in document k

46

Normalized Association Matrix

• Frequency based correlation factor favors

more frequent terms.

• Normalize association scores:

• Normalized score is 1 if two terms have the

same frequency in all documents.

ijjjii

ij

ij
ccc

c
s




47

Metric Correlation Matrix

• Association correlation does not account for

the proximity of terms in documents, just co-

occurrence frequencies within documents.

• Metric correlations account for term

proximity.

 
 


iu jvVk Vk vu

ij
kkr

c
),(

1

Vi: Set of all occurrences of term i in any document.

r(ku,kv): Distance in words between word occurrences ku and kv

( if ku and kv are occurrences in different documents).

48

Normalized Metric Correlation Matrix

• Normalize scores to account for term

frequencies:

ji

ij

ij
VV

c
s




49

Query Expansion with Correlation Matrix

• For each term i in query, expand query with

the n terms, j, with the highest value of cij

(sij).

• This adds semantically related terms in the

“neighborhood” of the query terms.

50

Problems with Global Analysis

• Term ambiguity may introduce irrelevant

statistically correlated terms.

– “Apple computer”  “Apple red fruit computer”

• Since terms are highly correlated anyway,

expansion may not retrieve many additional

documents.

51

Automatic Local Analysis

• At query time, dynamically determine similar

terms based on analysis of top-ranked retrieved

documents.

• Base correlation analysis on only the “local” set of

retrieved documents for a specific query.

• Avoids ambiguity by determining similar

(correlated) terms only within relevant documents.

– “Apple computer” 

“Apple computer Powerbook laptop”

52

Global vs. Local Analysis

• Global analysis requires intensive term

correlation computation only once at system

development time.

• Local analysis requires intensive term

correlation computation for every query at

run time (although number of terms and

documents is less than in global analysis).

• But local analysis gives better results.

53

Global Analysis Refinements

• Only expand query with terms that are similar to

all terms in the query.

– “fruit” not added to “Apple computer” since it is far

from “computer.”

– “fruit” added to “apple pie” since “fruit” close to both

“apple” and “pie.”

• Use more sophisticated term weights (instead of

just frequency) when computing term correlations.





Qk

iji

j

cQksim),(

54

Query Expansion Conclusions

• Expansion of queries with related terms can

improve performance, particularly recall.

• However, must select similar terms very

carefully to avoid problems, such as loss of

precision.

