Boolean and Vector Space Retrieval Models
Retrieval Models

• A retrieval model specifies the details of:
 – Document representation
 – Query representation
 – Retrieval function

• Determines a notion of relevance.

• Notion of relevance can be binary or continuous (i.e. ranked retrieval).
Classes of Retrieval Models

• Boolean models (set theoretic)
 – Extended Boolean

• Vector space models (statistical/algebraic)
 – Generalized VS
 – Latent Semantic Indexing

• Probabilistic models
Other Model Dimensions

• Logical View of Documents
 – Index terms
 – Full text
 – Full text + Structure (e.g. hypertext)

• User Task
 – Retrieval
 – Browsing
Retrieval Tasks

• **Ad hoc retrieval**: Fixed document corpus, varied queries.

• **Filtering**: Fixed query, continuous document stream.
 – **User Profile**: A model of relative static preferences.
 – Binary decision of relevant/not-relevant.

• **Routing**: Same as filtering but continuously supply ranked lists rather than binary filtering.
Common Preprocessing Steps

• Strip unwanted characters/markup (e.g. HTML tags, punctuation, numbers, etc.).
• Break into tokens (keywords) on whitespace.
• Stem tokens to “root” words
 – computational ➔ comput
• Remove common stopwords (e.g. a, the, it, etc.).
• Detect common phrases (possibly using a domain specific dictionary).
• Build inverted index (keyword ➔ list of docs containing it).
Boolean Model

• A document is represented as a set of keywords.
• Queries are Boolean expressions of keywords, connected by AND, OR, and NOT, including the use of brackets to indicate scope.
 – [[Rio & Brazil] | [Hilo & Hawaii]] & hotel & !Hilton]
• Output: Document is relevant or not. No partial matches or ranking.
Boolean Retrieval Model

• Popular retrieval model because:
 – Easy to understand for simple queries.
 – Clean formalism.

• Boolean models can be extended to include ranking.

• Reasonably efficient implementations possible for normal queries.
Boolean Models – Problems

• Very rigid: AND means all; OR means any.
• Difficult to express complex user requests.
• Difficult to control the number of documents retrieved.
 – *All* matched documents will be returned.
• Difficult to rank output.
 – *All* matched documents logically satisfy the query.
• Difficult to perform relevance feedback.
 – If a document is identified by the user as relevant or irrelevant, how should the query be modified?
Statistical Models

• A document is typically represented by a *bag of words* (unordered words with frequencies).
• Bag = set that allows multiple occurrences of the same element.
• User specifies a set of desired terms with optional weights:
 – Weighted query terms:
 \[Q = < \text{database} 0.5; \text{text} 0.8; \text{information} 0.2 > \]
 – Unweighted query terms:
 \[Q = < \text{database}; \text{text}; \text{information} > \]
 – No Boolean conditions specified in the query.
Statistical Retrieval

• Retrieval based on *similarity* between query and documents.
• Output documents are ranked according to similarity to query.
• Similarity based on occurrence *frequencies* of keywords in query and document.
• Automatic relevance feedback can be supported:
 – Relevant documents “added” to query.
 – Irrelevant documents “subtracted” from query.
Issues for Vector Space Model

- How to determine important words in a document?
 - Word sense?
 - Word n-grams (and phrases, idioms, …) → terms
- How to determine the degree of importance of a term within a document and within the entire collection?
- How to determine the degree of similarity between a document and the query?
- In the case of the web, what is a collection and what are the effects of links, formatting information, etc.?
The Vector-Space Model

- Assume t distinct terms remain after preprocessing; call them index terms or the vocabulary.
- These “orthogonal” terms form a vector space.
 \[\text{Dimension} = t = |\text{vocabulary}| \]
- Each term, i, in a document or query, j, is given a real-valued weight, w_{ij}.
- Both documents and queries are expressed as t-dimensional vectors:
 \[d_j = (w_{1j}, w_{2j}, \ldots, w_{tj}) \]
Example:

\[D_1 = 2T_1 + 3T_2 + 5T_3 \]
\[D_2 = 3T_1 + 7T_2 + T_3 \]
\[Q = 0T_1 + 0T_2 + 2T_3 \]

- Is \(D_1 \) or \(D_2 \) more similar to \(Q \)?
- How to measure the degree of similarity? Distance? Angle? Projection?
Document Collection

- A collection of n documents can be represented in the vector space model by a term-document matrix.
- An entry in the matrix corresponds to the “weight” of a term in the document; zero means the term has no significance in the document or it simply doesn’t exist in the document.

\[
\begin{pmatrix}
 T_1 & T_2 & \ldots & T_t \\
 D_1 & w_{11} & w_{21} & \ldots & w_{t1} \\
 D_2 & w_{12} & w_{22} & \ldots & w_{t2} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 D_n & w_{1n} & w_{2n} & \ldots & w_{tn}
\end{pmatrix}
\]
Term Weights: Term Frequency

- More frequent terms in a document are more important, i.e. more indicative of the topic.
 \[f_{ij} = \text{frequency of term } i \text{ in document } j \]

- May want to normalize term frequency (tf) across the entire corpus:
 \[tf_{ij} = f_{ij} / \max_i \{f_{ij}\} \]
Term Weights: Inverse Document Frequency

- Terms that appear in many *different* documents are *less* indicative of overall topic.

\[df_i = \text{document frequency of term } i \]
\[= \text{number of documents containing term } i \]
\[idf_i = \text{inverse document frequency of term } i, \]
\[= \log_2 \left(\frac{N}{df_i} \right) \]

\((N: \text{total number of documents})\)

- An indication of a term’s *discrimination* power.
- Log used to dampen the effect relative to \(tf\).
TF-IDF Weighting

• A typical combined term importance indicator is *tf-idf weighting*:
 \[w_{ij} = \text{tf}_{ij} \text{ idf}_i = \text{tf}_{ij} \log_2 (N/ df_i) \]

• A term occurring frequently in the document but rarely in the rest of the collection is given high weight.

• Many other ways of determining term weights have been proposed.

• Experimentally, *tf-idf* has been found to work well.
Computing TF-IDF -- An Example

Given a document containing terms with given frequencies:

A(3), B(2), C(1)

Assume collection contains 10,000 documents and
document frequencies of these terms are:

A(50), B(1300), C(250)

Then:

A: tf = 3/3; idf = log(10000/50) = 5.3; tf-idf = 5.3
B: tf = 2/3; idf = log(10000/1300) = 2.0; tf-idf = 1.3
C: tf = 1/3; idf = log(10000/250) = 3.7; tf-idf = 1.2
Query Vector

• Query vector is typically treated as a document and also tf-idf weighted.
• Alternative is for the user to supply weights for the given query terms.
Similarity Measure

• A **similarity measure** is a function that computes the *degree of similarity* between two vectors.

• Using a similarity measure between the query and each document:
 – It is possible to rank the retrieved documents in the order of presumed relevance.
 – It is possible to enforce a certain threshold so that the size of the retrieved set can be controlled.
Similarity Measure - Inner Product

• Similarity between vectors for the document d_i and query q can be computed as the vector inner product:

$$\text{sim}(d_j, q) = d_j \cdot q = \sum_{i=1}^{t} w_{ij} \cdot w_{iq}$$

where w_{ij} is the weight of term i in document j and w_{iq} is the weight of term i in the query.

• For binary vectors, the inner product is the number of matched query terms in the document (size of intersection).

• For weighted term vectors, it is the sum of the products of the weights of the matched terms.
Properties of Inner Product

• The inner product is unbounded.

• Favors long documents with a large number of unique terms.

• Measures how many terms matched but not how many terms are *not* matched.
Inner Product -- Examples

Binary:

- $D = 1, 1, 1, 0, 1, 1, 0$
- $Q = 1, 0, 1, 0, 0, 1, 1$

Size of vector = size of vocabulary = 7
0 means corresponding term not found in document or query

$\text{sim}(D, Q) = 3$

Weighted:

$D_1 = 2T_1 + 3T_2 + 5T_3$
$D_2 = 3T_1 + 7T_2 + 1T_3$
$Q = 0T_1 + 0T_2 + 2T_3$

$\text{sim}(D_1, Q) = 2*0 + 3*0 + 5*2 = 10$
$\text{sim}(D_2, Q) = 3*0 + 7*0 + 1*2 = 2$
Cosine Similarity Measure

- Cosine similarity measures the cosine of the angle between two vectors.
- Inner product normalized by the vector lengths.

\[
\text{CosSim}(d_j, q) = \frac{\vec{d}_j \cdot \vec{q}}{|\vec{d}_j| |\vec{q}|} = \frac{\sum_{i=1}^{t} (w_{ij} \cdot w_{iq})}{\sqrt{\sum_{i=1}^{t} w_{ij}^2} \sqrt{\sum_{i=1}^{t} w_{iq}^2}}
\]

\[
D_1 = 2T_1 + 3T_2 + 5T_3 \quad \text{CosSim}(D_1, Q) = 10 / \sqrt{(4+9+25)(0+0+4)} = 0.81
\]

\[
D_2 = 3T_1 + 7T_2 + 1T_3 \quad \text{CosSim}(D_2, Q) = 2 / \sqrt{(9+49+1)(0+0+4)} = 0.13
\]

\[
Q = 0T_1 + 0T_2 + 2T_3
\]

\[
D_1 \text{ is 6 times better than } D_2 \text{ using cosine similarity but only 5 times better using inner product.}
\]
Naïve Implementation

Convert all documents in collection D to tf-idf weighted vectors, d_j, for keyword vocabulary V. Convert query to a tf-idf-weighted vector q.
For each d_j in D do

Compute score $s_j = \cosSim(d_j, q)$

Sort documents by decreasing score.
Present top ranked documents to the user.

Time complexity: $O(|V| \cdot |D|)$
Bad for large V & D !
$|V| = 10,000; \ |D| = 100,000; |V| \cdot |D| = 1,000,000,000$
Comments on Vector Space Models

- Simple, mathematically based approach.
- Considers both local (tf) and global (idf) word occurrence frequencies.
- Provides partial matching and ranked results.
- Tends to work quite well in practice despite obvious weaknesses.
- Allows efficient implementation for large document collections.
Problems with Vector Space Model

- Missing semantic information (e.g. word sense).
- Missing syntactic information (e.g. phrase structure, word order, proximity information).
- Assumption of term independence (e.g. ignores synonymy).
- Lacks the control of a Boolean model (e.g., requiring a term to appear in a document).
 - Given a two-term query “A B”, may prefer a document containing A frequently but not B, over a document that contains both A and B, but both less frequently.
Exercise

The corpus C consists in the following three documents:

- d1: “new york times”
- d2: “new york post”
- d3: “los angeles times”

1. Assuming that the term frequencies are normalized by the maximum frequency in a given document, calculate the tf-idf scores for all the terms in C. Assume the words in the vectors are ordered alphabetically.

2. Given the following query: “new new times”, calculate the tf-idf vector for the query, and compute the score of each document in C relative to this query, using the cosine similarity measure. Assume that term frequencies are normalized by the maximum frequency in a given query.