Advanced IR models

Probabilistic model Latent semantic indexing

Probabilistic Model

- An initial set of documents is retrieved (somehow)
- User inspects these docs looking for the relevant ones (only top 10-20) (we see later that we eliminate this manual step in the actual probabilistic model)
- IR system uses this info to refine description of ideal answer set
- By repeting this process, description of the ideal answer set will improve
- Description of ideal answer set is modeled in probabilistic terms

Probabilistic Ranking Principle

- Given a user query q and a document d_j, the probabilistic model estimates the probability that the user will find the document d_i relevant.
- The model assumes that probability of relevance depends on the query and the document representations only.
- Ideal answer set is referred to as *R*.
- Documents in the set *R* are predicted to be relevant.
 - how to compute probabilities?
 - what is the sample space?

- Probabilistic ranking computed as:
 - $-sim(q,d_j) = P(d_j relevant-to q) / P(d_j non-relevant-to q)$
 - How to read this? "Maximize the number of relevant documents, minimize the number of irrelevant documents"
 - This is the odds of the document dj being relevant
- Definition:
 - $-w_{ij} \in \{0,1\}$
 - $-P(R / d_j)$: probability that document d_j is relevant
 - $-P(\neg R | d_i)$: probability that d_i is not relevant
 - Use Bayes Rule: P(A|B) P(B) = P(B|A)P(A)

•
$$sim(d_j,q) = P(R \mid d_j) / P(\neg R \mid d_j)$$

$$= \frac{[P(d_j \mid R) * P(R)]}{[P(d_j \mid \neg R) * P(\neg R)]}$$

$$\sim \frac{P(d_j \mid R)}{P(d_j \mid \neg R)}$$

- P(d_j | R): probability of randomly selecting the document d_j from the set R of relevant documents
- Note that P(R) and P(¬R) are the same for all documents in the collection for the given query

•
$$sim(d_j,q) \sim \frac{P(d_j \mid R)}{P(d_j \mid \neg R)}$$

~ $\frac{[\Pi P(k_i \mid R)] * [\Pi P(\neg k_i \mid R)]}{[\Pi P(k_i \mid \neg R)] * [\Pi P(\neg k_i \mid \neg R)]}$

- P(k_i | R) : probability that the index term k_i is present in a document randomly selected from the set R of relevant documents
- Based on independence assumption
 - Strong assumption!
 - In real life, does not always hold

• $sim(dj,q) \sim log [\Pi P(k_i | R)] * [\Pi P(\neg k_i | R)]$ [$\Pi P(k_i | \neg R)$] * [$\Pi P(\neg k_i | \neg R)$]

- $\sim \qquad [\log \Pi \underline{P(k_i \mid R)} + \log \Pi \underline{P(k_i \mid \neg R)}]$ $P(\neg k_i \mid R) \qquad \qquad P(\neg k_i \mid \neg R)$
- $\sim \sum w_{iq} * w_{ij} * (\log \frac{P(k_i \mid R)}{P(\neg k_i \mid R)} + \log \frac{P(k_i \mid \neg R)}{P(\neg k_i \mid R)})$

where $P(\neg k_i | R) = 1 - P(k_i | R)$ $P(\neg k_i | \neg R) = 1 - P(k_i | \neg R)$

The Initial Ranking

• $sim(d_j,q) \sim$

$$\sim \sum w_{iq} * w_{ij} * (\log \frac{P(k_i \mid R)}{P(\neg k_i \mid R)} + \log \frac{P(k_i \mid \neg R)}{P(\neg k_i \mid R)})$$

- Probabilities $P(k_i | R)$ and $P(k_i | \neg R)$?
- Estimates based on assumptions:
 - $-P(k_i | R) = 0.5$
 - $P(k_i \mid \neg R) = n_i / N$

where n_i is the number of docs that contain k_i

- Use this initial guess to retrieve an initial ranking
- Improve upon this initial ranking

Improving the Initial Ranking

• $sim(d_j,q) \sim \sum_{i=1}^{n} w_{iq} * w_{ij} * (log \underline{P(k_i | R)} + log \underline{P(k_i | \neg R)})$ $P(\neg k_i | R) \qquad P(\neg k_i | \neg R)$

- V : set of docs initially retrieved
- $-V_i$: subset of docs retrieved that contain k_i
- Reevaluate estimates:

$$-P(\mathbf{k}_{i} | \mathbf{R}) = \underbrace{\mathbf{V}_{i}}_{\mathbf{V}}$$

$$-P(k_i \mid \neg R) = \underline{n_i - V_i}$$

N - V

• Repeat recursively

Improving the Initial Ranking

•
$$sim(d_j,q) \sim \sum_{n \in \mathbb{N}} w_{iq} * w_{ij} * (log \quad \underline{P(k_i \mid R)}_{P(\neg k_i \mid R)} + log \quad \underline{P(k_i \mid \neg R)}_{P(\neg k_i \mid R)})$$

 $P(\neg k_i \mid R) \qquad P(\neg k_i \mid \neg R)$

• To avoid problems with V=1 and $V_i=0$:

$$-P(k_i | R) = \frac{V_i + n_i / N}{V + 1}$$
$$-P(k_i | \neg R) = \frac{n_i - V_i + n_i / N}{N - V + 1}$$

- (replace n_i/N with 0.5)

Okapi Formula (BM25) (Robertson and Sparck-Jones, 1976)

$$w_{i,j} = \frac{tf_{i,j} \log(\frac{N - df_i + 0.5}{dfi + 0.5})}{k_1 \times ((1 - b) + b \frac{dl}{avdl}) + tf_{i,j}}$$

N = number of documents in the collection

 $tf_{i,j} = frequency of term i id document j$

 df_i = number of documents that contain term j

dl = length of document j

avdl = average length over documents

k1 and b are parameters

• Use this weight in VSM or plug in the probabilistic formula.

Latent Semantic Indexing (LSI)

- Approach: Treat word-to-document association data as an unreliable estimate of a larger set of applicable words lying on 'latent' dimensions.
- Goal: Cluster similar documents which may share no terms in a low-dimensional subspace (improve recall).
- Preprocessing: Compute low-rank approximation to the original term-by-document (sparse) matrix
- Vector Space Model: Encode terms and documents using factors derived from SVD
- Evaluation: Rank similarity of terms and docs to query via Euclidean distances or cosines

Singular Value Decomposition Encoding

- Computes a truncated SVD of the document-term matrix, using the singular vectors as axes of the lower dimensional space
- A_k is the best rank-k approximation to the termby-document matrix A
- Want minimum number of factors (k) that discriminate most concepts
- In practice, k ranges between 100 and 300 but could be much larger.
- Choosing optimal k for different collections is challenging.

Strengths and weaknesses of LSI

- Strong formal framework. Completely automatic. No stemming required. Allows misspellings
- 'Conceptual IR' recall improvement: one can retrieve relevant documents that do not contain any search terms
- Calculation of LSI is expensive
- Continuous normal-distribution-based methods not really appropriate for count data
- Often improving precision is more important: need query and word sense disambiguation