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Advanced IR models 

 
 

 

Probabilistic model 

Latent semantic indexing 
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Probabilistic Model 

• An initial set of documents is retrieved (somehow)  

• User inspects these docs looking for the relevant ones 

(only top 10-20)  (we see later that we eliminate this manual 

step in the actual probabilistic model) 

• IR system uses this info to refine description of ideal 

answer set 

• By repeting this process, description of the ideal answer 

set will improve 

• Description of ideal answer set is modeled in 

probabilistic terms 
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Probabilistic Ranking Principle 

• Given a user query q and a document dj, the probabilistic 

model estimates the probability that the user will find the 

document dj relevant.  

• The model assumes that probability of relevance depends 

on the query and the document representations only. 

•  Ideal answer set is referred to as R.  

• Documents in the set R are predicted to be relevant.  

– how to compute probabilities? 

– what is the sample space? 
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The Ranking 

• Probabilistic ranking computed as: 

– sim(q,dj)  =  P(dj relevant-to q) / P(dj non-relevant-to q) 

• How to read this? “Maximize the number of relevant 

documents, minimize the number of irrelevant documents” 

– This is the odds of the document dj being relevant 

• Definition: 

– wij    {0,1} 

– P(R | dj) : probability that document dj is relevant 

– P(R | dj) : probability that di is not relevant 

– Use Bayes Rule: P(A|B) P(B) = P(B|A)P(A) 
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The Ranking 

• sim(dj,q)  = P(R | dj) /  P(R | dj)     

                    = [P(dj | R)   *    P(R)]                                        

            [P(dj | R) * P(R)]    

           ~    P(dj | R)                       

              P(dj | R)      

• P(dj | R): probability of randomly selecting the document 

dj from the set R of relevant documents 

• Note that P(R) and P(R) are the same for all documents 

in the collection for the given query  
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The Ranking 

• sim(dj,q) ~    P(dj | R)                       

              P(dj | R)     

  ~    [   P(ki | R)]    *    [   P(ki | R)]       

          [  P(ki | R)]  *  [   P(ki | R)]

  

• P(ki | R) : probability that the index term ki is present in a 

document randomly selected from the set R of relevant 

documents 

• Based on independence assumption 

– Strong assumption!  

• In real life, does not always hold 
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The Ranking 

• sim(dj,q) ~   log  [   P(ki | R)]    *    [   P(ki | R)]                      

               [   P(ki | R)]  *  [   P(ki | R)] 

     

    ~         [ log      P(ki | R)      +   log     P(ki | R)    ]   

             P(ki | R)                    P(ki | R)  

  

    ~    wiq * wij * (log   P(ki | R)    +  log P(ki | R)   )  

                                P(ki | R)           P(ki | R) 

             

where    P(ki | R)   = 1 - P(ki | R)    

        P(ki | R) = 1 - P(ki | R) 
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The Initial Ranking 

• sim(dj,q) ~           

    ~    wiq * wij * (log   P(ki | R)    + log P(ki | R)   ) 

            P(ki | R)      P(ki | R) 

• Probabilities  P(ki | R)  and  P(ki | R) ? 

• Estimates based on assumptions: 

– P(ki | R) = 0.5 

– P(ki | R)  =  ni / N      

   where  ni  is the number of docs that contain ki 

– Use this initial guess to retrieve an initial ranking 

– Improve upon this initial ranking 
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Improving the Initial Ranking 

• sim(dj,q) ~          

 ~     wiq * wij * (log   P(ki | R)    + log P(ki | R)   ) 

                     P(ki | R)           P(ki | R) 

– V : set of docs initially retrieved 

– Vi : subset of docs retrieved that contain ki 

• Reevaluate estimates:  

– P(ki | R)    =   Vi        

   V 

– P(ki | R)  =  ni - Vi      

            N - V 

• Repeat recursively      
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Improving the Initial Ranking 

• sim(dj,q) ~          

 ~     wiq * wij * (log   P(ki | R)    + log P(ki | R)   ) 

            P(ki | R)          P(ki | R) 

• To avoid problems with  V=1  and  Vi=0:  

– P(ki | R)    =   Vi + ni/N       

    V  +  1 

– P(ki | R)  =  ni - Vi + ni/N   

    N - V + 1 

– (replace ni/N with 0.5)       
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Okapi Formula (BM25) (Robertson and Sparck-Jones, 1976) 
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N = number of documents in the collection 

tfi,j = frequency of term i id document j 

dfi =  number of documents that contain term j 

dl = length of document j 

avdl = average length over documents 

k1 and b are parameters 

  Use this weight in VSM or plug in the probabilistic formula. 
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Latent Semantic Indexing (LSI) 

• Approach: Treat word-to-document association 
data as an unreliable estimate of a larger set of 
applicable words lying on ‘latent’ dimensions.  

• Goal: Cluster similar documents which may share 
no terms in a low-dimensional subspace (improve 
recall). 

• Preprocessing: Compute low-rank approximation 
to the original term-by-document (sparse) matrix  

• Vector Space Model: Encode terms and 
documents using factors derived from SVD  

• Evaluation: Rank similarity of terms and docs to 
query via Euclidean distances or cosines  
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Singular Value Decomposition Encoding 

 

• Computes a truncated SVD of the document-term 
matrix, using the singular vectors as axes of the 
lower dimensional space 

• Ak is the best rank-k approximation to the term-
by-document matrix A  

• Want minimum number of factors (k) that 
discriminate most concepts 

• In practice, k ranges between 100 and 300 but 
could be much larger. 

• Choosing optimal k for different collections is 
challenging. 
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Strengths and weaknesses of LSI 

• Strong formal framework. Completely automatic. No 
stemming required. Allows misspellings  

• ‘Conceptual IR’ recall improvement: one can retrieve 
relevant documents that do not contain any search 
terms  

• Calculation of LSI is expensive  

• Continuous normal-distribution-based methods not 
really appropriate for count data  

• Often improving precision is more important: need 
query and word sense disambiguation  


