
1

Advanced IR models

Probabilistic model

Latent semantic indexing

2

Probabilistic Model

• An initial set of documents is retrieved (somehow)

• User inspects these docs looking for the relevant ones

(only top 10-20) (we see later that we eliminate this manual

step in the actual probabilistic model)

• IR system uses this info to refine description of ideal

answer set

• By repeting this process, description of the ideal answer

set will improve

• Description of ideal answer set is modeled in

probabilistic terms

3

Probabilistic Ranking Principle

• Given a user query q and a document dj, the probabilistic

model estimates the probability that the user will find the

document dj relevant.

• The model assumes that probability of relevance depends

on the query and the document representations only.

• Ideal answer set is referred to as R.

• Documents in the set R are predicted to be relevant.

– how to compute probabilities?

– what is the sample space?

4

The Ranking

• Probabilistic ranking computed as:

– sim(q,dj) = P(dj relevant-to q) / P(dj non-relevant-to q)

• How to read this? “Maximize the number of relevant

documents, minimize the number of irrelevant documents”

– This is the odds of the document dj being relevant

• Definition:

– wij {0,1}

– P(R | dj) : probability that document dj is relevant

– P(R | dj) : probability that di is not relevant

– Use Bayes Rule: P(A|B) P(B) = P(B|A)P(A)

5

The Ranking

• sim(dj,q) = P(R | dj) / P(R | dj)

 = [P(dj | R) * P(R)]

 [P(dj | R) * P(R)]

 ~ P(dj | R)

 P(dj | R)

• P(dj | R): probability of randomly selecting the document

dj from the set R of relevant documents

• Note that P(R) and P(R) are the same for all documents

in the collection for the given query

6

The Ranking

• sim(dj,q) ~ P(dj | R)

 P(dj | R)

 ~ [P(ki | R)] * [P(ki | R)]

 [P(ki | R)] * [P(ki | R)]

• P(ki | R) : probability that the index term ki is present in a

document randomly selected from the set R of relevant

documents

• Based on independence assumption

– Strong assumption!

• In real life, does not always hold

7

The Ranking

• sim(dj,q) ~ log [P(ki | R)] * [P(ki | R)]

 [P(ki | R)] * [P(ki | R)]

 ~ [log P(ki | R) + log P(ki | R)]

 P(ki | R) P(ki | R)

 ~ wiq * wij * (log P(ki | R) + log P(ki | R))

 P(ki | R) P(ki | R)

where P(ki | R) = 1 - P(ki | R)

 P(ki | R) = 1 - P(ki | R)

8

The Initial Ranking

• sim(dj,q) ~

 ~ wiq * wij * (log P(ki | R) + log P(ki | R))

 P(ki | R) P(ki | R)

• Probabilities P(ki | R) and P(ki | R) ?

• Estimates based on assumptions:

– P(ki | R) = 0.5

– P(ki | R) = ni / N

 where ni is the number of docs that contain ki

– Use this initial guess to retrieve an initial ranking

– Improve upon this initial ranking

9

Improving the Initial Ranking

• sim(dj,q) ~

 ~ wiq * wij * (log P(ki | R) + log P(ki | R))

 P(ki | R) P(ki | R)

– V : set of docs initially retrieved

– Vi : subset of docs retrieved that contain ki

• Reevaluate estimates:

– P(ki | R) = Vi

 V

– P(ki | R) = ni - Vi

 N - V

• Repeat recursively

10

Improving the Initial Ranking

• sim(dj,q) ~

 ~ wiq * wij * (log P(ki | R) + log P(ki | R))

 P(ki | R) P(ki | R)

• To avoid problems with V=1 and Vi=0:

– P(ki | R) = Vi + ni/N

 V + 1

– P(ki | R) = ni - Vi + ni/N

 N - V + 1

– (replace ni/N with 0.5)

11

Okapi Formula (BM25) (Robertson and Sparck-Jones, 1976)

ji

i
ji

ji

tf
avdl

dl
bbk

dfi

dfN
tf

w

,1

,

,

))1((

)
5.0

5.0
log(

N = number of documents in the collection

tfi,j = frequency of term i id document j

dfi = number of documents that contain term j

dl = length of document j

avdl = average length over documents

k1 and b are parameters

 Use this weight in VSM or plug in the probabilistic formula.

12

Latent Semantic Indexing (LSI)

• Approach: Treat word-to-document association
data as an unreliable estimate of a larger set of
applicable words lying on ‘latent’ dimensions.

• Goal: Cluster similar documents which may share
no terms in a low-dimensional subspace (improve
recall).

• Preprocessing: Compute low-rank approximation
to the original term-by-document (sparse) matrix

• Vector Space Model: Encode terms and
documents using factors derived from SVD

• Evaluation: Rank similarity of terms and docs to
query via Euclidean distances or cosines

13

Singular Value Decomposition Encoding

• Computes a truncated SVD of the document-term
matrix, using the singular vectors as axes of the
lower dimensional space

• Ak is the best rank-k approximation to the term-
by-document matrix A

• Want minimum number of factors (k) that
discriminate most concepts

• In practice, k ranges between 100 and 300 but
could be much larger.

• Choosing optimal k for different collections is
challenging.

14

Strengths and weaknesses of LSI

• Strong formal framework. Completely automatic. No
stemming required. Allows misspellings

• ‘Conceptual IR’ recall improvement: one can retrieve
relevant documents that do not contain any search
terms

• Calculation of LSI is expensive

• Continuous normal-distribution-based methods not
really appropriate for count data

• Often improving precision is more important: need
query and word sense disambiguation

