
1

Basic Tokenizing,

Indexing, and

Implementation of

Vector-Space Retrieval

2

Naïve Implementation

Convert all documents in collection D to tf-idf
weighted vectors, dj, for keyword vocabulary V.

Convert query to a tf-idf-weighted vector q.

For each dj in D do

 Compute score sj = cosSim(dj, q)

Sort documents by decreasing score.

Present top ranked documents to the user.

Time complexity: O(|V|·|D|) Bad for large V & D !

|V| = 10,000; |D| = 100,000; |V|·|D| = 1,000,000,000

3

Practical Implementation

• Based on the observation that documents

containing none of the query keywords do

not affect the final ranking

• Try to identify only those documents that

contain at least one query keyword

• Actual implementation of an inverted index

4

Step 1: Preprocessing

• Implement the preprocessing functions:

– For tokenization

– For stop word removal

– For stemming

• Input: Documents that are read one by one

from the collection

• Output: Tokens to be added to the index

– No punctuation, no stop-words, stemmed

5

Step 2: Indexing

• Build an inverted index, with an entry for

each word in the vocabulary

• Input: Tokens obtained from the

preprocessing module

• Output: An inverted index for fast access

6

Step 2 (cont’d)

• Many data structures are appropriate for fast

access

– B-trees, sparse lists, hashtables

• We need:

– One entry for each word in the vocabulary

– For each such entry:

• Keep a list of all the documents where it appears

together with the corresponding frequency  TF

– For each such entry, keep the total number of

documents where the word occurred:

•  IDF

7

Step 2 (cont’d)

system

computer

database

science D2, 4

D5, 2

D1, 3

D7, 4

Index terms df

3

2

4

1

Dj, tfj

Index file lists

  

8

Step 2 (cont’d)

• Term frequencies and DF for each token can
be computed in one pass

• Cosine similarity also requires the lengths of
the document vectors.

• Might need a second pass (through document
collection or the inverted index) to compute
document vector lengths.

9

Step 2 (cont’d)

– Remember the weight of a token is: TF * IDF

– Therefore, must wait until IDF’s are known
(and therefore until all documents are indexed)
before document lengths can be determined.

– Remember that the length of a document vector
is the square-root of sum of the squares of the
weights of its tokens.

• Do a second pass over all documents: keep
a list or hashtable with all document id-s,
and for each document determine the length
of its vector.

10

Time Complexity of Indexing

• Complexity of creating vector and indexing

a document of n tokens is O(n).

• So indexing m such documents is O(m n).

• Computing token IDFs can be done during

the same first pass

• Computing vector lengths is also O(m n).

• Complete process is O(m n), which is also

the complexity of just reading in the corpus.

11

Step 3: Retrieval

• Use inverted index (from step 2) to find the
limited set of documents that contain at least
one of the query words.

• Incrementally compute cosine similarity of
each indexed document as query words are
processed one by one.

• To accumulate a total score for each retrieved
document, store retrieved documents in a
hashtable, where the document id is the key,
and the partial accumulated score is the value.

12

Step 3 (cont’d)

• Input: Query and Inverted Index (from
Step2)

• Output: Similarity values between query
and documents

13

Step 4: Ranking

• Sort the hashtable including the retrieved

documents based on the value of cosine

similarity

• Return the documents in descending order of

their relevance

• Input: Similarity values between query and

documents

• Output: Ranked list of documented in

reversed order of their relevance

14

What weighting methods?

• Weights applied to both document terms and

query terms

• Direct impact on the final ranking

• Direct impact on the results

• Direct impact on the quality of IR system

15

Standard Evaluation Measures

TP FN

FP TN

n2 = TP + FP

n1 = TP + FN

N

relevant

not relevant

retrieved not retrieved

Starts with a CONTINGENCY table for each query

16

Precision and Recall

Recall:

Precision:

TP

TP+FP

TP + FN

TP

From all the documents that are relevant out there,

how many did the IR system retrieve?

From all the documents that are retrieved by the IR system,

how many are relevant?

