
1

1

CSI 2165 Winter 2006

Diana Inkpen
SITE

University of Ottawa

Part III

2

Prolog – Part III

• Input and output

• Prolog databases

• Abstract data structures
– Tree, stacks, queues, graphs

3

Character Input

• get(Char)
– Reads the next character from the standard input device

(the keyboard) skipping non-printing characters
(blanks,tabs, etc)

– Unifies the ASCII value of the character with Char
? - get(Char).
A
Char = 65
? - get(Char).

A % spaces before A
Char = 65

4

Character Input

• get0(Char)
– Reads the next character from the standard input device

(the keyboard) without skipping non-printing
characters

– Unifies the ASCII value of the character with Char
? - get0(Char).
A
Char = 65
? - get0(Char).

% here I typed a space
Char = 32

5

Character Input - Example

• Reading a sentence:

get_sentence(Sentence) :-
get0(FirstChar),
get_characters(FirstChar, Sentence).

get_characters(46,[46]) :- !. %46 is the ASCII code for ‘.’
get_characters(Char, [Char|RestOfSentence]) :-

get0(NextChar),
get_characters(NextChar, RestOfSentence).

6

name/2

• name(Atom, List)
– converts an atom to a list of ASCII values, or vice versa
– converts a list of ASCII values to an atom

?- name(yong, YongList).
YongList = [121, 111, 110, 103] ;

? - name(Atom,[65, 66]).
Atom = ‘AB’

? - get_sentence(S), name(A, S).

2

7

Character Output

• put(Char) - writes Char to the standard output device.
– Where C is the ASCII code of the character to be output.

?- put(65), put(66), put(67).
ABC

8

Term Input

• read(Term) - reads a term from the standard input device
– The Term will match the input term.

? - read(X).
a(b,c,[atom]).
X = a(b,c,[atom])

? - read(X), functor(X, F, A).
stru(arg,[1,2,3],argthree).
X = stru(arg,[1,2,3],argthree)
F = stru
A = 3

? - read(X).
4.2E+01.
X = 42

? - read(X), Y is X.
3 * 2 + 1.
X = 3 * 2 + 1
Y = 7

9

Term Output

• write(Term) - writes the term Term to the standard output device

? - write(‘hello world!’).
hello world!

? - write(4.2E+01).
42.0

? - write([1,2,3,4]).
[1,2,3,4]

• nl - writes a newline to the standard output device
? - nl, write(‘hello world!’), nl.

hello world!

yes 10

Input/Output - Example

likes(john, apples).
likes(john,beer).
likes(john,hockey).

nice_writing :-
likes(X,Y), write_nicely(likes, X, Y), fail.

nice_writing.

write_nicely(Functor, X, Y) :- convert(X, NewX), write(NewX),
write(' '), write(Functor), write(' '), write(Y), write('.'), nl, !.

convert(X, NewX) :- name(X,[First|Rest]),
upper(First, Capital), name(NewX,[Capital|Rest]).

upper(X,Y) :- Y is X - 32.

11

Input/Output - Redirecting

• Redirecting standard output:
– tell(Filename) - opens the file named Filename for writing and

makes it the current output file (instead of the standard out)
– told - closes the file that was opened for writing by tell/1.

• Redirecting standard input:
– see(Filename) - opens the file named Filename for reading and

makes it the current input file (instead of the standard in).
– seen - ends input from the file opened by see/1 and closes the file

?- see('facts.pl'), tell('newfacts.pl'), write_facts, seen, told.

write_facts :- read(Fact), Fact =.. [Name, X, Y],
write_nicely(Name, X, Y), write_facts.

write_facts.
12

Explicit File Input/Output

• open(Handle, Filename, Access) → opens the file
named Filename. Access can be:
– r → read
– w → write
– a → append
– rw → read/write
– ra → read/append

• create(Handle, Filename) → opens a new file (whose
name will be Filename) for writing. If a file named Filename
already exists, the new file will overwrite the existing file

• close(Filename) → closes the file whose name is Filename

3

13

Reading Programs

• consult(Filename) - reads a program from a file
– effect: all clauses in the file Filename are read and will

be used by Prolog when answering further questions
from the user.

– if another file is ‘consulted’ at some later time during
the same session, clauses from this new file are simply
added at the end of the current set of clauses.

• reconsult(Filename) - similar to consult
– effect: clauses in the file Filename replace existing

clauses (if any).

14

The Prolog Database

• The facts and rules (clauses) in a Prolog program are often
referred to as the Prolog Database. Querying the Prolog
program is analogous to querying a database.

• All the Prolog programs we have seen so far have been
static databases: the facts and rules are entered by the
programmer before execution, and remain unchanged
during execution.

• There are built-in predicates that allow us to modify the
database dynamically: assert/1 and retract/1

Note: assert/1 and retract/1 affect only the working
memory of Prolog, not your program file

15

Assert

• This built in predicate allows us to add clauses to the Prolog
Database during execution.

• There are three forms for this predicate:
– assert/1 → adds a clause at the end of the database
– asserta/1 → adds a clause at the beginning of the database
– assertz/1 → adds a clause at the end of the database

16

Assert

• Example(Demo): start SWI-Prolog and try the following.

?- listing.
?- assert(happy(mia)).
?- listing.
?- assert(happy(vincent)).
?- assert(happy(mike)).
?- assert(happy(butch)).
?- assert(happy(vincent)).
?- listing.
?- assert(naïve(X) :- happy(X)).
?- listing.

17

Retract

• This predicate allows us to delete clauses. A handy feature
of retract/1 is that it will instantiate any uninstantiated
variables in its argument.

• It has only one form: retract/1 → it will retract the first
clause that matches its argument.

• It is backtrack-able when you use variables!

18

Retract

• Example(Demo-cont.):

?- retract(happy(mike)).
?- listing.
?- retract(happy(vincent)).
?- listing.
?- retract(naïve(X) :- happy(X)).
?- listing.

4

19

Assert - Example

addition_table(A) :-
member(B, A),
member(C, A),
D is B + C,
assert(sum(B, C, D)),
fail.

?- addition_table([0,1,2,3,4,5,6,7,8,9]).
?- listing.

What if we don’t have “fail”?

?- retract(sum(X, Y, Z). Or
?- retract(sum(X, Y, Z), fail.

20

Find and Keep

• How can we find and keep all the solutions to some query?

– Find
• use ‘;’ – it is manual
• use ‘fail’ - at each step the variables become

uninstantiated, all values are tried, then fails
• use ‘findalll’

– Keep
• use assert to keep partial results in the memory

21

Assert – Another Example (1/2)

• The Fibonacci sequence –
– a sequence of numbers in which each number is the sum of the

two previous numbers in the sequence: 1, 1, 2, 3, 5, 8, 13, …
• The standard recursive solution for finding the Nth number in the

Fibonacci sequence:
fibonacci(1, 1).
fibonacci(2, 1).
fibonacci(N, FibN) :- N1 is N-1, N2 is N-2

fibonacci(N1, FibN1), fibonacci(N2, FibN2),
FibN is FibN1 + FibN2.

This program is extremely inefficient. How inefficient is it?

22

Assert – Another Example (2/2)

• The problem with fibonacci/2 is the fact that it cannot
remember the answers to previous calls, which means that it
must recompute every number in the sequence each time it’s
called. We can give it memory, though by using assert.

:- dynamic fibonacci/2.
fibonacci(1,1).
fibonacci(2,1).
fibonacci(N,FibN) :- N1 is N-1, N2 is N-2,

fibonacci(N1,FibN1), fibonacci(N2,FibN2),
FibN is FibN1 + FibN2,
asserta(fibonacci(N,FibN)).

• Now, whenever the program computes the Nth number in the
sequence, it asserts it as a fibonacci/2 fact, before the other
clauses for fibonacci/2.

23

Data Types

• Prolog is not a typed language like Pascal or C. That is,
when we write a Prolog program, we can use objects
without telling the interpreter what are the types of the
objects.

• But Prolog has some type system: integer, float, atom,
structure, list, …

24

Abstract Data Types

• Built-in data types in a programming language are
– primitive (integer, float, atom) or
– complex (it is made up of other built-in types, either

primitive or complex)

• Abstract data-types are normally not built-in. They usually
represent kinds of complex objects in the world and the
operations that are performed on these objects.

• There is no special notation for abstract data types in
Prolog. The format of an abstract data type is arbitrary; its
interpretation is based on convention.

5

25

Abstract Data Types

• trees:
– create a new tree
– search through a tree for an element
– insert an element in a tree
– traverse a tree
– delete an element from a tree

• stacks:
– create a new stack
– push an element onto a stack
– pop an element off a stack

• queues:
– create a new queue
– add an element to the end of a queue
– remove an element from the front of a queue
– check the element at the front of a queue
– check if a queue is empty 26

Binary Search Trees

• Trees can be represented as structures like this:
bt(Key, LeftSubTree, RightSubTree)

• Leaves can be denoted like this: bt(key, nil, nil)
• nil is just a constant to represent an empty tree
• A binary search tree is a binary tree such that the value of the key

at a node is larger than the keys in the left subtree and smaller than
the keys in the right subtree.

• To test whether a key is in a binary search tree we a implement
btMember(E,T):

btMember(E, bt(E, _L, _R)).
btMember(E, bt(E1, L, _R)):- E<E1, btMember(E, L).
btMember(E, bt(E1, _L, R)):- E>E1, btMember(E, R).

27

Binary Search Trees (cont.)

• To insertion a new element into the BST, we implement
btInsert(E,T,T1), where T1 is the new tree after the key E is
added to T.

btInsert(E, nil, bt(E, nil, nil)).
btInsert(E, bt(E, L, R), bt(E, L, R)).
btInsert(E, bt(E1, L, R), bt(E1, L1, R)):-

btInsert(E, L, L1), E < E1.
btInsert(E, bt(E1, L, R), bt(E1, L, R1)):-

btInsert(E, R, R1), E > E1.

test(T4):- btInsert(7, nil, T), btInsert(5, T, T1),
btInsert(9, T1, T3), btInsert(3, T3, T4).

?- test(T), btMember(5,T).
28

Traversing a Binary Tree

– pre-order - visit the node,
then visit the left subtree,
then visit the right subtree

[1, 2, 4, 5, 3, 6, 7]
– in-order - visit the left subtree,

then visit the node,
visit the right subtree

[4, 2, 5, 1, 6, 3, 7]
– post-order - visit the left subtree,

then visit the right subtree,
then visit the node

[4, 5, 2, 6, 7, 3, 1]

1
/ \

2 3
/ \ / \

4 5 6 7

29

Tree Example - Height-balanced BT

• The height of its left subtree and the height of its right subtree
are at most equal, which means their difference is not greater
than one.

• Write a predicate hbal_tree/2 to construct height-balanced
binary trees for a given height. The predicate should generate all
solutions via backtracking. Put the letter 'x' as information into
all nodes of the tree.

• Example:
?- hbal_tree(3,T).

T = t(x, t(x, t(x, nil, nil), t(x, nil, nil)), t(x, t(x, nil, nil), t(x, nil, nil))) ;
T = t(x, t(x, t(x, nil, nil), t(x, nil, nil)), t(x, t(x, nil, nil), nil)) ;
etc......
No

30

Tree Example - Height-balanced BT

hbal_tree(0,nil) :- !.
hbal_tree(1,t(x,nil,nil)) :- !.
hbal_tree(D,t(x,L,R)) :-

D > 1, D1 is D - 1, D2 is D - 2,
distr(D1,D2,DL,DR), hbal_tree(DL,L),
hbal_tree(DR,R).

distr(D1,_,D1,D1).
distr(D1,D2,D1,D2).
distr(D1,D2,D2,D1).

6

31

Stacks

• A stack is a list with a restriction on accessing the
elements: the last element added to the list must be the first
element to come out of the list.
– when we add an element, we push it onto the stack
– when we remove an element, we pop it off the stack

• Exercise: write the following predicates:
– new_stack(-NewStack) - creates an empty stack
– pop(?Element, +OldStack, -NewStack) - pops

one element off the stack
– push(+Element, +OldStack, -NewStack) -

pushes one element onto the stack

32

Stacks

?- new_stack(S1), push(5, S1, S2), push(7, S2, S3), push(2, S3, S4),
push(9, S4, S5), pop(S5, E1, S6), pop(S6, E2, S7), pop(S7, E3, S8),
pop(S8, E4, S9).

S1 = stack([])
S2 = stack([5])
S3 = stack([7,5])
S4 = stack([2,7,5])
S5 = stack([9,2,7,5])
E1 = 9
S6 = stack([2,7,5])
E2 = 2
S7 = stack([7,5])
E3 = 7
S8 = stack([5])
E4 = 5
S9 = stack([])
yes

33

Stacks

• The implementation of stacks in Prolog is
trivial: lists in Prolog can be used to represent
stacks directly.

new_stack(stack([])).
push(Elem, stack(Stack), stack([Elem | Stack])).
pop(stack([Top | Stack]), Top, stack(Stack)).

34

Queues

• A queue is a list in which the first element added to the list
must be the first element that comes out of the list.
– when we add an element, we enqueue it
– when we remove an element we dequeue it
– we can check the element at the head of the queue

• we can test if the queue is empty
• Exercise: implement the following predicates:

– new_queue(-NewQueue) - creates an empty queue
– enqueue(+Element,+OldQueue, -NewQueue) - enqueues

an element
– dequeue(-Element, +OldQueue, -NewQueue) - dequeues

an element
– head_of_queue(-Head, +Queue) - check the head

of a queue
– empty_queue(+Queue) - checks if a queue is empty

35

Queues

?- new_queue(Q1), enq(5, Q1, Q2), enq(7, Q2, Q3), enq(2, Q3,
Q4), enq(9, Q4, Q5), headq(Q5, H), deq(Q5, E1, Q6),
deq(Q6, E2, Q7), deq(Q7, E3, Q8), deq(Q8, E4, Q9),
emptyq(Q9).

Q1 = q([])
Q2 = q([5])
Q3 = q([5,7])
Q4 = q([5,7,2])
Q5 = q([5,7,2,9])
H = 5
E1 = 5
Q6 = q([7,2,9])
E2 = 7
Q7 = q([2,9])
E3 = 2
Q8 = q([9])
E4 = 9
Q9 = q([])
yes

36

Queues

• Implementing queues is insignificantly
more complicated than stacks.

new_queue(q([])).
enq(Elem, q(Queue), q(Queue2)) :-

append(Queue, [Elem], Queue2).
deq(q([Head | Queue]), Head, q(Queue)).
headq(q([Head | Q]), Head).
emptyq(q([])).

7

37

Graphs

• A graph is defined by:

– set of nodes - could be a simple list

– set of edges (arcs) - the form of representing the edges
depends on the type of graph (directed, not directed,
the arcs have costs attached or not, etc).

38

Representing a Graph

• Represent each edge as separate facts:

connected(a,b).
connected(b,c).
connected(d,b).
connected(d,c).

- directed graph:

arc(a, b, 3).
arc(b, c, 1).
arc(d, b, 2).
arc(c, d, 3).

b

a c

d

b

a c

d

3 1

3

2

39

Representing a Graph

• Represent the whole graph as one data object. We can
represent it as a pair of two sets - one of nodes, one of
edges:

G1 = graph([a,b,c,d], [e(a,b), e(b,c), e(d,c), e(b,d)]).

G2 = graph([a,b,c,d], [e(a,b,3), e(b,c,1), e(c,d,3), e(d,b,2)]).

• Represent the graph by associating to each of its nodes a
list of neighbors:

G1 = [[a, [b]], [b, [a,c,d]], [c, [b,d]], [d, [b,c]]]

G2 = [[a, [b/3]], [b, [c/1]], [c, [d/3]], [d, [b/2]]

etc.
40

Finding a Path Through a Graph

• G - graph; A, Z - two nodes in the graph; P - path
between A and Z

find_path(+A,+Z,+G, -P)

to find an acyclic path P, in G, between A and G:

If A = Z then P is [A]

otherwise find an acyclic path P1, from some node Y to Z,
and find a path from A to Y, avoiding the nodes in P1.

A Y Z
P1

41

Finding a Path Through a Graph

path(A,Z,Graph,Path) :-
path1(A,[Z],Graph,Path).

path1(A,[A|Path1],_,[A|Path1]).
path1(A,[Y|Path1],Graph,Path):-

adjacent(X,Y,Graph),
not(member(X,Path1)), % No-Cycle condition
path1(A,[X,Y|Path1],Graph,Path).

adjacent(X,Y,graph(Nodes,Edges)):-
member(e(X,Y),Edges); member(e(Y,X),Edges).

42

Finding a Path Through a Graph

• Result:
?- G1=graph([a,b,c,d],[e(a,b),e(b,c),e(d,c),e(b,d)]),

path(a,d,G1,P).

G1= graph([a,b,c,d],[e(a,b),e(b,c),e(d,c),e(b,d)])
P=[a,b,d]

