
1

1

CSI 2165 Winter 2006

Diana Inkpen
SITE

University of Ottawa
Prolog, Part II

2

Prolog – Part II

• Data Structures.
– Structures, lists

• Control Structures:
– Backtracking, recursion, cut and failure.

3

Definition of predecessor/2

• In Lab 1, we define
predecessor/2 by a list of
facts on the given objects.

• How to define the general
(using variables) relation-
ship of predecessor?

pam

liz

tom

bob

ann pat

jim

4

predecessor/2 can NOT be
defined only through parent/2

5

Recursive Rule: predecessor/2

pam

liz

tom

bob

ann pat

jim

For all X and Z,
X is a predecessor of Z if
X is a parent of Z.

For all X and Z,
X is a predecessor of Z if
there is a Y such that
(1) X is a parent of Y and
(2) Y is a predecessor of Z

6

Recursive Rule: predecessor/2

predecessor(X, Z) :-
parent(X, Z).

predecessor(X, Z) :-
parent(X, Y),
predecessor (Y, Z).

For all X and Z,
X is a predecessor of Z if
X is a parent of Z.

For all X and Z,
X is a predecessor of Z if
there is a Y such that
(1) X is a parent of Y and
(2) Y is a predecessor of Z

Note: we need two clauses for the full definition!

2

7

Let’s do a trace!

?- predecessor(bob, X).

predecessor(X, Z) :-
parent(X, Z).

predecessor(X, Z) :-
parent(X, Y),
predecessor (Y, Z).

8

Four Versions of predecessor/2

% Four versions of the predecessor program
% The original version

pred1(X, Z) :-
parent(X, Z).

pred1(X, Z) :-
parent(X, Y),
pred1(Y, Z).

% Variation a: swap clauses of the original version

pred2(X, Z) :-
parent(X, Y),
pred2(Y, Z).

pred2(X, Z) :-
parent(X, Z).

% Variation b: swap goals in second clause of the original version

pred3(X, Z) :-
parent(X, Z).

pred3(X, Z) :-
pred3(X, Y),
parent(Y, Z).

% Variation c: swap goals and clauses of the original version

pred4(X, Z) :-
pred4(X, Y),
parent(Y, Z).

pred4(X, Z) :-
parent(X, Z).

Equivalent in declarative meaning but not procedural meaning! Order matters!

9

Arithmetic

X =:= Y X and Y stand for the same number
X =\= Y X and Y stand for different numbers
X < Y X is less than Y
X > Y X is greater than Y
X =< Y X is less than or equal to Y
X >= Y X is greater than or equal to Y

Equality!

10

Built-in Operators for Structures

• Decomposing terms and constructing new
terms

• functor/3 :
• arg/3
• =../2 - universal predicate

- written as infix

=.. functor arg

11

=..

• Term =.. L.
?- f(a, b) =.. L.
L = [f, a, b]

?- T =.. [rectangle, 3, 5].
T = rectangle(3, 5)

?- Z =.. [p, X, f(X, Y)].
Z = p(X, f(X, Y))

?- a =.. L.
L = [a] 12

functor/3

• functor(T, F, N)
– T: term; F: functor; N: arity

?- functor(f(a, b, g(Z)), F, N).
Z = _G448, F = f, N = 3.

?- functor([a, b, c], F, N).
F = ‘.’, N = 2

?- functor(a + b, F, N).
F = +, N = 2

3

13

arg/3

• arg(N, T, A)
– N: integer, which argument; T: term; A: argument

?- arg(2, related(john, mother(jane)), X).
X = mother(jane)

?- arg(1, a + (b + c), X).
X = a

?- arg(2, [a, b, c], b).
No

14

is_structure/1

• checks that something is a structure
• is_structure(My_Term) :-

functor(My_Term, _ ,N), N > 0.
– We are not interested in the name of the structure (its

functor), we are interested just in the fact that our
argument has a functor and has arguments, which tell

us the fact that it is a structure.

• Note: a list is a structure: the functor is ‘.’, and it
has 2 arguments - Head and Tail.

15

Operations on Lists

• Membership
• Concatenation
• Adding an item
• Deleting an Item
• Sublist
• Others

– list/1 - check that something is a list
– sum/2 - add the elements of a list of numbers
– list_len/2 - compute the length of a list
– flatten/2 - flatten a list
– …

16

list/1

list([]). The empty list is a list.
list([_|Tail]) :- list(Tail).

– It is a structure that has a head and a tail, and
the tail is also a list. We are not interested in the
values of the head and the tail, only in the fact
that the argument has this particular format.

17

[] is special!

• [] is a special list.
• [] is also an atom!
• [] is not a regular list

– Because we cannot split
[] into head and tail.

• This is why we use it
in the base case of
recursion!

4 ?- listing.

list([]).
list([A|B]) :-

list(B).

Yes
5 ?- trace.
Yes
[trace] 5 ?- list([1,2]).

Call: (7) list([1, 2]) ? creep
Call: (8) list([2]) ? creep
Call: (9) list([]) ? creep
Exit: (9) list([]) ? creep
Exit: (8) list([2]) ? creep
Exit: (7) list([1, 2]) ? creep

Yes
18

Membership -1

• An element is a member of a list if it is the first element in the list
(head), or if it is somewhere in the rest of the list (tail).

• A bit more formal:
– if X is Head of List, or
– if X is not the Head of List, but it is somewhere in the Tail of the

List:
• Prolog format:

member(X,[Head|Tail]) :- X = Head.
member(X,[Head|Tail]) :- X \= Head,

member(X,Tail).
• We can simplify the above rules:

member(X,[X|_]).
member(X,[_|Tail]) :- member(X,Tail).

4

19

Membership -2

– member2/2 - check that an element is a member of a list (can appear on any
level)

– member3/2 - check that an element appears in a structure as an argument
– appears/2 - check that an element appears in a structure - can also be a

functor name.

?- member(b, [a, b, c]).
Yes

?- member(b, [a, [b, c]]).
No

?- member([b, c], [a, [b, c]]).
Yes

20

Concatenation

append([], L, L).
append([X | L1], L2, [X|L3]) :-

append(L1, L2, L3).

X L1 L2

L3

21

Decomposition through Concatenation
?- append(L1, L2, [a, b, c]).

L1 = []
L2 = [a, b, c];

L1 = [a]
L2 = [b, c];

L1 = [a, b]
L2 = [c];

L1 = [a, b, c]
L2 = [];

No
22

Adding an Item

– This adds an item as the head of the new list.
– What if we want to add it as the last element?
– What if we want to insert it into a given position?

add(X, L, [X | L]).

23

Deleting an Item

member(X, List) :- del(X, List, _).
– What if I want to delete all repetitions?

del(X, [X | Tail], Tail).
del(X, [Y | Tail], [Y | Tail_1]) :-

del(X, Tail, Tail_1).

?- del(a, [a, b, a, a], L).
L = [b, a, a];
L = [a, b, a];
L = [a, b, a];
No

?- del(a, L, [1, 2, 3]).
L = [a, 1, 2, 3];
L = [1, a, 2, 3];
L = [1, 2, a, 3];
L = [1, 2, 3, a];
No

24

sublist/2

– Is a more general relation than member/2
• Consider when S is a single element X.

sublist(S, L) :-
append(L1, L2, L),
append(S, L3, L2).

?- sublist([c, d, e], [a, b, c, d, e, f]).
Yes

?- sublist([c, e], [a, b, c, d, e, f]).
No

?- sublist(S, [a, b, c]).
S = [];
S = [a];
S = [a, b];
S = [a, b, c];
S = [];
S = [b];
…

L1 L3S

L

L2

5

25

list_length/2

• The length of an empty list is 0.
• The length of a general list is the length of the Tail of the

list, plus 1 (the Head counts for one since it is one
element).

list_len([], 0).
list_len([_|Tail], ListLen) :-

list_len(Tail, TailLen),
ListLen is TailLen + 1.

(we are not interested in what the Head of the list is or its value, it just
matters to us that there is one)

26

Another Version - Accumulator

listlen(L, N) :- lenacc(L, 0, N).

lenacc([], A, A).
lenacc([_|Tail], A, N) :- A1 is A +1, lenacc(Tail, A1, N).

• A is called accumulator
• Accumulator does not have to be integer

– If we are producing a list as a result, accumulator could be a list.
• This is called tail recursion.

– It helps when memory efficiency is a concern.

27

Traces – See the Difference

[trace] 4 ?- list_len([1,2,3], L).
Call: (7) list_len([1, 2, 3], _G499) ? creep
Call: (8) list_len([2, 3], _L188) ? creep
Call: (9) list_len([3], _L207) ? creep
Call: (10) list_len([], _L226) ? creep
Exit: (10) list_len([], 0) ? creep

^ Call: (10) _L207 is 0+1 ? creep
^ Exit: (10) 1 is 0+1 ? creep

Exit: (9) list_len([3], 1) ? creep
^ Call: (9) _L188 is 1+1 ? creep
^ Exit: (9) 2 is 1+1 ? creep

Exit: (8) list_len([2, 3], 2) ? creep
^ Call: (8) _G499 is 2+1 ? creep
^ Exit: (8) 3 is 2+1 ? creep

Exit: (7) list_len([1, 2, 3], 3) ? creep

L = 3

Yes

[trace] 5 ?- listlen([1,2,3], L).
Call: (7) listlen([1, 2, 3], _G493) ? creep
Call: (8) lenacc([1, 2, 3], 0, _G493) ? creep

^ Call: (9) _L206 is 0+1 ? creep
^ Exit: (9) 1 is 0+1 ? creep

Call: (9) lenacc([2, 3], 1, _G493) ? creep
^ Call: (10) _L226 is 1+1 ? creep
^ Exit: (10) 2 is 1+1 ? creep

Call: (10) lenacc([3], 2, _G493) ? creep
^ Call: (11) _L246 is 2+1 ? creep
^ Exit: (11) 3 is 2+1 ? creep

Call: (11) lenacc([], 3, _G493) ? creep
Exit: (11) lenacc([], 3, 3) ? creep
Exit: (10) lenacc([3], 2, 3) ? creep
Exit: (9) lenacc([2, 3], 1, 3) ? creep
Exit: (8) lenacc([1, 2, 3], 0, 3) ? creep
Exit: (7) listlen([1, 2, 3], 3) ? creep

L = 3

Yes
28

Tail Recursion – Another Example

sumlist([], 0).

sumlist([First|Rest], Sum) :-
sumlist(Rest, S1),
Sum is First + S1.

sumlist(List, Sum) :-
sumlist(List, 0, Sum).

sumlist([], Sum, Sum).

sumlist([F|R], P_sum, T_sum) :-
P_sum_1 is P_sum + F,
sumlist(R, P_sum_1, T_sum).

29

Clause Ordering

• In order to satisfy a goal, Prolog will try to match it with
each fact and head of rule in the knowledge base, and they
are tried in the order in which they were written in the
knowledge base (/file).

• In pure logic programming, the order of clauses in a
program should not affect the outcome of the program, but
...

30

Again, the Family Tree

6

31

Four Versions of predecessor/2

% Four versions of the predecessor program
% The original version

pred1(X, Z) :-
parent(X, Z).

pred1(X, Z) :-
parent(X, Y),
pred1(Y, Z).

% Variation a: swap clauses of the original version

pred2(X, Z) :-
parent(X, Y),
pred2(Y, Z).

pred2(X, Z) :-
parent(X, Z).

% Variation b: swap goals in second clause of the original version

pred3(X, Z) :-
parent(X, Z).

pred3(X, Z) :-
pred3(X, Y),
parent(Y, Z).

% Variation c: swap goals and clauses of the original version

pred4(X, Z) :-
pred4(X, Y),
parent(Y, Z).

pred4(X, Z) :-
parent(X, Z).

Equivalent in declarative meaning but not procedural meaning! Orders matter!

32

predecessor(X, Z) :-
parent(X, Z).

predecessor(X, Z) :-
parent(X, Y),
predecessor(Y, Z).

This is the pred1 in previous slide.

33 34

35 36

Lessons Learned

• Order does matter!
– Sometimes have to consider both declarative and

procedural meanings.

• In practice, you can work out a declaratively
correct program first, then make it procedurally
correct later by rearrange the orders.

• Advice:
– Always try simpler ideas first!

7

37

Backtracking - The labyrinth analogy

In the execution of a Prolog program,
every time a certain rule for a predicate is
used, a choice is made - from all the rules,
this particular one was chosen. There are
others to try so if this one doesn’t lead to
the right answer, we can come back, and
try the other possibilities - just like an
intersection.

If we arrive at one point from where there is no way to go
(a predicate that is false), turn back step by step to a point
where a choice was made, and try an alternative.

38

Backtracking - The labyrinth analogy

There may be only one solution, or there may be many. We
can force backtracking, to find all solutions.

What happened in our previous examples when we pressed ‘;’?

When you press ‘;’is like you ask the system to find you another
proof for the given goal. To do that, it will ‘pretend’ that the last
goal failed, and will try to satisfy it again.

It will stop when it has found another way to prove your goal,
or if no such way was found.

39

Backtracking – Example 1

• First fact is found that matches the goal.
→ Unify likes(john,X) with likes(john,apples).
→ X is instantiated to apples
→ The goal has succeeded, the system prints out X = apples

• We press ‘;’
→ the last goal failed (the matching on the first fact has failed),
→ the variable becomes uninstantiated, and next facts are tried.

• Second fact is found that matches the goal.
→ Unify likes(john,X) with likes(john,csi2165C).
→ X is instantiated to csi2165
→ The goal has succeeded, the system prints out X = csi2165

• …

likes(john,apples).
likes(john,csi2165)
likes(john,mary).
? - likes(john,X).

40

Backtracking – Example 2

• Find match - match with the head of the first rule
→ unify member(X,[a,b,c]) with member(X,[X|_])
→ instantiate X to a
→ (rule has no body and since matching has succeeded) goal has succeeded
→ display X = a

• We press ‘;’
• Find another match - match goal with head of second rule

→ unify member(X,[a,b,c]) with member(X,[_|Tail])
→ instantiate X to X, instantiate Tail to [b,c]
→ replace head of rule with the body, and try to satisfy the body of the rule

• New goal (subgoal) member(X,[b,c])
• Find match - match with head of the first rule

→ unify member(X,[b,c]) with member(X,[X|_])
→ instantiate X to b
→ (rule has no body and since matching has succeeded) goal has succeeded.
→ display X = b

member(X,[X|_]).
member(X,[_|Tail]) :-

member(X,Tail).
?- member(X,[a,b,c]).

41

Backtracking – Example 3
• What happens when a goal fails?

halve(L,FirstHalf,SecondHalf) :-
conc(FirstHalf,SecondHalf,L),
length(FirstHalf,HalfLength),
length(SecondHalf,HalfLength).

In order for Prolog to satisfy the goal: halve(L, FirstHalf, SecondHalf),
it must satisfy the goal: 1. conc(FirstHalf, SecongHalf, L)
then it must satisfy the goal: 2. length(FirstHalf, HalfLength)
then it must satisfy the goal: 3. length(SecondHalf, HalfLength)

1, 2, 3 are called subgoals of the parent goal halve(L, FirstHalf, SecondHalf)
• whenever a subgoal is satisfied, Prolog marks the subgoal if there is another way it

can be satisfied
• if a subsequent subgoal fails (cannot be satisfied in any way), Prolog backtracks to

the to the most recent marked subgoal
• if no previous subgoals can be redone, the parent goal fails.

conc/3 is append/3 in many books

42

Backtracking – Example 3
halve([1,2],FH,SH)

halve(L,FirstHalf,SecondHalf) L = [1,2]

conc(FirstHalf,SecondHalf,L) length(FirstHalf,HalfLength) length(SecondHalf,halfLength)

FirstHalf = [] HalfLength = 0 fail
SecondHalf = [1,2]

does not have another solution

FirstHalf = [1] HalfLength = 1 yes
SecondHalf = [2]

8

43

List Processing – Program Patterns

1. Test for Existence
2. Test All Elements
3. Return a Result – having processed one

element
4. Return a Result – having processed all

elements

44

1. Test for Existence

• To determine that some collection of objects has at
least one object with a desired property

45

1. Test for Existence - Examples

46

2. Test All Elements

• We require that the elements of a list all satisfy
some property.

47

2. Test All Elements - Example

• all_digits/1 tests that a list consists digits only.

48

3. Return a Result (one element)

• This requires an extra argument to be carried around ---
termed the result argument.

• work through a list until an element satisfies some condition
whereupon we stop and return some result.

9

49

3. Return a Result (one element)- Example

• predicate everything_after_a/2 that takes a list
and returns that part of the list after any occurrence
of the element a

50

4. Return a Result (all elements)

• common task: taking a list of elements and transforming each
element into a new element (this can be seen as a mapping)

51

4. Return a Result (all elements) - Example

• triple/2 takes a list of integers and triples each of
them

52

Recipes for processing of
nested lists

(Nested list = a list that contains other
lists as elements)

53

1. Test for Existence

• To determine that at least one object in a nested list
has a desired property:
– If head of list has property, success and stop.
– If head of list is not a list, recursive test on tail of

list.
– If head of list is a list, recursive test of head of

list to go into nested levels and recursive test on
tail of list. (use OR so that the recursive call of
tail is executed only if the element was not found
in head)

54

1. Test for Existence - Example

nested_member(X,[X|_]).
nested_member(X,[H|T]):- H\=X,not(is_list(H)),

nested_member(X,T).
nested_member(X,[H|T]):- H\=X, is_list(H),

(nested_member(X,H); nested_member(X,T)).

?- nested_member(b, [a, [b, [c]], [d]).
yes

10

55

2. Test All Elements

• Test if all the elements of a nested list all satisfy
some property.
– If empty list, success and stop.
– If head of list is not a list, test head of lists and

if success, recursive test on tail of list.
– If head of list is a list, recursive test of head of

list to go into nested levels and (if success)
recursive test on tail of list.

56

2. Test All Elements - Example

alldigits([]).
alldigits([H|T]):- not(is_list(H)),

member(H,[0,1,2,3,4,5,6,7,8,9]),
alldigits(T).

alldigits([H|T]):- is_list(H),
alldigits(H), alldigits(T).

?- alldigits([1,[2,[3]],4]).
Yes
?- alldigits([1,[2,[3, a]],4]).
No

57

3. Return a Result (one element)

• Same as test for one element, but requires an extra
argument to be carried around - the result.

• Work through a list until an element satisfies the
condition whereupon we stop and return some
result.

• If the head is a list, look in the head too.

58

4. Return a Result (all elements)

• Common task: taking a list of elements and
transforming each element into a new element (this
can be seen as a mapping).

• Same as test for all elements, but requires an extra
argument - the result.

• For nested lists, if the head of the list is a list,
recursive call on it too.

59

4. Return a Result (all elements) - Example

addone([],[]).
addone([H|T],[H1|T1]):- not(is_list(H)),

H1 is H+1, addone(T,T1).
addone([H|T],[H1|T1]):- is_list(H),

addone(H,H1), addone(T,T1).

?- addone([1,[2,[3]],4], R).
R = [2, [3, [4]], 5]

60

Four Versions of predecessor/2

% Four versions of the predecessor program
% The original version

pred1(X, Z) :-
parent(X, Z).

pred1(X, Z) :-
parent(X, Y),
pred1(Y, Z).

% Variation a: swap clauses of the original version

pred2(X, Z) :-
parent(X, Y),
pred2(Y, Z).

pred2(X, Z) :-
parent(X, Z).

% Variation b: swap goals in second clause of the original version

pred3(X, Z) :-
parent(X, Z).

pred3(X, Z) :-
pred3(X, Y),
parent(Y, Z).

% Variation c: swap goals and clauses of the original version

pred4(X, Z) :-
pred4(X, Y),
parent(Y, Z).

pred4(X, Z) :-
parent(X, Z).

Equivalent in declarative meaning but not procedural meaning! Orders matter!

11

61

Clause Ordering – Another Example

• Delete all occurrences of an element from a list:

delete_all_1(E, [], []).

delete_all_1(E, [E | Tail], List) :-
delete_all_1(E, Tail, List).

delete_all_1(E, [NotE | Tail], [NotE | NewTail]) :-
delete_all_1(E, Tail, NewTail).

? - delete_all_1(b, [a, b, c, d, b, e, b, f], X).
X = [a, c, d, e, f]

62

Clause Ordering – Another Example

• Another definition (we switch the order of the
second and third rules in the previous definition):

delete_all_2(E, [], []).

delete_all_2(E, [NotE | Tail], [NotE | NewTail]) :-
delete_all_2(E, Tail, NewTail).

delete_all_2(E, [E | Tail], List) :-
delete_all_2(E, Tail, List).

? - delete_all_2(b, [a, b, c, d, b, e, b, f], X).
X = [a, b, c, d, b, e, b, f]

63

Clause Ordering – Another Example

• Yet another definition (same order, but that this time it works):
delete_all_3(E, [], []).
delete_all_3(E, [NotE | Tail], [NotE | NewTail]) :-

E \== NotE,
delete_all_3(E, Tail, NewTail).

delete_all_3(E, [E | Tail], List):-
delete_all_3(E, Tail, List).

? - delete_all_3(b, [a, b, c, d, b, e, b, f], X).
X = [a, c, d, e, f]

• In general, the clauses of a predicate should be exclusive; i.e., only
one clause should be satisfiable for a given input, to make order
irrelevant.

Try the 3 versions in SWI-Prolog by hitting “;”

64

Failure

• When Prolog cannot satisfy a goal we say it fails.
• We can force some predicate to fail
• ‘fail’ - built in Prolog predicate - it always fails

– opposite one if ‘true’ – it always succeeds.
• Example:

? - fail.
? - number(5).
? - number(5), fail.

Why is such a predicate interesting?

65

Using ‘fail’ to Force Backtracking

• How can we obtain all the solutions to a problem?
– We can press ‘;’
– We can use ‘fail’

• Example:
– write everything that John likes:
all_he_likes(Somebody) :-

likes(Somebody,X), write(X), fail.
?- all_he_likes(john).

– write all the elements of a list one by one:
write_member(List) :- member(X, List), write(X),

write(‘ ‘), fail.
?- write_member([aa, bb, cc]).

66

Controlling Backtracking - CUT

?- f(1, Y), 2 < Y.

12

67

Controlling Backtracking - CUT

• The three rules are mutually exclusive.
• There is no point in trying others as soon as one of them succeed.
• CUT (“ ! “) tells Prolog not to backtrack over this point!

?- f(1, Y), 2 < Y.

A third version:

f(X, 0) :- X < 3, !.
f(X, 2) :- X < 6, !.
f(X, 4). 68

CUT - Example

•Solid arrows indicate the sequence of calls.
•The dashed arrows indicate backtracking.
•Notice that there is “one way traffic” between R and S.

69

CUT - Example

member(X,[X|_]).
member(X,[_|Tail]) :- member(X,Tail).

member(X,[X|_]) :- !.
member(X,[_|Tail]) :- member(X,Tail).

How do these two definitions of the member predicate behave
differently?

Which one if better? – It depends!

70

CUT - Example
• Example: Adam and Eve had no parents. Everybody else has two.

number_of_parents(adam, 0).
number_of_parents(eve, 0).
number_of_parents(X, 2) :- X \= adam, X \= eve.

• Alternative definition:
number_of_parents(adam, N) :- !, N = 0.
number_of_parents(eve, N) :- !, N = 0.
number_of_parents(X, 2).

• Alternative definition:
number_of_parents(adam, 0) :- !.
number_of_parents(eve, 0) :- !.
number_of_parents(X, 2).

? - number_of_parents(eve, X). ? - number_of_parents(eve, 2).
X=0. Yes

71

Negation as Failure

• How do you say “Mary likes all animals but
snakes” in Prolog?
– If X is a snake then “Mary likes X” is not true.
– Otherwise if X is an animal then Mary likes X.

likes(mary, X) : -
snake(X), !, fail.

likes(mary, X) :-
animal(X).

72

Negation as Failure - Example

• We want a predicate consonant/1 which tells us whether the
argument is a consonant or not.

• There are around 20 consonants, but only 5 vowels. Everything
that is not a vowel is a consonant (we assume)
vowel(a). vowel(o).
vowel(e). vowel(u).
vowel(i).

We could write the predicate consonant/1:
– if the argument is a vowel, fail.
– everything else is a consonant.

consonant(X) :- vowel(X), fail.
consonant(_). ?

13

73

Negation as Failure - Example

• When the argument is a vowel, then we want the
predicate to fail without trying any other way to
satisfy the goal - cut the backtracking

• Cut - ‘!’ - built in predicate that always succeeds
• ‘!’ has a very important side effect - cuts the

backtracking
• Use “!, fail” pair to indicate negation!

consonant(X) :- vowel(X),fail.
consonant(_).

consonant(X) :- vowel(X),!,fail.
consonant(_).

74

Closed World Assumption

• Closed World Assumption means that Prolog’s world is
closed: everything in the universe that is true is provable
from the facts and rules in the knowledge base. Everything
else is false.

• If Prolog is unable to prove vowel(X) for some given X,
it fails. All objects X for which Prolog cannot prove
vowel(X) are assumed to not be vowels. Sometimes is
easier, in order to prove that something is false, that its
opposite is true and then negate it.

• The ‘yes’ answer to the query ?- not(human(mary))
should not be interpreted as ‘May is not a human’.
– Prolog really says: there is not enough information to

prove that Mary is human.

75

Common Uses of CUT

• In places where we want to tell the Prolog system that it
has found the right rule for a particular goal.

• In places where we want to tell the system to fail a
particular goal immediately without trying for
alternative solutions.

• In places where we want to terminate the generation of
alternative solutions through backtracking (you don’t
want the alternative solutions if there are any).

76

CUT – Pros and Cons

• Advantages
– Improve efficiency by cutting backtracking explicitly.
– the program may occupy less memory space if backtracking

points do not have to be recorded for later examination.
– We can specify mutually exclusive rules.

• Disadvantages
– the program is less readable.
– you should be careful using it, the program may not behave

they way you want it to.
– Destroying the correspondence between declarative and

procedural meanings.

77

not

• A unary predicate not is useful.
– not(Goal) is true if Goal is not true.

not(P) :- P, !, fail.
not(P) :- true.

• SWI-Prolog implements not/1.
• Now

likes(mary, X) :- animal(X), not(snake(X)).

• not should be used with care.
• not does not correspond to negation in mathematical logic.
• Alternatively, we use \+.

78

not - Example

• A letter is a consonant if it is not a vowel:

vowel(a).
vowel(e).
vowel(i).
vowel(o).
vowel(u).

consonant(X) :- not(vowel(X)).

