
1

1

CSI 2165 Winter 2006

Diana Inkpen
SITE

University of Ottawa

Note: These lecture notes will be accompanied by additional
explanations, demonstrations, and small-group exercises in class.

2

Course Content

• Introduction to Prolog and Logic Programming.
• Prolog basic constructs: Facts, rules, knowledge base,

goals, unification, instantiation.
• Prolog syntax, characters, equality and arithmetic.
• Data Structures: Structures and trees, lists, strings.
• Control Structures:

– Backtracking, recursion, cut and failure.
• Input and output, assertions, consulting.
• Applications: Databases, Artificial Intelligence

– Games, natural language processing, meta-
interpreters

3

Prolog

• Prolog = Programming in Logic.
• Prolog is based on first order logic.
• Prolog is declarative (as opposed to

imperative):
– You specify what the problem is rather than

how to solve it.
• Prolog is very useful in some areas (AI,

natural language processing), but less useful
in others (graphics, numerical algorithms).

4

Propositional Logic

• Propositions are statements that can be assigned a
truth value

• Elephants are pink. true or false?
• Operators for assigning truth values to

combinations of propositions (sentences)
Symbolic
statement

Translation Informal characterization

p ∧ q p and q p ∧ q is true when both p and q are true
p ∨ q p or q p ∨ q is true when either p or q or both p and q

are true
p ⇒ q p logically implies q p ⇒ q is true when p and q are both true, or p is

false
p ⇔ q p is logically equivalent

to q
p ⇔ q is true if p and q have the same truth

value
¬ p not p ¬ p is true when p is false

5

Predicate Logic

• Involves entities and relations between entities.
• Entities are expressed using:

– Variables : X, Y, Somebody, Anybody
– Constants : fido, fiffy, bigger, dog, has, bone

• Logical operators - connectors between relations
– and (∧), or(∨), not (¬), logically implies (⇒), logically

equivalent (⇔), for all (∀), exists (∃)
• Relations are expressed using:

– Predicates - express a simple relation among entities, or a
property of some entity

• fido is a dog - dog(fido)
• fiffy is a dog - dog(fiffy)
• fido is bigger than fiffy - bigger(fido, fiffy)

6

Predicate Logic (cont.)

– Formulas - express a more complex relation among
entities

• if fido is bigger than fiffy, and fiffy has a bone, then fido
can take the bone
(bigger(fido, fiffy) ∧ has(fiffy,bone)) ⇒
can_take(fido,bone)

– Sentences - are formulas with no free variables
• dog(X) contains a variable which is said to be free while

the X in ∀ X.dog(X) is bound.

2

7

Logic → Prolog

• Involves entities and relations between entities.
• Entities are expressed using:

– Variables: X, Y, Somebody, Anybody
– Constants: fido, fiffy, bigger, dog, has, bone

• Logical operators: connectors between relations
– and (,), or (;), not (\+), is logically implied by (:-)

• Relations are expressed using:
– Predicates - relation among entities, or a property of an

entity
• fido is a dog - dog(fido)
• fido is bigger than fiffy- bigger(fido, fiffy)

8

Logic → Prolog (cont.)

– Rules - complex relation among entities
• if fido is bigger than fiffy, and fiffy has a

bone, then fido can take the bone
can_take(fido, bone) :-

bigger(fido, fiffy), has(fiffy, bone).
Or more general:

can_take(Dog1, bone) :-
bigger(Dog1, Dog2),
has(Dog2, bone).

9

Programming Language Comparison

Imperative programming
languages

• ‘procedural’ -> they
describe how a sequence
of instructions compute
the result to a certain
problem.

• we concentrate on how to
formulate a solution in
terms of the primitive
operations available

• what you see is what is
being done

Logic programming languages
• specify the problem in a

declarative style (facts about
objects, relations between
objects), describe what is the
objective and let the system
prove it

• we concentrate on problem
• there are underlying

mechanisms that help the
program reach its goal

10

Logic Programming

• A program in logic is a definition (declaration) of the
world - the entities and the relations between them.

• Logic programs establishing a theorem (goal) and asks
the system to prove it.

• Satisfying the goal:
– yes, prove the goal using the information from the

knowledge base
– no:

• cannot prove the truth of the goal using the
information from the knowledge base

• the goal is false according to available information

11

Definitions

• Three basic constructs in Prolog
– Facts, rules, and queries.

• Knowledge base (database)
– A collection of facts and rules.
– Prolog programs are knowledge bases.

• We use Prolog programs by posing queries.

12

Facts

• Facts are used to state things that are unconditionally true.
We pay taxes. we_pay_taxes.

• The earth is round. The sky is blue.
round(earth).
blue(sky).

• Beethoven was a composer that lived between 1770 and 1827.
composer(beethoven,1770,1827).

• Tom is the parent of Liz.
parent(liz, tom).

• fido is bigger than fiffy. bigger(fido,fiffy).

Exercise:
John owns the book. John gives the book to Mary.

3

13

SWI-Prolog

• The SWI department of the University of Amsterdam.
• Free
• Small
• Available in the lab
• Download a copy to work at home

http://www/swi-prolog.org
• Documentation

14

Queries on Facts

• John likes apples, csi2165 and Mary.
likes(john,apples).
likes(john,csi2165).
likes(john,mary).

• Does John like apples?
?-likes(john,apples).
yes

• What does John like?
?-likes(john,X).
X = apples;
X = csi2165;
X = mary;
no

‘;’ for more solutions. ‘Enter’ to stop.

SWI-Prolog Demo

15

Building a Knowledge Base (Lab 1)

Family Tree Problem1. build a knowledge base to
represent the parent relationships that
can be deduced from the tree

parent(pam,bob).

Problem 2. build predicates that describe the
following family relationships:

grandparent/2

mother/2 father/2

brother/2 sister/2 sibling/2

aunt/2 uncle/2

precursor/2

pam

liz

tom

bob

ann pat

jim

16

Rules

• If there is smoke there is fire. fire :- smoke.
• Liz is an offspring of Tom if Tom is a parent of Liz.

offspring(liz, tom) :- parent(tom, liz).
• Y is an offspring of X if X is a parent of Y.

offspring(Y, X) :- parent(X, Y).
• Two persons are sisters if they are females and have the same

parents.
siblings(P1, P2) :- parent(P, P1), parent(P, P2).

Exercise:
- Family relations
grandparent(X,Y) :-

What is the problem with this rule?

17

Queries on Rules

• Mary drinks beer. Terry drinks beer.
drinks(mary, beer).
drinks(terry, beer).

• John likes everybody who drinks beer.
likes(john, X) :- drinks(X, beer).

• Does John like Mary?
?-likes(john, mary).
yes

• Who does John like?
?-likes(john, X).
X = mary;
X = terry;
no

18

Clauses

• In Prolog, rules (and facts) are called clauses.
• A clause always ends with ‘.’
• Clause: <head> :- <body>.

– you can conclude that <head> is true, if you can
prove that <body> is true

• Facts - clauses with an empty body: <head>.
– you can conclude that <head> is true

• Rules - normal clauses (or or more clauses)
• Queries - clauses with an empty head: ?- <body>.

– Try to prove that <body> is true

4

19

Rules

• Rules state information that is conditionally true of the
domain of interest.

• The general form of these properties
– p is true if (p1 is true, and p2 is true, … and pn is true)

• Horn clause
– p :- p1, p2, …, pn.

• Interpretation (Prolog) :
– in order to prove that p is true, the interpreter will prove

that each of p1, p2, …, pn is true
– p - the head of the rule
– p1, p2, …, pn - the body of the rule (subgoals)

20

Rules and Conjunctions

• A man is happy if he is rich and famous.
• In Prolog:

• The ‘,’ reads ‘and’ and is equivalent to /\ of
predicate calculus.

happy(Person) :-
man(Person),
rich(Person),
famous(Person).

21

Rules and Disjunctions

• Someone is happy if he/she is healthy, wealthy or
wise.

• In Prolog:

• More exactly:
– Someone is happy if they are healthy OR
– Someone is happy if they are wealthy OR
– Someone is happy if they are wise.

happy(Person) :- healthy(Person).
happy(Person) :- wealthy(Person).
happy(Person) :- wise(Person).

22

Both Disjunctions and Conjunctions

• A woman is happy if she is healthy, wealthy
or wise.

• In Prolog:

happy(Person) :- healthy(Person), woman(Person).
happy(Person) :- wealthy(Person), woman(Person).
happy(Person) :- wise(Person), woman(Person).

23

Variables

• Objects referred by a name starting with a capital
letter.

• Scope rule:
– Two uses of an identical name for a logical

variable only refer to the same object if the uses
are within a single clause.

happy(Person) :- healthy(Person). % same person
wise(Person) :- old(Person). /* may refer to other

person than in above clause. */

Two commenting styles!

24

Queries

• The goal represented as a question.

?- round(earth). /* is it true that the earth is round? */

?- round(X). /* is it true that there are entities which are round?
(what entities are round?) */

?- composer(beethoven, 1770, 1827). /* is it true that
Beethoven was a composer who lived between 1770 and
1827)? */

?- owns(john, book). /* is it true that john owns a book? */

?- owns(john, X). /* is it true that john owns something? */

5

25

Predicate

• composer(beethoven,1770,1827) → predicate
• composer → functor
• beethoven, 1770, 1827 → arguments
• number of arguments: 3 → arity.
• write as composer/3

26

Example

We have a Prolog program:

likes(mary, food).
likes(mary, wine).
likes(john, wine).
likes(john, mary).

Now we pose the query:

?- likes(mary, X), likes(john, X).

What answers do we get?

27

1/4

Matching and Instantiation!

28

2/4

Backtracking

29

3/4

Each goal has its own place-marker!

30

4/4

6

31

Declarative Semantics (what)

• Declarative semantics - telling Prolog what we know.
• If we don’t know if something is true, we assume it is false -

closed world assumption.
• Sometimes we tell it relations that we know are false.

(sometimes it is easier to show that the opposite of a relation is
false, than to show that the relation is true)

I know (it is true) that the max between two numbers X and Y
is X, if X is bigger than Y. max(X, Y, X) :- X > Y.
I know that the max between two numbers X and Y is Y if Y is

bigger or equal to X. max(X, Y, Y) :- Y >= X.

?- max(1, 2, X).
32

Declarative Semantics (cont.)

I know that 0 is a positive integer.
positive_integer(0).

I know that X is a positive integer if there is another positive
integer Y such that X is Y+1.
positive_integer(X) :- positive_integer(Y), X is Y+1.

?- positive_integer(3).
?- positive_integer(X).

Recursive definition!

33

Procedural Semantics (how)

• Procedural semantics - how do I prove a goal?
max(X, Y, X) :- X > Y.
max(X, Y, Y) :- Y >= X.
?- max(1, 2, X).
If I can prove that X is bigger then Y, then I can prove

that the max between X and Y is X.
or, if that doesn’t work,
If I can prove that Y is bigger or equal to X, then I can

prove that the max between X and Y is Y.

34

Procedural Semantics (cont.)

positive_integer(0).
positive_integer(X) :- positive_integer(Y), X is Y+1.
?- positive_integer(3).
If I can prove that X is 0, then I can prove that X is a

positive integer or,
If I can prove that Y is a positive integer, and if X is Y+1,

then I can prove that X is a positive integer.
I can prove that Y is a positive integer if I can prove that

Y is 0 or
If I can prove that Z is a positive integer, and if Y is Z+1,

then I can prove ...

35

Terms

• Prolog programs are built from terms.
• Three types of terms

– Constants
– Variables
– Structures

• Terms are composed of letters, digits and/or
sign characters.

36

Another view: Objects

• Simple objects:
– constants: for specific objects or specific relationships.

• numbers (integers, floating point numbers)
• atoms (bob, hello, *, ‘&?%’, ‘I`m not a variable’)

– variables:
• anonymous variables
• named variables

• Complex objects
– lists
– other structures

7

37

Variables

• Names that stand for objects that may already or
may not yet be determined by a Prolog program
– if the object a variable stands for is already determined,

the variable is instantiated
– if the object a variable stands for is not yet determined,

the variable is uninstantiated

• a Prolog variable does not represent a location that
contains a modifiable value; it behaves more like a
mathematical variable (and has the same scope)

• An instantiated variable in Prolog cannot
change its value

38

Variables (cont.)

• Constants in Prolog : numbers, strings that start
with lowercase, anything between single quotes

• Variables in Prolog: names that start with an
uppercase letter or with ‘_’

• Examples:
Variables Constants

X,Y, Var, Const,
_var, _const, _

x, y, var, const,
some_Thing, 1, 4,
‘String’,
“List of ASCII codes”

39

Anonymous variables

• a variable that stands in for some unknown object
• stands for some objects about which we don’t care
• several anonymous variables in the same clause

need not be given consistent interpretation
• written as _ in Prolog
?- composer(X, _, _).
X = beethoven;
X = mozart;
…
We are interested in the names of composers but not

their birth and death years.

40

Verify Type of a Term

• var(+Term)
Succeeds if Term is currently a free variable.

• nonvar(+Term)
– Succeeds if Term is currently not a free variable.

• integer(+Term)
– Succeeds if Term is bound to an integer.

• float(+Term)
– Succeeds if Term is bound to a floating point number.

• number(+Term)
– Succeeds if Term is bound to an integer or a floating point number.

• atom(+Term)
– Succeeds if Term is bound to an atom.

• string(+Term)
– Succeeds if Term is bound to a string.

• atomic(+Term)
– Succeeds if Term is bound to an atom, string, integer or float.

• compound(+Term)
– Succeeds if Term is bound to a compound term.

41

Some Built-in Predicates(Operators)

for constants:
– number/1
– integer/1
– float/1
– atom/1
– atomic/1

Examples:
number(15) atom(my_atom).
number(0.001) atom(*)
number(4.2E+01) atom(‘This?’)
integer(16) atom(15)
integer(1.0) atomic(a)
float(1) atomic(4)
float(1.5E-1) atomic(4.2E+01)
float(1.0)

for variables:
– var/1
– nonvar/1
– is/2
– =/2
– …

Examples:
var(X) X = abc, var(X)
var(x) X = abc,nonvar(X)
var(5) _ = abc, var(_)
nonvar(X) _ = abc, nonvar(_)
nonvar(abc) X is 5
Y = abc X is 5+1
Z = 4.2E+01 X = 5+1
var(X), X = abc X = 5

Try them out on your computer!

42

Structures

• Structures are objects that have several
components, which in turn can be structures.

• Structures are treated in the program as single
objects.

• functor is used to combine components into a
single object.

• A functor must be an atom.
• Example:

– date(1, may,1999)
– course(csc2165, fall2005)

8

43

Structure: Example

• Description:
– a person has:

• name - first name, last name
• birth date - day, month, year
• occupation

• Prolog representation - example
– person(name(michael, jordan), birth_date(17, february, 1963), occupation(‘NBA player’))

functor arguments functor arguments functor argument

– functor arguments

44

Data Objects in Prolog (Summary)

Atoms

Structures

Data objects/Terms

Simple objects

Variables Constants

Numbers Named variables Anonymous variables

45

Structures - Exercise

• Description:
– point in the 2D space
– triangle
– a country

• has a name
• is located in a continent at a certain position
• has population
• has capital city which has a certain population
• has area

46

Structures - Exercise

• Knowledge base:

country(canada, location(america, north),
population(30), capital(‘Ottawa’,1),area(_)).

country(usa, location(america, north),
population(200),capital(‘Washington DC’, 17),
area(_)).

47

A Particular Structure

How can we represent the courses a student takes?
courses(csi2111, csi2114, csi2165)
courses(csi2114, csi2115, csi2165, mat2343)
courses(adm2302, csi2111, csi2114, csi2115, csi2165)

Three different structures.

In general, how do we represent a variable number of arguments
with a single structure?

48

A Particular Structure

Consider a single structure courses/2:
the first argument - a course
the second argument - a courses/2 structure

courses(courses(
csi2111, csi2114,
courses(courses(

csi2114, csi2165,
courses(nil))

csi2165,
nil)))

That’s useful but too messy, better use lists:
.(csi2111, .(csi2114, .(csi2165, [])) [csi2111, csi2114,csi2165]
.(csi2114, .(csi2165, [])) [csi2114, csi2165]

They are lists!

9

49

Lists
• Functor name : .
• Arity : 2

– first argument - can be anything - called the head of the list
– second argument - must be a list - called the tail of the list

• Representing the lists:
.(Head1,Tail) = [Head1|Tail] =
= [Head1, HeadOfTail | TailOfTail] = … =
= [Head1, Head2, Head3, …, LastHead | []] =
= [Head1, Head2, …, LastHead]

(“…” here is not a Prolog notation)
• We use the square bracket notation in our program since it is

more readable.

50

Lists
• Examples:

[a,b,c] = .(a,.(b,.(c,[])) = [a | [b, c]] = [a, b|[c]] = [a, b, c|[]]
[1,2,3] = .(1, .(2, .(3, []))) = [1 | [2 | [3]]]

• Exercise:

List Head Tail
[a,b,c]
[]
[[the,cat], sat]
[the, [cat, sat]]
[the, [dog, ate], bones]
[X+Y, x+y]

Try them out in SWI-Prolog

51

Matching, Unification, and Instantiation

• Prolog will try to find in the knowledge base a fact or a
rule which can be used in order to prove a goal

• Proving :
– match the goal on a fact or head of some rule. If

matching succeeds, then:
– unify the goal with the fact or the head of the rule. As a

result of unification:
– instantiate the variables (if there are any), such that the

matching succeeds

• NB: variables in Prolog cannot change their value
once they are instantiated !

52

Matching

• Matching: Prolog tries to find a fact or a head of some rule with which
to match the current goal

• Match: the functor and the arguments of the current goal, with the
functor and the arguments of the fact or head of rule

• Rules for matching :
– constants only match an identical constant
– variables can match anything, including other variables

Goal Predicate Matching

constant
constant
Var
Var
some_constant

constant
other_constant
some_constant
Other_Var
Some_Var

yes
no
yes
yes
yes

53

Instantiation and Unification

Instantiation
• the substitution of some object for a variable
• a variable is instantiated to some object

composer(X, 1770, 1827) succeeds with X instantiated to beethoven
Unification
• the instantiations done such that the two terms that match

become identical
• two terms match if:

– they are identical objects
– their constant parts are identical and their variables can be instantiated

to the same object
composer(X,1770,1827) unifies with

composer(beethoven,1770,1827)
with the instantiation X = beethoven

54

Unification

• Done after a match between the current goal and a fact or
the head of a rule is found

• It attaches values to variables (instantiates the variables),
such that the goal and the predicate are a perfect match:
– match:

• goal - composer(beethoven, B, D) with fact -
composer(beethoven,1770,1827)

– unification:
• B will be instantiated to 1770
• D will be instantiated to 1827

such that the goal will match the fact.

10

55

Unification (cont.)

• If the match is done on the head of some rule, then the instantiations
done for the variables are also valid in the body of the rule:
– match:

• goal - contemporaries(beethoven, mozart) with head of
contemporaries(X, Y) :- composer(X, B1, D1),

composer(Y, B2, D2), X \== Y, …
– unification:

• X will be instantiated to beethoven
• Y will be instantiated to mozart and now the rule will look:
contemporaries(beethoven, mozart) :-
composer(beethoven,B1,D1),
composer(mozart, B2, D2), beethoven \== mozart, ...

56

Instantiation and Unification - Exercise

unify with result

likes(jim, piano) likes(jim, X)
likes(jim, X) likes(Y, piano)
owns(X, Y) owns(jim, calliope)
owns(X, Y) owns(Y, X)
owns(jim, piano) likes(jim, piano)
owns(jim, piano) owns(bill, piano)
owns(jim, X, Y) owns(jim, piano)

Work them out and validate them with SWI-Prolog.

57

Structures Matching and Unification

• Matching on structures:
– match the functor of the two structures
– match each argument of the two structures (if some

argument is complex, match it according to the same rules)
• Example:

a(b,c) a(b, c) → match
a(b,C) a(b, x) → C = x
a(X) a(B, c) → don`t match

58

Structure Matching and Unification
• Exercise

Structure 1 = Structure 2: Instantiations:
a(b, X) = a(Y, c)
a(b, X) = a(X, Y)
a(b, X) = a(b, c(d))
a(b(X), Y) = a(Y, c)
a(b(c(X)), Y) = a(b(Y), c(Z))
a(b(c(X)), Y) = a(b(Y), Z)
[X,Y] = [john, skates]
[cat] = [H|T]
[[the,Y]|Z] = [[X, hare], [is, here]]
[H|T] = a(b, c(d))
[n(X,Y),a(1)] = [Name, Age]
X = a(b, c(d))
a(b, c) = X(b, c)

Work them out on your computer!

59

Structures - Another View

• We can view structures as trees:
person(name(michael,jordan),birth_date(17,february,1963),occupation(‘NBA player’))

.(football,.(tennis,.(formula1,.(basketball,[]))))

person

name birth_date occupation

michael jordan ‘NBA player’17 february 1963

.
.

.
.

football

tennis

formula1

basketball []

60

Unification Operators

= \= = = \ = = is

11

61

Three Kinds of Equality

• When are two terms said to be equal?
• We introduce 3 types of equality now (more later)

– X = Y: this is true if X and Y match.
– X is E: this is true if X matches the value of the arithmetic

expression E.
– T1 == T2: this is true if terms T1 and T2 are identical

• Have exactly the same structure and all the
corresponding components are the same. The name of
the variables also have to be the same.

• It is called: literal equality.
• If X == Y, then X = Y. the former is a stricter form of

equality.

62

Unification Operator: =

• = → unifies with: X = Y

– succeeds as long as X and Y can be unified
– X may or may not be instantiated
– Y may or may not be instantiated
– X and Y become bound together (they now refer to the same

object)

• ? - p1(a, [A, [B, C]],25) = p1(C, [B, [D, E]], 25).
A = B = D, C = E = a, yes

• ? - a(b, X, c) = a(b, Y, c).
X = Y, yes

63

Unification Operators: \=

• \= → does not unify with: X \= Y

– succeeds as long as X and Y cannot be unified
– both X and Y must be instantiated (why?)
– X and Y may have uninstantiated elements inside them

• ? - [A, [B, C]] \= [A, B, C].
yes

• ? - a(b, X, c) \= a(b, Y, c).
no

Back to slide 14: siblings/2
64

Unification Operator: ==

• == → is already instantiated to: X == Y
– succeeds as long as X and Y are already instantiated to

the same object
– in particular, any variable inside X and Y must be the

same
• ? - a(b,X,c) == a(b,Y,c).

no

• ? - a(b,X,c) == a(b,X,c).
yes

65

Unification Operators: \==

• \== → not already instantiated to: X \== Y

– succeeds as long as X and Y are not already instantiated
to the same object

• ? - A \== hello.
yes

• ? - a(b,X,c) \== a(b,Y,c).
yes

Question: would it make any difference if we replace \= with \== in the siblings/2 on slide 14?

66

Arithmetic Operator: is

• is → arithmetic evaluation : X is Expr
– succeeds a long as X and the arithmetic evaluation of

Expr can be unified
– X may or may not be instantiated
– Expr must not contain any uninstantiated variables
– X is instantiated to the arithmetic evaluation of Expr

• ? - 5 is ((3 * 7) + 1) / 4.
yes

• ? - X is ((3 * 4) +10) mod 6.
X = 4

is is different from =

?- X is 3 + 1.
X = 4

? X = 3 + 1.
X = 3 + 1

12

67

Summary of Part I

• Introduction to Prolog and Logic
Programming.

• Prolog basic constructs: facts, rules, queries.
• Unification, variables.
• Prolog syntax, equality, and arithmetic.

