CSI11102:
* Introduction to Software Design

Chapter 8:
Exceptions and 1/0 Streams

Learning objectives:

!.’ Exceptions and 1/0 Streams

= Understand what the following are:
= the try-catch statement
= exception propagation
= creating and throwing exceptions
= types of 1/0 streams

= Study section 8.0 for the final examination

What are Exceptions?

= An exception is an object that describes an unusual or
erroneous situation; e.g. Misuse

= Exceptions are thrown by a program, and may be caught
and handled by another part of the program

= A program can be separated into N B
. LN
= a normal execution flow and
= an exception execution flow \
V

= An erroris also represented as an object in Java, but
usually represents a unrecoverable situation and should not
be caught 3

’ Java Exception Handling

= Java has a predefined set of exceptions and errors that
can occur during execution

= A program can deal with an exception in one of three
ways:
= ignore it
= handle it where it occurs
= handle it an another place in the program

= The manner in which an exception is processed is an
important design consideration

Java Exception Handling

= The message includes a call stack trace that indicates the
line on which the exception occurred
= The call stack trace also shows the method call trail that
lead to the attempted execution of the offending line
= The getMessage method returns a string explaining
why the exception was thrown
= The printStackTrace method prints the call stack
trace

= See Zero.java (p.449)

Zero.java

public class Zero

// Deliberately divides by zero to produce an exception.
public static void main (String[] args)
{
int numerator = 10;
int denominator = O;
System.out.println (numerator / denominator);

System.out.println ("This text will not be printed.™);

3 java.lang.ArithmeticException: / by zero

at Zero.main(Zero.java:17)
Exception in thread "main" Exit code: 1
There were errors

Handling Exceptions:
The try Statement

To process an exception when it occurs, the line that
throws the exception is executed within a try block

A try block is followed by one or more catch clauses,
which contain code to process an exception

Each catch clause has an associated exception type and
is called an exception handler

When an exception occurs, processing continues at the
first catch clause that matches the exception type

See ProductCodes. java (page 451) 7

ProductCodes.java

import cs1.Keyboard;

public class ProductCodes

/1 Counts the number of product codes that are entered with a
/1 zone of R and district greater than 2000.

11
public static void main (String[] args)
String code;
char zone;
int district, valid = 0, banned = 0;
System.out.print ("Enter product code (XXX to quit): ");
code = Keyboard.readString();

Continued...

ProductCodes.java

while (code.equals ("XXX™))
try
{
zone = code.charAt(9);
district = Integer.parselnt(code.substring(3, 7));
valid++;
if (zone == 'R* && district > 2000)
banned++;
catch (StringIndexOutOfBoundsException e)
System.out.println ("Improper code length: " + code);
catch (NumberFormatException e)
System.out.println ("District is not numeric: " + code);

System.out.print ("Enter product code (XXX to quit): *);
code = Keyboard.readString();

System.out.printin ("# of valid codes entered: " + valid);

D;
System.out.println ("# of banned codes entered: " + banned); }} o

The finally Clause

= A try statement can have an optional clause following the
catch clauses, designated by the reserved word finally

= The statements in the finally clause are always executed

= If no exception is generated, the statements in the
finally clause are executed after the statements in the
try block are completed

= If an exception is generated, the statements in the
finally clause are executed after the statements in the

appropriate catch clause are completed
10

Exception Propagation

An exception can be handled at a higher level if it is not
appropriate to handle it where it occurs

Exceptions propagate up through the method calling
hierarchy until they are caught and handled or until they
reach the level of the main method

A try block that contains a call to a method in which an
exception is thrown can be used to catch that exception

See Propagation.java (page 455)
See ExceptionScope.java (page 456)

Propagation.java
public class Propagation

/1 Invokes the levell method to begin the exception demonstation.
static public void main (String[] args)
ExceptionScope demo = new ExceptionScope();
System.out.printin("Program beginning.");

demo.levell();
System.out.printin("Program ending.");

12

Propagation:
The output

Program beginning.
Level 1 beginning.
Level 2 beginning.
Level 3 beginning.

The exception message is: / by zero

The call stack trace:
java.lang.ArithmeticException: / by zero
at ExceptionScope.level3(ExceptionScope.java:54)
at ExceptionScope.level2(ExceptionScope.java:41
at ExceptionScope.levell(ExceptionScope.java:18
at Propagation.main(Propagation.java:17)

Level 1 ending.
Program ending.

ExceptionScope.java

public class ExceptionScope

//
// Catches and handles the exception that is thrown in level3.

public void level1()
System.out.printin(“Level 1 beginning.”);
try
level2();
catch (ArithmeticException problem)

System.out.printin ();

System.out.printin ("The exception message is: " +
problem.getMessage());

System.out.printin ();

System.out.printin ("The call stack trace:");

problem.printStackTrace();

System.out.printin ();

System.out.printin(“Level 1 ending."); } continued?

ExceptionScope.java

public void level2()
System.out.printin(“Level 2 beginning.");
level3 ();

System.6ut.println("LeveI 2 ending."”);

11-
// Performs a calculation to produce an exception. It is not
/1 caught and handled at this level.

/.

public void level3 ()
int numerator = 10, denominator = 0;
System.out.printin("Level 3 beginning.");

int result = numerator / denominator;
System.out.printin("Level 3 ending.");

The Exception Class Hierarchy

= Figure 8.1 p.458

= Object

] Throwable

. Error

] AWTError

] VirtualMachineError

] Exception

. RunTimeException

] ArithmeticException
] IndexOutOfBoundException
. NullPointerException
. 10Exception

] NoSuchMethodException

16

Exception handling:
The throw Statement

A programmer can define an exception by extending the
Exception class or one of its descendants

Exceptions are thrown using the throw statement

Usually a throw statement is nested inside an if statement
that evaluates the condition to see if the exception should
be thrown

See CreatingExceptions.java (page 459)
See OutOfRangeException.java (page 460)

17

CreatingExceptions.java

import cs1.Keyboard;

public class CreatingExceptions

/7
// Creates an exception object and possibly throws it.

public static void main (String[] args) throws OutOfRangeException
final int MIN = 25, MAX = 40;
OutOfRangeException problem =
new OutOfRangeException ("Input value is out of range.");
System.out.print ("Enter an integer value between " + MIN +
"and " + MAX + ", inclusive: ");
int value = Keyboard.readInt();
// Determines if the exception should be thrown
if ﬁ\(alue < MIN || value > MAX)
throw problem;

System.out.println ("End of main method."); // may never reach
18

1 Throwing an exception

Enter an integer value between 25 and 40, inclusive: 3
OutOfRangeException: Input value is out of range.
At CreatingExceptions.main

(CreatingExceptions.java:18)

]
Enter an integer value between 25 and 40, inclusive: 27
End of main method

OutOfRangeException.java

public class OutOfRangeException extends Exception

/I
/1 Sets up the exception object with a particular message.
11-
OutOfRangeException (String message)

super (message);

}

= Whether to use an exception, a conditional, or a
loop is an important design decision

20

. Checked Exceptions

= An exception is either checked or unchecked

= A checked exception either must be caught by a
method, or must be listed in the throws clause of any
method that may throw or propagate it

= a throws clause is appended to the method
header

= The compiler will complain if a checked exception is
not handled appropriately

21

:-’ Unchecked Exceptions

= An unchecked exception does not require explicit
handling, though it could be processed that way

= The only unchecked exceptions in Java are objects of
type RuntimeException or any of its descendants

= Errors are similar to RuntimeException and its
descendants

= Errors should not be caught
= Errors to not require a throws clause

22

1 Standard 1/0

= There are three standard 1/0 streams:
= Standard input — defined by System.in
= standard output — defined by System.out
= standard error — defined by System.err

= System. in typically represents keyboard input

= System.out and System.err typically represent a
particular window on the monitor screen

= We use System.out when we execute printin
statements

= See p.461+ of text book 23

’ The 10Exception Class

= Operations performed by the 1/0 classes may throw
an 10Exception

= A file intended for reading or writing might not
exist

= Even if the file exists, a program may not be able
to find it

= The file might not contain the kind of data we
expect

= An IOException is a checked exception

24

Chapter 8:

1 Summary

= Study only section 8.0 for the examination

= Understand what the following are:
= the try-catch statement
= exception propagation
= creating and throwing exceptions
= (1/0 streams)

25

