
1

CSI1102:
Introduction to Software Design

Chapter 7: Inheritance

2

Learning objectives:
Inheritance

Another fundamental object-oriented technique is called
inheritance, for organizing and creating classes and for
promoting reuse
Understand what the following entails:

Deriving new classes from existing classes
Creating class hierarchies: a parent and children
The protected modifier
Polymorphism via inheritance
Inheritance hierarchies for interfaces

3

What is Inheritance?
Inheritance allows a software developer to derive a new
class from an existing one
The existing class is called the parent class, or superclass,
or base class
The derived class is called the child class or subclass.

As the name implies, the child inherits characteristics of the
parent

That is, the child class inherits
the methods and data defined for the parent class

4

Inheritance:
The main Idea

To tailor a derived class, the programmer can
add new variables or methods, or
modify the inherited ones

Software reuse is at the heart of inheritance
By using existing software components to create new
ones, we capitalize on all the effort that went into the
design, implementation, and testing of the existing
software

5

Visualizing Inheritance
Inheritance relationships often are shown graphically in a
class diagram, with the arrow pointing to the parent class

Inheritance creates an Inheritance creates an isis--a relationshipa relationship, meaning the , meaning the
child child is ais a more specific version of the parentmore specific version of the parent

Vehicle

Car

6

Deriving Subclasses
In Java, we use the reserved word extends to establish an
inheritance relationship

class Car extends Vehicle
{

// class contents
}

See Words.java, Book.java and Dictionary.java
(pp.384++)

2

7

UML diagram
showing inheritance

Words

+ main (args : String[]) : void

+ definitionMessage(): void

Dictionary

- definition: int

+ pageMessage():void

pages: int

Book

8

Driver program:
Words.java

public class Words
{

//Instantiates a derived class
public static void main (String[] args)
{

Dictionary webster = new Dictionary();

webster.pageMessage();
webster.definitionMessage();

}
}

9

Book.java:
The Parent class

public class Book
{

protected int pages = 1000;

// Prints a message about the pages of this book.
public void pageMessage ()
{
System.out.println ("Number of pages: " + pages);

}
}

10

Dictionary.java:
The Child class

public class Dictionary extends Book
{

private int definitions = 52500;

public void definitionMessage()
{ System.out.println("Number of definitions: "

+ definitions);
System.out.println("Definitions per page: "

+ definitions/pages);
}

}
Number of pages: 1000
Number of definitions: 52500
Definitions per page: 52

11

Visibility modification:
The protected Modifier

Visibility modifiers determine which class members are
inherited and which are not
Variables and methods declared with public visibility are
inherited; those with private visibility are not
But public variables violate the principle of encapsulation
There is a third visibility modifier that helps in inheritance
situations: protected

12

The protected Modifier

The protected visibility modifier allows a member of a
parent class to be inherited by a child

protected visibility provides more encapsulation than
public does

However, protected visibility is not as tightly
encapsulated as private visibility

The details of each modifier are given in Appendix F

3

13

Referring to a parent:
The super Reference

Constructors are not inherited, even though they have
public visibility
Yet we often want to use the parent's constructor to set up
the "parent's part" of the object
The super reference can be used to refer to the parent
class, and often is used to invoke the parent's constructor

See Word2 example, pp.388-393

14

The driver program:
Words2.java

public class Words2
{

//Instantiates a derived class
public static void main (String[] args)
{
Dictionary2 webster = new Dictionary2(1500, 52500);

webster.pageMessage();
webster.definitionMessage();

}
} Number of pages: 1500

Number of definitions: 52500
Definitions per page: 35

15

The parent class:
Book2.java

public class Book2
{

protected int pages;

public Book2(int numPages)
{

pages = numPages;
}

// print a message
public void pageMessage()
{

System.out.println("Number of pages: " + pages);
}

}

16

The child class:
Dictionary2.java

public class Dictionary2 extends Book2
{
private int definitions;

public Dictionary2(int numPages, int numDefinitions)
{
super(numPages);

definitions = numDefinitions;
}

public void definitionMessage()
{
System.out.println("Number of definitions: " + definitions);
System.out.println("Definitions per page:" + definitions/pages);

}
}

17

More about
The super Reference

A child’s constructor is responsible for calling the parent’s
constructor

The first line of a child’s constructor should use the super
reference to call the parent’s constructor

The super reference can be used to reference other
variables and methods defined in the parent’s class

18

Single vs. Multiple Inheritance
Java supports single inheritance, meaning that a derived
class can have only one parent class

Multiple inheritance, in some other languages, allows a
class to be derived from two or more classes, inheriting the
members of all parents

Collisions, such as the same variable name in two
parents, have to be resolved
In most cases, the use of interfaces gives us aspects
of multiple inheritance without the overhead

4

19

Overriding Methods: Redefining

A child class can override the definition of an inherited
method in favor of its own

That is, a child can redefine a method that it inherits
from its parent

The new method must have the same signature as the
parent's method, but can have a different body

The type of the object executing the method determines
which version of the method is invoked

20

Overriding methods:
Messages.java (p.392)

public class Messages
{

public static void main (String[] args)
{

Thought parked = new Thought();
Advice dates = new Advice();

parked.message();
dates.message();

}
}

I feel fine

Warning: Time is shrinking

21

Thought.java
public class Thought

{
public void message()
{

System.out.println("I feel fine");
System.out.println();

}
}

22

Advice.java
public class Advice
{

public void message()
{

System.out.println("Warning: Time is shrinking");
System.out.println();

}
}

public class Advice extends Thought
{

public void message()
{

System.out.println("Warning: Time is shrinking");
System.out.println();
super.message();

}
}

23

Overriding Methods
and Variables

Note that a parent method can be invoked explicitly using
the super reference
If a method is declared with the final modifier, it cannot
be overridden
The concept of overriding can be applied to data (called
shadowing variables), but generally it should be avoided

24

Overloading vs. Overriding:
Not the same

Overloading deals with multiple methods in the same
class with the same name but different signatures
Overriding deals with two methods, one in a parent
class and one in a child class, that have the same
signature

Overloading lets you define a similar operation in different
ways for different data
Overriding lets you define a similar operation in different
ways for different object types

5

25

Class Hierarchies
A child class of one parent can be the parent of
another child, forming a class hierarchy

Business

RetailBusiness ServiceBusiness

KMart Macys Kinkos
26

Class Hierarchies:
Some definitions

Two children of the same parent are called siblings
Good class design puts all common features as high in the
hierarchy as is reasonable
An inherited member is passed continually down the line

The inheritance mechanism is transitive.
That is, a child class inherits from all its ancestor
classes
There is no single class hierarchy that is appropriate for all
situations
Class hierarchies often need to be extended and modified to
keep up with changes

27

The Object Class:
Included in java.lang

All classes are derived from the Object class
The Object class is the ultimate root of all class
hierarchies
The Object class contains a few useful methods, which
are inherited by all classes

For example, the toString method is defined in the
Object class
That’s why the println method can call toString
for any object that is passed to it – all objects are
guaranteed to have a toString method via
inheritance

28

Abstract Classes
An abstract class is a placeholder in a class hierarchy that
represents a generic concept
An abstract class cannot be instantiated
We use the modifier abstract on the class header to
declare a class as abstract

abstract public class vehicle

29

What are Abstract Classes?
An abstract class often contains abstract methods with no
definitions (like an interface does), though it doesn’t need to
Unlike an interface, the abstract modifier must be applied
to each abstract method
An abstract class typically contains non-abstract methods
with method bodies, further distinguishing abstract classes
from interfaces
A class declared as abstract does not need to contain
abstract methods

30

What are Abstract Classes?
The child of an abstract class must override the abstract methods of the
parent, or it too will be considered abstract

An abstract method cannot be defined as
final (because it must be overridden) or
static (because it has no definition yet)

The use of abstract classes is a design decision; it helps us establish
common elements in a class that is too general to instantiate

E.g. Vehicle, FuelConsumption
E.g. Employee, BenefitsCalculation

6

31

Indirect use of class members:
References and Inheritance

An object reference can refer to an object of its class, or
to an object of any class related to it by inheritance

For example, if the Holiday class is used to derive a
child class called Christmas, then a Holiday reference
could be used to point to a Christmas object

Holiday

Christmas

Holiday day;
day = new Christmas();

32

References and Inheritance:
Widening versus narrowing

Widening conversion:
Assigning a predecessor object to an ancestor reference
Performed by simple assignment

Narrowing conversion:
Assigning an ancestor object to a predecessor reference
Performed with a cast

33

Indirect Use
of Non-inherited Members

An inherited member can be referenced directly by name in
the child class, as if it were declared in the child class

But even if a method or variable is not inherited by a child,
it can still be accessed indirectly through parent methods

See FoodAnalysis.java (page 403)
See FoodItem.java (page 404)
See Pizza.java (page 405)

34

FoodAnalysis.java
public class FoodAnalysis
{

public static void main (String[] args)
{

Pizza special = new Pizza(275);

System.out.println("Calories per serving: " +
special.caloriesPerServing());

}
}

Calories per serving: 309

35

FoodItem.java
public class FoodItem

{
final private int CAL_PER_GRAM = 9;
private int fatGrams;
protected int servings;

public FoodItem(int numFatGrams, int numServings)
{

fatGrams = numFatGrams;
servings = numServings;

}

private int calories()
{

return fatGrams*CAL_PER_GRAM;
}

public int caloriesPerServing()
{

return (calories()/servings);
}

} 36

Pizza.java
public class Pizza extends FoodItem

{
public Pizza(int fatGrams)
{

super(fatGrams, 8);
}

}

7

37

Polymorphism:
Having many forms

A reference can be polymorphic, which can be defined as
"having many forms“

A polymorphic reference variable can refer to different
types of objects during execution
Polymorphic references are resolved at run time; this
is called dynamic binding

Careful use of polymorphic references can lead to
elegant, robust software designs

Mammal pet;
Horse myhorse = new Horse(); // Horse derived from Mammal

// Horse is-a Mammal
pet = myhorse;

38

Polymorphism via Inheritance
Suppose the Holiday class has a method called
celebrate, and the Christmas class overrides it

Now consider the following invocation:

day.celebrate();

If day refers to a Holiday object, it invokes the Holiday
version of celebrate; if it refers to a Christmas object,
it invokes the Christmas version

39

Polymorphism via Inheritance
Consider the following class hierarchy:

StaffMember

Volunteer Employee

Executive Hourly

• Now consider the task of paying all employees
40

Firm.java

public class Firm
{

public static void main (String[] args)
{

Staff personnel = new Staff();
personnel.payday();

}
}

Name: Sam
Phone: 555-3456
Paid: 3341.07
Name: Joe
Phone: 555-1432
Paid: 1000.0
Name: Sue
Phone: 555-6567
Thanks!
Name: Ann
Phone: 555-7876
Thanks!

41

Staff.java

public class Staff
{

private StaffMember[] staffList;

public Staff()
{

staffList = new StaffMember[4];

staffList[0] = new Executive("Sam", "555-3456", 2341.07);
staffList[1] = new Employee("Joe", "555-1432", 1000.00);
staffList[2] = new Volunteer("Sue", "555-6567");
staffList[3] = new Volunteer("Ann", "555-7876");

}

Continued…

42

Staff.java (cont.)
…

public void payday()
{

double amount;

for (int count = 0; count < staffList.length; count++)
{

System.out.println(staffList[count]);
amount = staffList[count].pay();
if (amount == 0)

System.out.println("Thanks!");
else

System.out.println("Paid: " + amount);
}

}
}

8

43

StaffMember.java
abstract public class StaffMember

{
protected String name;
protected String phone;

public StaffMember(String eName, String ePhone)
{

name = eName;
phone = ePhone;

}

public String toString()
{

String result = "Name: " + name + "\n";
result += "Phone: " + phone;

return result;
}

public abstract double pay();

} 44

Volunteer.java
public class Volunteer extends StaffMember

{
public Volunteer (String eName, String ePhone)
{

super(eName, ePhone);
}

public double pay()
{

return 0.0;
}

}

45

Employee.java
public class Employee extends StaffMember
{

protected double payRate;

public Employee(String eName, String ePhone, double rate)
{

super(eName, ePhone);
payRate = rate;

}

public double pay()
{ return payRate; }

public String toString()
{

String result = super.toString();

return result;
}

}
46

Executive.java
public class Executive extends Employee

{
private double bonus;

public Executive(String eName, String ePhone, double rate)
{

super(eName, ePhone, rate);
bonus = 1000;

}

public double pay()
{

double payment = super.pay() + bonus;

return payment;
}

}

47

Interface Hierarchies
Inheritance can be applied to interfaces as well as
to classes

One interface can be derived from another interface
The child interface inherits all abstract methods of the
parent

A class implementing the child interface must define all
methods from both the ancestor and child interfaces
All members of an interface are public
Note that class hierarchies and interface hierarchies are
distinct (they do not overlap)

48

Polymorphism via Interfaces
An interface name can be used to declare an object
reference variable
Interfaces allow polymorphic references in which

the method that is invoked is determined by the
object being referenced

9

49

Speakers,
Philosophers and Dogs

public interface Speaker
{

public void speak();
public void announce (String str);

}
Assume Classes Philosopher and Dog both implement the Speaker

interface:
Speaker guest;
guest = new Philosopher();
guest.speak(); speak method in Philosopher class
guest = new Dog();
guest.speak; speak method in Dog class

50

Inheritance and GUIs:
More in Chapter 9

An applet is an excellent example of inheritance
Recall that when we define an applet, we extend the
Applet class or the JApplet class
The Applet and JApplet classes already handle all the
details about applet creation and execution, including the
interaction with a Web browser
When we define certain methods, such as the paint
method of an applet, we are actually overriding a method
defined in the Component class, which is ultimately
inherited into the Applet class or the JApplet class

51

Summary:
Chapter 7

Understand what the following entails:
Inheritance
Deriving new classes from existing classes
Creating class hierarchies: a parent and children
The protected modifier
Polymorphism via inheritance
Inheritance hierarchies for interfaces

