
1

CSI1102:
Introduction to Software Design

Chapter 6: Arrays

2

Learning objectives:
Arrays (Chapter 6)

Understand how to do the following:
Declaring and using Arrays
Passing arrays and array elements as parameters
Declaring and using Arrays of objects
Sorting elements in an array: Selection and Insertion
Sort
Multidimensional arrays
The ArrayList class
Polygons and polylines, button components

3

Arrays:
Ordered list of values

0 1 2 3 4 5 6 7 8 9

79 87 94 82 67 98 87 81 74 91

An array of size N is indexed from zero to NAn array of size N is indexed from zero to N--11

scores

The entire arrayThe entire array
has a single namehas a single name

Each value has a numeric Each value has a numeric indexindex

This array holds 10 values that are indexed from 0 to 9This array holds 10 values that are indexed from 0 to 9
4

More about Arrays

A particular value in an array is referenced using the
array name followed by the index in brackets
For example, the expression

scores[2]

refers to the value 94 (which is the 3rd value in the
array)
In Java, the array itself is an object

Therefore the name of the array is a object
reference variable, and the array itself must be
instantiated

5

Examples of Using Arrays

scores[2] = 89;

int first = 5;
scores[first] = scores[first] + 2;

mean = (scores[0] + scores[9])/2;

System.out.println (“Top = “ + scores[5]);

6

More about Arrays

An array stores multiple values of the same type

That type can be primitive types or object
references

Therefore, we can create an array of integers, or an
array of characters, or an array of String objects,
etc.
The scores array could be declared as follows

int[] scores = new int[10];

2

7

Declaring Arrays:
More examples

float[] prices = new float[500];

boolean[] flags;
flags = new boolean[20];

char[] codes = new char[1750];

8

Bounds Checking:
Error checking

Once an array is created, it has a fixed size

An index used in an array reference must specify a valid
element

That is, the index value must be in bounds (0 to N-1)

The Java interpreter throws an
ArrayIndexOutOfBoundsException if an array
index is out of bounds

This is called automatic bounds checking

9

Bounds Checking:
An example

For example, if the array codes can hold 100 values, it
can be indexed using only the numbers 0 to 99
If count has the value 100, then the following
reference will cause an exception to be thrown:

System.out.println (codes[count]);

It’s common to introduce off-by-one errors when using
arrays

for (int index=0; index <= 100; index++)
codes[index] = index*50 + epsilon;

problem

10

Bounds Checking:
Using length

Each array object has a public constant called
length that stores the size of the array
It is referenced using the array name (just like any
other object):

scores.length

Note that length holds the number of elements,
not the largest index,

i.e. the value of length is (largest index + 1)

11

Bound checking:
Extract from ReverseOrder.java (p.325)

{ double[] numbers = new double[10];

System.out.println(“Size :” + numbers.length);

for (int index = 0; index < numbers.length; index++)
{

System.out.println(“Enter number “ + (index + 1) + “ : “);
numbers[index] = Keyboard.readDouble());

}
// print in reverse order
for (int index = numbers.length-1; index >= 0; index--)

{
System.out.println(numbers[index] + “ “);

}
} 12

Alternate Array Syntax:
No need to do!

The brackets of the array type can be associated with the
element type or with the name of the array

Therefore the following declarations are equivalent:

float[] prices;

float prices[];

The first format generally is more readable!!!

3

13

Initializer Lists:
Setting up the values

Note that when an initializer list is used:
the new operator is not used
no size value is specified

The size of the array is determined by the number of items
in the initializer list
An initializer list can only be used only in the declaration of an
array

char[] letterGrades = {‘A’, ‘B’, ‘C’, ‘D’,
‘E’, ‘F’};

14

Initializer lists:
Extract from Primes.java (pp.330)

…

int[] primeNums = {2, 3, 5, 7, 11, 13, 17, 19};

System.out.println(“Array length :” + primeNums.length);

System.out.println(“The first prime numbers”);

for (int scan = 0; scan < primeNums.length; scan++)

System.out.println(primeNums[scan] + “ “);

…

15

Using
Arrays as Parameters

An entire array can be passed as a parameter to a
method

Like any other object, the reference to the array is
passed, making the formal and actual parameters aliases
of each other

Changing an array element within the method changes
the original

An array element can be passed to a method as well, and
follows the parameter passing rules of that element's type

16

Using
Arrays of Objects

The following declaration reserves space to store 25
references to String objects

String[] words = new String[25];

It does NOT create the String objects themselves

Each object stored in an array must be instantiated
separately

See GradeRange.java (page 332)

17

Arrays of Objects:
Extract from GradeRange.java (pp.332)

…

int[] cutoff = {95, 90, 87, 83, 80};

String[] grades = (‘A+’, ‘A’, ‘A-’, ‘B+’, ‘B’);

for (int level = 0; level < cutoff.length; level++)

System.out.println(grades[level] + “ “ + cutoff[level]);

…
Output
A+ 95
A 90
A- 87
B+ 83
B 80

18

Command-Line Arguments:
About Main (at last!)

The signature of the main method indicates that it takes
an array of String objects as a parameter
These values come from command-line arguments that are
provided when the interpreter is invoked
For example, the following invocation of the interpreter
passes an array of three String objects into main:

> java DoIt pennsylvania texas california

These strings are stored at indexes 0-2 of the parameter

4

19

About Main (String[] args):
NameTag.java (p.334)

public class NameTag
{

public static void main (String[] args)
{

System.out.println();
System.out.println(“ “ + args[0]);
System.out.println(“My name is “ + args[1]);

}
}

> java NameTag Hello Sue
Hello

My name is Sue
> java NameTag Hello James

Hello
My name is James 20

Using
Arrays of Objects

Objects can have arrays as instance variables
Therefore, many useful structures can be created
simply with arrays and objects
The software designer must determine carefully an
organization of data and objects that makes sense
for the situation

See CD Collection example, p.335, 337-338

21

CD Selection Program:
UML diagram

Tunes

+ main (args : String[]) : void

+ addCD (title: String, artist: String,
cost: double, tracks:int): void
+ toString(): String
- increaseSize(): void

1

n

CDCollection

- collection : CD[]
- count: int
- totalCost: double

+ toString() : String

- title : String
- artist : String
- cost : String
- tracks : int

CD

22

CD Collection example:
Tunes.java (Driver program)

public class Tunes
{
public static void main (String[] args)
{

CDCollection music = new CDCollection();

music.addCD("So far so good", "Bryan Adams", 14.96, 14);
music.addCD("Enrique", "Enrique Iglesias", 15.96, 13);

System.out.println(music);
}

}

23

CD Collection example:
CDCollection.java

public class CDCollection
{ private CD[] collection;

private int count;
private double totalCost;

public CDCollection() // the constructor
{

collection = new CD[100];
count = 0;
totalCost = 0.0;

}
//Adds a CD to the collection
public void addCD(String title, String artist, double cost,
int tracks)
{

if (count == collection.length)
increaseSize();

collection[count] = new CD(title, artist, cost, tracks);
totalCost += cost;
count++;

} Continued..
24

CD Collection example:
CDCollection.java (cont.)
// double the size of the collection
private void increaseSize()
{

CD[] temp = new CD[collection.length * 2];

for (int cd = 0; cd < collection.length; cd++)
temp[cd] = collection[cd];

collection = temp;
}

public String toString()
{

String report = " ";

for (int cd = 0; cd < count; cd++)
report += collection[cd].toString() + "\n";

return report;
} }

5

25

CDCollection example:
CD.java

public class CD
{

private String title, artist;
private double cost;
private int tracks;

// The constructor
public CD (String name, String singer, double price, int numTracks)
{

title = name;
artist = singer;
cost = price;
tracks = numTracks;

}

// the toString for printing
public String toString()
{

String description;

description = title + "\t" + artist;

return description;
} } 26

Sorting of arrays
Sorting is the process of arranging a list of items in a
particular order
There are many algorithms for sorting a list of items
These algorithms vary in efficiency

We will examine two specific algorithms:
Selection Sort
Insertion Sort

27

Selection Sort:
The general idea
The approach of Selection Sort:

select a value and put it in its final place into the sort
list
repeat for all other values

In more detail:
find the smallest value in the list
switch it with the value in the first position
find the next smallest value in the list
switch it with the value in the second position
repeat until all values are in their proper places

28

Selection Sort:
The Selection Sort method

An example:

original: 3 9 6 1 2
smallest is 1: 1 9 6 3 2
smallest is 2: 1 2 6 3 9
smallest is 3: 1 2 3 6 9
smallest is 6: 1 2 3 6 9

See SortGrades.java (page 342)
See Sorts.java (page 343) -- the selectionSort
method

29

Selection Sort:
The selectionSort Method

public static void selectionSort (int[] numbers)
{

int min, temp;

for (int index = 0; index < numbers.length – 1; index++)
{

min = index;
for (int scan = index+1; scan < numbers.length; scan++)

if (numbers[scan] < numbers[min])
min =scan;

// Swap the values
temp = numbers[min];
numbers[min] = numbers[index];
numbers[index] = temp;

}
} 30

Insertion Sort:
The general idea

The approach of Insertion Sort:
pick any item and insert it into its proper place in a sorted sublist
repeat until all items have been inserted

In more detail:
consider the first item to be a sorted sublist (of one
item)
insert the second item into the sorted sublist, shifting
the first item as needed to make room to insert the
new addition
insert the third item into the sorted sublist (of two
items), shifting items as necessary
repeat until all values are inserted into their proper
positions

6

31

Sorting of Arrays:
Insertion Sort

An example:

original: 3 9 6 1 2
insert 9: 3 9 6 1 2
insert 6: 3 6 9 1 2
insert 1: 1 3 6 9 2
insert 2: 1 2 3 6 9

See Sorts.java (page 343) -- the insertionSort
method

32

Insertion Sort:
The insertionSort method

public static void insertionSort (int[] numbers)
{

for (int index = 1; index < numbers.length; index++)
{

int key = numbers[index];
int position = index;

while (position > 0 && numbers[position – 1] > key)
{

numbers[position] = numbers[position – 1];
position --;

}
numbers[position] = key;

}
}

33

Comparing Sorts:
Selection versus Insertion

Both Selection and Insertion sorts are similar in efficiency
They both have outer loops that scan all elements, and inner
loops that compare the value of the outer loop with almost
all values in the list

Therefore approximately n2 number of comparisons are
made to sort a list of size n

We therefore say that these sorts are of order n2

Other sorts are more efficient: order n log2 n

34

Sorting Objects:
An example

The order of a collection of objects must be defined by the
person defining the class
Recall that a Java interface can be used as a type name
and guarantees that a particular class implements
particular methods
We can use the Comparable interface and the
CompareTo method to develop a generic sort for a set
of objects

See SortPhoneList.java and Contact.java (page
347-348)

35

More about Arrays:
Two-Dimensional Arrays

A one-dimensional array stores a simple list of values
A two-dimensional array can be thought of as a table of values, with
rows and columns
Because each dimension is an array of array references, the arrays
within one dimension can be of different lengths

Sometimes these are called ragged arrays
A two-dimensional array element is referenced using two index
values

int[][] scores = new int[10][10];
value = scores [3][6]

To be precise, a two-dimensional array in Java is
an array of arrays

36

Two-Dimensional Arrays:
TwoDArray.java
public class TwoDArray
{
// create a 2D array of integers and print them
public static void main (String[] args)
{

int[][] table = new int[4][6];
// load values
for (int row = 0; row < table.length; row++)

for (int col = 0; col < table[row].length; col++)
table[row][col] = row * 10 + col;

// print the values
for (int row = 0; row < table.length; row++)
{

for (int col = 0; col < table[row].length; col++)
System.out.print(table[row][col] + "\t");
System.out.println();

} … }}

7

37

Multidimensional Arrays

An array can have many dimensions
If it has more than one dimension, it is called a
multidimensional array
Each dimension subdivides the previous one into the
specified number of elements
Each array dimension has its own length constant
This might be difficult for humans to visualize

38

The ArrayList Class:
Growing and Shrinking

The ArrayList class is part of the java.util
package

Like an array, it can store a list of values and
reference them with an index

Unlike an array, an ArrayList object grows and
shrinks as needed

Items can be inserted or removed with a single method
invocation

It stores references to the Object class

39

Some Methods of the
ArrayList Class

ArrayList () // constructor: creates an empty list

boolean add (Object obj) // Add object to end of list

void add (int index, Object obj)
// Add object at index

void clear(); // Remove all elements from the list

Object remove (int index);
//Remove element at index

Object remove (int index);
//Return element at index without removing it

Boolean isEmpty(); //Return true if the list is empty
40

ArrayList Efficiency
The ArrayList class is implemented using an array.

The array expands beyond its initial capacity to
accommodate additional elements

Methods manipulate the array so that indexes remain
continuous as elements are added or removed

41

Using Arraylist:
Beatles.java

import java.util.ArrayList;
public class Beatles // stores and modify list of band members
{

public static void main(String[] args)
{

ArrayList band = new ArrayList();

band.add("Paul");
band.add("Pete");
band.add("John");
band.add("George");
System.out.println(band);

int location = band.indexOf("Pete");
band.remove(location);
System.out.println(band);

band.add("Ringo");
System.out.println(band);
System.out.println("Size of band: " + band.size()); } } 42

Polygons and Polylines
Arrays often are helpful in graphics processing
Polygons and polylines are shapes that can be defined by
values stored in arrays
The Polygon class, defined in the java.awt package can
be used to define and draw a polygon
Two versions of the overloaded drawPolygon and
fillPolygon methods take a single Polygon object as a
parameter
A Polygon object encapsulated the coordinates of the
polygon
See Rocket.java (page 360)

8

43

Other Button Components:
Check boxes
A check box is a button that can be toggled on or off
A check box is represented by the JCheckBox class
A change of state generates an item event

See StyleOptions.java and StyleGUI.java (pp. 364-5)

SAY IT WITH STYLE!

Bold Italic√

44

Check boxes:
Extract from StyleGUI.java

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
…
private JLabel saying;
private JCheckBox bold, italic;
private JPanel primary;
…
{

saying = new JLabel(“Say it with style!”);
bold = new JCheckBox(“Bold”);
italic = new JCheckBox(“Italic”);

…

StyleListener listerner = new
StyleListerner();

bold.addItemListener(listener);
italic.addItemListener(listener);

primary = new JPanel();
primary.add(saying);
primary.add(bold);
primary.add(italic);
primary.setBackground(Color.cyan);
primary.setPreferredSize(new

Dimension(300, 100);

45

The Font Class
A Font object is defined by the font name, the font style, and the
font size

The style of a font can be plain, bold, italic, or bold and italic
together

The itemStateChanged method of the listener responds when a
check box changes state

final int FONT_SIZE = 32;

int style = font.PLAIN;

if (bold.isSelected())
style = Font.BOLD;

saying.setFont (new Font(“Tahoma”, style,
FONT_SIZE); 46

Radio Buttons
A set of radio buttons represents a set of mutually exclusive
options
When a radio button from a group is selected, the other
button currently on in the group is toggled off
A radio button generates an action event
See QuoteOptions.java (page 368-369)

I THINK, THEREFORE I AM

Comedy Philosophy Carpentry ๐๏ ๐

47

Summary: Chapter 6
ARRAYS in Java

Array declaration and use
Passing arrays and array elements as parameters
Arrays of objects
Sorting elements in an array: selection and insertion
sort
Multidimensional arrays
The ArrayList class
Polygons and polylines; more button components

