
1

CSI1102
Introduction to Software Design

Chapter 4:
Writing Classes

2

Learning objectives:
Writing Your Own Classes
Understand what the following entails:

An object, its state and behavior
Class definitions
Encapsulation and Java modifiers
About methods:

method declaration, invocation, and parameter
passing
method overloading
method decomposition

Object relationships and aggregation
graphics-based objects

3

What is an Object?

An object has:
state - descriptive characteristics
behaviors - what it can do (or what can be done
to it)

For example, consider a coin that can be flipped
so that it's face shows either "heads" or "tails"

The state of the coin is its current face (heads or
tails)
The behavior of the coin is that it can be flipped
Note that the behavior of the coin might change
its state

4

What are Classes?

A class is a blueprint of an object
It is the model or pattern from which objects are
created
For example, the String class is used to define
String objects

Each String object contains specific characters (its
state)
Each String object can perform services
(behaviors) such as toUpperCase

We can also write our own classes that define specific
objects that we need
We can write a Coin class to represent a coin object

5

More about Classes
A class contains data declarations and method
declarations

int x, y;
char ch;

Data declarations

Method declarations

6

An example:
The Coin Class
Data:

face, an integer that represents the current face
HEADS and TAILS, integer constants that
represent the two possible states

Methods:
a Coin constructor, to initialize the object
a flip method, to flip the coin
a isHeads method, to determine if the current
face is heads
a toString method, to return a string
description for printing

2

7

The Coin Example:
CountFlips.java
// Demonstrate the use of a programmer-defined class

public class CountFlips
{

//
public static void main (String[] args)
{

final int NUM_FLIPS = 1000;
int heads = 0, tails = 0;

Coin myCoin = new Coin(); // instantiates the Coin object

Continued…
8

The Coin Example:
CountFlips.java

for (int count = 1; count <= NUM_FLIPS; count++)
{

myCoin.flip();

if (myCoin.isHeads())
heads++;

else
tails++;

}

System.out.println(“Number of flips” + NUM_FLIPS);
System.out.println(“Number of heads” + heads);
System.out.println(“Number of tails” + tails);

}
}

9

The Coin Example:
Coin.java
public class Coin
{

public final int HEADS = 0;
public final int TAILS = 1;

private int face;

// ---
// Sets up the coin by flipping it initially.
//
public Coin ()
{

flip();
}

Continued…
10

The Coin Example:
Coin.java

// ---
// Flips the coin by randomly choosing a face.
//
public void flip()
{

face = (int) (Math.random() * 2);
}

// ---
// Returns true if the current face is heads.
//
public boolean isHeads()
{

return (face == HEADS);
}

Continued…

public static double random() // p.870 Math class in java.lang
// returns a random number between 0.0 and 1.0

11

The Coin Example:
Coin.java
// ---

// Returns the current face of the coin as a string
//

public String toString()
{

String faceName;

if (face == HEADS)
faceName = "Heads";

else
faceName = "Tails";

return faceName;
}

}

12

An example:
Running CountFlips

Run 1:
Number of flips 1000
Number of heads 493
Number of tails 507

Run 2:
Number of flips 1000
Number of heads 507
Number of tails 493

3

13

“Overriding” Static Methods:
An example

I added the following method to the Coin class and it worked:

public static double random()
{

System.out.println("My random");
return 0;

}

You are not allowed to create a method in the Math class
named random()
Actually, you may be sued by SUN if you try to extend/modify
Packages, APIs, Classes or Methods created by them

they have the ownership!
14

About the strengths/weaknesses
of Static Classes and Methods

Recall: You do not have to create an object using
new
They stay in the system even if you may not need
them all the time
They are not efficiently managed by the automatic
garbage collection

Too many static classes and methods may slow
down your application
They are an “inheritance” from C++ and actually
do not really fit in “object oriented” paradigm

15

A Discussion:
The Coin Class
Note that the CountFlips program did not use the
toString method

A program will not necessarily use every service
provided by an object

Once the Coin class has been defined, we can use it
again in other programs as needed

16

Data Scope and Instance Data
The scope of data is the area in a program in which
that data can be used (referenced)
Data declared at the class level can be used by all
methods in that class
Local Data declared within a method can be used
only in that method

17

Instance Data
The face variable in the Coin class is called
instance data because each instance (object) of the
Coin class has its own

A class declares the type of the data, but it does not
reserve any memory space for it
Every time a Coin object is created, a new face
variable is created as well
The objects of a class share the method
definitions, but each has its own data space
That's the only way two objects can have different
states

18

Instance Data
See FlipRace.java (page 217)

face 0

coin1

int face;

class Coin

face 1

coin2

4

19

UML Diagrams
UML stands for the Unified Modeling Language

UML diagrams show relationships among classes and
objects

A UML class diagram consists of one or more classes,
each with sections for the class name, attributes, and
methods

Lines between classes represent associations

Associations can show multiplicity

20

UML Class Diagrams

A UML class diagram for the FlipRace program:

FlipRace

main (args : String[]) : void

Coin
face : int

flip() : void
isHeads() : boolean
toString() : String

1 2

21

UML Diagrams
A UML object diagram consists of one or more
instantiated objects.

It is a snapshot of the objects during an executing
program, showing data values

coin1 : Coin

face = 0

coin2 : Coin

face = 1

22

Object property:
Encapsulation
We can take one of two views of an object:

internal - the variables the object holds and the
methods that make the object useful
external - the services that an object provides
and how the object interacts

From the external view, an object is an encapsulated
entity, providing a set of specific services

These services define the interface to the object
Recall from Chapter 2 that an object is an
abstraction, hiding details from the rest of the system

23

More about Encapsulation

An object should be self-governing
Any changes to the object's state (its variables)
should be made only by that object's methods
We should make it difficult, if not impossible, to
access an object’s variables other than via its
methods
The user, or client, of an object can request its
services, but it should not have to be aware of how
those services are accomplished

24

More about Encapsulation

An encapsulated object can be thought of as a black
box : Its inner workings are hidden to the client,
which invokes only the interface methods

Client

Methods

Data

5

25

Visibility Modifiers

In Java, we accomplish encapsulation through the
appropriate use of visibility modifiers

A modifier is a Java reserved word that specifies
particular characteristics of a method or data value

We've used the modifier final to define a constant

Java has three visibility modifiers: public,
protected, and private

The protected modifier involves inheritance, which
we will discuss later

26

Visibility Modifiers

Members of a class that are declared with public
visibility can be accessed from anywhere

Public variables violate encapsulation

Members of a class that are declared with private
visibility can only be accessed from inside the class

Members declared without a visibility modifier have
default visibility and can be accessed by any class in
the same package

Java modifiers are discussed in detail in Appendix F

27

More about Visibility Modifiers

Methods that provide the object's services are usually
declared with public visibility so that they can be
invoked by clients

Public methods are also called service methods

A method created simply to assist a service method is
called a support method

Since a support method is not intended to be called
by a client, it should not be declared with public
visibility

28

Visibility Modifiers
public private

Variables

Methods

Violate
encapsulation

Enforce
encapsulation

Provide services
to clients

Support other
methods in the

class

29

Driver Programs
A driver program drives the use of other, more
interesting parts of a program

Driver programs are often used to test other parts of
the software

The Banking class contains a main method that
drives the use of the Account class, exercising its
services

See Banking.java (page 226)

See Account.java (page 227)
30

Driver Programs:
Banking.java

public class Banking
{
// creates some bank accounts and requests some services

public static void main (String[] args)
{

Account acct1 = new Account("Joe Smithfield", 2341, 200.00);
Account acct2 = new Account("Sue Smith", 3212, 1300.01);

acct1.deposit(23.43);

double smithBalance = acct2.deposit(500.00);
System.out.println("Smith's balance " + smithBalance);

acct1.addInterest();

System.out.println("Smithfields's new balance " + acct1.getBalance());
}

}

6

31

Driver Programs:
Account.java

public class Account
{

private final double RATE = 0.035; // interest rate of 3.5%

private long acctNumber;
private double balance;
private String name;

// Constructor sets up the account
public Account (String owner, long account, double initial)
{

name = owner;
acctNumber = account;
balance = initial;

}

Continued…
32

Driver programs:
Account.java (cont).
public double deposit (double amount)
{

if (amount < 0) // deposit value is negative
System.out.println("Error: invalid deposit.");

else
balance = balance + amount;

return balance;
}

public double addInterest()
{

balance += (balance * RATE);
return balance;

}

public double getBalance()
{

return balance;
} }

33

The results:
Banking & Accounts
Smith's balance 1800.01
Smithfield's new balance 231.25

Notes:
E.g. The balance field in PRIVATE, we cannot “directly”
access the data value; use a method.
See p.227-229 for the entire program
It all uses the NumberFormat class to format the output

34

Method Declarations
A method declaration specifies the code that will be
executed when the method is invoked (or called)

When a method is invoked, the flow of control jumps
to the method and executes its code

When complete, the flow returns to the place where
the method was called and continues

The invocation may or may not return a value,
depending on how the method is defined

35

myMethod();

myMethodcompute

Method Control Flow
The called method can be within the same class, in which
case only the method name is needed

36

doIt helpMe

helpMe();obj.doIt();

main

Method Control Flow

The called method can be part of another class or object

7

37

Method Header
A method declaration begins with a method header
char calc (int num1, int num2, String message)

method
name

return
type

parameter list

The parameter list specifies the type
and name of each parameter

The name of a parameter in the method
declaration is called a formal argument

38

Method Body

The method header is followed by the method body

char calc (int num1, int num2, String message)

{
int sum = num1 + num2;
char result = message.charAt (sum);

return result;
}

The return expression must be
consistent with the return type

sum and result
are local data

They are created
each time the
method is called, and
are destroyed when
it finishes executing

39

The return Statement

The return type of a method indicates the type of
value that the method sends back to the calling
location

A method that does not return a value has a void
return type

A return statement specifies the value that will be
returned

return expression;

Its expression must conform to the return type
40

Method Parameters
Each time a method is called, the actual parameters
in the invocation are copied into the formal
parameters

char calc (int num1, int num2, String message)

{
int sum = num1 + num2;
char result = message.charAt (sum);

return result;
}

ch = obj.calc (2, count, "Hello");

41

Method Local Data
Local variables can be declared inside a method

The formal parameters of a method create automatic
local variables when the method is invoked

When the method finishes, all local variables are
destroyed (including the formal parameters)

Keep in mind that instance variables, declared at the
class level, exists as long as the object exists

Any method in the class can refer to instance data

42

Constructors Revisited

Recall that a constructor is a special method
that is used to initialize a newly created object
When writing a constructor, remember that:

it has the same name as the class
it does not return a value
it has no return type, not even void
it typically sets the initial values of instance
variables

The programmer does not have to define a
constructor for a class

8

43

Overloading Methods

Method overloading is the process of using the same
method name for multiple methods

The signature of each overloaded method must be
unique

The signature includes the number, type, and order
of the parameters

The compiler determines which version of the
method is being invoked by analyzing the parameters

The return type of the method is not part of the
signature

44

Overloading Methods

float tryMe (int x)
{

return x + .375;
}

Version 1

float tryMe (int x, float y)
{

return x*y;
}

Version 2

result = tryMe (25, 4.32)

Invocation

45

Overloaded Methods

The println method is overloaded:

println (String s)
println (int i)
println (double d)

and so on...

The following lines invoke different versions of the
println method:

System.out.println ("The total is:");

System.out.println (total);
46

Overwriting Constructors:
SnakeEyes.java

public class SnakeEyes
{

// Roll dice and count snake eyes
public static void main (String[] args)
{

final int ROLLS = 500;
int snakeEyes = 0, num1, num2;

Die die1 = new Die(); //creates a 6-sides die
Die die2 = new Die(20); //creates a 20-sides die

for (int rols = 1; rols <= ROLLS; rols++)
{

num1 = die1.roll();
num2 = die2.roll();

if (num1 == 1 && num2 ==1)
snakeEyes++;

}

System.out.println("Number of Snake Eyes " + snakeEyes);
}}

47

Overwriting Constructors:
Die.java
public class Die
{ private final int MIN_FACES = 4;

private int numFaces; // number of sides on the die
private int faceValue; // current value showing on the die
//---
// Defaults to a six-sided die. Initial face value is 1.
//---
public Die ()
{ numFaces = 6; faceValue = 1; }

//---
// Explicitly sets the size of the die. Defaults to a size of
// six if the parameter is invalid. Initial face value is 1

48

Overwriting Constructors:
Die.java (continued)

public Die (int faces) //second constructor
{ if (faces < MIN_FACES)

numFaces = 6;
else numFaces = faces;
faceValue = 1;

}
// Rolls the die and returns the result.

public int roll ()
{ faceValue = (int) (Math.random() * numFaces) + 1;

return faceValue;
}

// Returns the current die value.
public int getFaceValue ()
{ return faceValue; }

}

9

49

Tips about writing methods:
Method Decomposition

A method should be relatively small, so that it can be
understood as a single entity

A potentially large method should be decomposed
into several smaller methods as needed for clarity

A service method of an object may call one or more
support methods to accomplish its goal

Support methods could call other support methods if
appropriate

50

Pig Latin Example:
“happy” becomes “appyhay”

The process of translating an English sentence into Pig
Latin can be decomposed into the process of translating
each word
The process of translating a word can be decomposed
into the process of translating words that

begin with vowels
begin with consonant blends (sh, cr, tw, etc.)
begins with single consonants

See PigLatin.java (page 238) and PigLatinTranslator.java
(page 240)

51

Class Diagrams Revisited

In a UML class diagram, public members can be
preceded by a plus sign

Private members are preceded by a minus sign

A class diagram for the PigTranslator program:

PigLatin

+ main (args : String[]) :
void

+ translate (sentence : String) : String
- translateWord (word : String) : String
- beginsWithVowel (word : String) :
boolean
- beginsWithBlend (word : String) :
boolean

1 1
PigLatinTranslator

52

Object Relationships
Objects can have various types of relationships to
each other
A general association, as we've seen in UML
diagrams, is sometimes referred to as a use
relationship
A general association indicates that one object (or
class) uses or refers to another object (or class) in
some way
We could even annotate an association line in a UML
diagram to indicate the nature of the relationship

Author Bookwrites

53

Object Relationships:
Rational Number example

Association may occur between objects of the same class
For example, consider some Rational number objects:

Rational r1 = new Rational(6, 8);

Rational r2 = new Rational(1, 3);

Rational r3, r4, r5;

r3 = r1.add(r2);

r4 = r1. subtract(r2);

R5 = r1.divide(r2);

One object (r1) is executing the method and another
(r2) is passed as a parameter

54

Object relationships:
How does “add” work?

public int getDenominator()
{

return denominator;
}

public Rational add (Rational op2)
{

// the calculation
int commonDenominator = demonimator * ops.getDenominator();
int numerator1 = numerator + ops.getDenominator();
int numerator2 = op2.getNumerator() * denominator;
int sum = numerator1 + numerator 2;

return new Rational (sum, commonDenominator);
}

10

55

Aggregation

An aggregate object is an object that contains references
to other objects
For example, an Account object contains a reference to
a String object (the owner's name)
An aggregate object represents a has-a relationship
A bank account has a name
Likewise, a student may have one or more addresses

56

Aggregation:
Student addresses

public class StudentBody
{

public static void main(String[] args)
{

Address school = new Address(“Smithstreet 1”, “Ottawa”, “ON”, 12312);
Address jHome = new Address(“Mytown 23”, Quebec”, “QC”, 23156);
Student john = new Student(“John”, “Doe”, jHome, school);

System.out.println(john); // use toString to automatically print
}

}

See page 250 to 253

John Doe Hometown 23 Quebec QC 231 Smithstreet 1 Ottawa ON 12312

The output

57

Aggregation:
Student.java

public class Student
{ private String firstName, lastName;

private Address homeAddress, schoolAddress;
// set up the student object
public Student(String first, String last, Address home, Address school)
{

firstName = first;
lastName = last;
homeAddress = home;
schoolAddress = school;

}
public String toString() // return student object as a string
{

String result;
result = firstName + “ “ + lastName + “ “ + homeAddress + “ “ +schoolAddress;

return result;
} }

58

Aggregation:
Address.java

public class Address
{ private String streetAddress, city, province;

private long zipCode;
// set up the address object
public Address(String street, String town, String st, long zip)
{

streetAddress = street;
city = town;
province = st;
zipCode = zip;

}
public String toString() // return student object as a string
{

String result;
result = streetAddress + “ “ + city + “ “ + province + “ “ + zipCode;

return result;
} }

59

Aggregation in UML
An aggregation association is shown in a UML class
diagram using an open diamond at the aggregate end

StudentBody

+ main (args : String[]) :
void

+ toString() : String

1 2
Student

- firstName : String
- lastName : String
- homeAddress : Address
- schoolAddress : Address

+ toString() : String

- streetAddress : String
- city : String
- province : String
- zipCode : long

Address

60

Applet Methods
In previous examples we've used the paint method
of the Applet class to draw on an applet

The Applet class has several methods that are
invoked automatically at certain points in an applet's
life
The init method, for instance, is executed only
once when the applet is initially loaded
The start and stop methods are called when the
applet becomes active or inactive
The Applet class also contains other methods that
generally assist in applet processing

11

61

Graphical Objects
Any object we define by writing a class can have
graphical elements

The object must simply obtain a graphics context (a
Graphics object) in which to draw

An applet can pass its graphics context to another
object just as it can any other parameter

See LineUp.java (page 257) and StickFigure.java
(page 259) how to draw “Stick Figure”

62

Summary:
Writing Your Own Classes

Understand what the following entails:
An object, its state and behavior
Class definitions
Encapsulation and Java modifiers
About methods

method declaration, invocation, and parameter
passing
method overloading
method decomposition

Object relationships and aggregation
Graphics-based objects

