
1

CSI1102
Introduction to Software Design

Chapter 3:
Program Statements

2

Learning objectives:
Program Statements

Understand the concepts of “flow of control” through a
method

Selection statements: if, if-else and switch

Operators
Boolean operators: AND, OR, NOT
Other Java operators: increment ++, decrement --,
assignment += and conditional ?

Repetition statements: while, do and for

Understand the important program development stages

3

What is the “Flow of Control”?

Some programming statements modify the linear flow of
control, allowing us to:

decide whether or not to execute a particular
statement, or
perform a statement over and over, repetitively

These decisions are based on a Boolean expression (also
called a condition) that evaluates to true or false

The order of statement execution is called the
flow of control

4

Selection Statement type 1:
The IF Statement

if (condition)
statement;

if is a Java
reserved word

The condition must be a boolean expression.
It must evaluate to either true or false.

If the condition is true, the statement is executed.
If it is false, the statement is skipped.

condition
evaluated

false

statement

true

5

The if Statement:
An example Age.java

import cs1.Keyboard;

public class Age
{
// Reads your age from the keyboard and prints a comment

public static void main (String[] args)
{

final int MINOR = 21;

System.out.print("enter your age: ");
int age = Keyboard.readInt();

if (age < MINOR)
System.out.println("Enjoy life.");

System.out.println("Age is a state of mind.");
}

}
6

Selection Statement type 2:
The if-else statement

condition
evaluated

statement1

true false

statement2

if (condition)
statement1;

else
statement2;

E.g.:
if (height <= MAX)

adjustment = 0;
else

adjustment = MAX – height;

If the condition is true, statement1 is executed; if
the condition is false, statement2 is executed
One or the other will be executed, but not both

2

7

Nested if Statements:
MinOfThree.java
import cs1.Keyboard;

public class MinOfThree
{
// Read 3 integers from the screen and print the smallest

public static void main (String[] args)
{

int num1, num2, num3, min = 0;

System.out.println("Enter three integers");
num1 = Keyboard.readInt();
num2 = Keyboard.readInt();
num3 = Keyboard.readInt();

Continued…. 8

Nested if Statements:
MinOfThree.java (cont)

if (num1 < num2)
if (num1 < num3)

min = num1;
else

min = num3;
else

if (num2 < num3)
min = num2;

else
min = num3;

System.out.println("Minimum value: " + min);
}

} Enter three integers:
21341 3424 1233
Minimum value: 1233

9

Selection Statement type 3:
The switch Statement

The general syntax of a switch statement is:

switch (expression)
{

case value1 :
statement-list1

case value2 :
statement-list2

case value3 :
statement-list3

case ...

}

switch
and
case
are

reserved
words

If expression
matches value2,
control jumps
to here

Important statements:
Break
Default

10

The Switch Statement:
GradeReport.java

import cs1.Keyboard;

public class GradeReport
{

// Reads a grade and print a comment

public static void main (String[] args)
{

int grade, category;

System.out.println("Enter a numeric grade:");
grade = Keyboard.readInt();

category = grade/10;

System.out.print ("That grade is ");

Continued….

11

The Switch Statement:
GradeReport.java

switch (category)
{

case 10:
System.out.println("a perfect score. Excellent.");
break;

case 9:
System.out.println("well above average. Well done.");
break;

case 8:
System.out.println("above average. Good!");
break;

default:
System.out.println("not passing.");

}
}

}
Enter a numeric grade:
87
That grade is above average. Good!

12

Selection Statement type 3:
The switch Statement
The expression of a switch statement must result in
an integral type, meaning an int or a char

It cannot be a boolean value, a floating point value
(float or double), a byte, a short, or a long

The implicit boolean condition in a switch statement
is equality - it tries to match the expression with a
value

How can we implement the Switch in another
way?

3

13

What are Block Statements?

Several statements can be grouped together into a
block statement

A block is delimited by braces : { … }

A block statement can be used wherever a statement
is called for by the Java syntax

For example, in an if-else statement, the if
the else portion, or both, could be block statements

See Guessing.java (page 141)

14

What are Boolean
expressions?
A condition often uses one of Java's equality operators
or relational operators, which all return boolean results:

== equal to
!= not equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to

E.g. (age != 21) (age >= 21) (age == 21)

15

Logical Operators and
Truth Tables
Boolean expressions can use the following logical
operators:

! Logical NOT
&& Logical AND
|| Logical OR

They all take boolean operands and produce boolean
results

Logical NOT is a unary operator (it operates on one
operand) e.g. !found
Logical AND and logical OR are binary operators
(each operates on two operands)

e.g. (Age != 60) && !found

16

Truth Tables
A truth table shows the possible true/false combinations
of the terms

Since && and || each have two operands, there are four
possible combinations of conditions a and b

We can use truth tables for debugging!

a b a && b a || b

true true true true

true false false true

false true false true

false false false false

17

More about Logical Operators

Conditions can use logical operators to form complex
expressions
if (total < MAX+5 && !found)

System.out.println ("Processing…");

Logical operators have precedence relationships among
themselves and with other operators

all logical operators have lower precedence than the
relational or arithmetic operators
logical NOT has higher precedence than logical AND
and logical OR

18

Beware:
Short Circuited Operators

The processing of logical AND and logical OR is
“short-circuited”

If the left operand is sufficient to determine the
result, the right operand is not evaluated

if (count != 0 && total/count > MAX)
System.out.println ("Testing…");

This type of processing must be used carefully:
WHY????

4

19

Comparing Characters
We can use the relational operators on character
data

The results are based on the Unicode character set

The following condition is true because the character
+ comes before the character J in the Unicode
character set:

if ('+' < 'J')
System.out.println ("+ is less than J");

The uppercase alphabet (A-Z) followed by the lowercase
alphabet (a-z) appear in alphabetical order in the
Unicode character set

20

Comparing Strings
Remember that a character string in Java is an object

We cannot use the relational operators to compare
strings

The equals method can be called with strings to
determine if two strings contain exactly the same
characters in the same order
E.g. (name1 == name2)

The String class also contains a method called
compareTo to determine if one string comes before
another
E.g. int result = name1.compareTo(name2);

21

Comparing Strings:
Lexicographic Ordering
Because comparing characters and strings is based on a
character set, it is called a lexicographic ordering
This is not strictly alphabetical when uppercase and
lowercase characters are mixed

For example, the string "Great" comes before the
string "fantastic" because all of the uppercase
letters come before all of the lowercase letters in
Unicode

Also, short strings come before longer strings with the
same prefix (lexicographically)
Therefore "book" comes before "bookcase"

22

Beware:
Comparing Float Values
You should rarely use the equality operator (==)
when comparing two floats, rather determine if they are
"close enough"

Therefore, to determine the equality of two floats, you
may want to use the following technique:

if (Math.abs(f1 - f2) < 0.00001)
System.out.println ("Essentially equal.");

23

More Operators

To round out our knowledge of Java operators, let's
examine a few more
In particular, we will examine

the increment (++) and decrement (--) operators
the assignment (+=) operators
the conditional (?) operator

count++; is functionally equivalent to

count = count + 1;

24

Increment and Decrement

The increment and decrement operators can be
applied in prefix form (before the operand) or postfix
form (after the operand)

When used alone in a statement, the prefix and
postfix forms are functionally equivalent. That is,

count++;

is equivalent to

++count;

5

25

Increment and Decrement

When used in a larger expression, the prefix and postfix
forms have different effects

In both cases the variable is incremented
(decremented)

But the value used in the larger expression depends on
the form used:

Expression
count++
++count
count--
--count

Operation
add 1
add 1

subtract 1
subtract 1

Value Used in Expression
old value
new value
old value
new value

26

Increment and Decrement

If count currently contains 45, then the statement

total = count++;

makes total = ? and count = ?

If count currently contains 45, then the statement

total = ++count;

makes total = ? and count = ?

27

Assignment Operators

Often we perform an operation on a variable, and
then store the result back into that variable

Java provides assignment operators to simplify that
process

For example, the statement

num += count;

is equivalent to

num = num + count;

28

Assignment Operators

There are many assignment operators, including the
following:

Operator

+=
-=
*=
/=
%=

Example

x += y
x -= y
x *= y
x /= y
x %= y

Equivalent To

x = x + y
x = x - y
x = x * y
x = x / y
x = x % y

29

Assignment Operators

The right hand side of an assignment operator can
be a complex expression

The entire right-hand expression is evaluated first,
then the result is combined with the original variable

Therefore

result /= (total-MIN) % num;

is equivalent to

result = result / ((total-MIN) % num);

30

Assignment Operators
The behavior of some assignment operators depends
on the types of the operands

If the operands to the += operator are strings, the
assignment operator performs string concatenation

The behavior of an assignment operator (+=) is always
consistent with the behavior of the "regular" operator
(+)

I do not recommend using this “shorthand” It
can lead to errors. Rather type the complete
expression, except in Loops.

6

31

The Conditional Operator

Java has a conditional operator that evaluates a
boolean condition that determines which of two other
expressions is evaluated

The result of the chosen expression is the result of
the entire conditional operator

Its syntax is:

condition ? expression1 : expression2

If the condition is true, expression1 is
evaluated; if it is false, expression2 is evaluated

32

The Conditional Operator

The conditional operator is similar to an if-else
statement, except that it forms an expression that
returns a value

For example:

larger = ((num1 > num2) ? num1 : num2);

If num1 is greater that num2, then num1 is assigned to
larger; otherwise, num2 is assigned to larger

The conditional operator is ternary because it requires
three operands

33

The Conditional Operator

Another example:

System.out.println ("Your change is " + count +
((count == 1) ? "Dime" : "Dimes"));

If count equals 1, then "Dime" is printed

If count is anything other than 1, then "Dimes" is
printed

34

Repetition Statements
Java has three kinds of repetition statements:

the while loop
the do loop
the for loop

The programmer should choose the right kind of loop
for the situation

35

Repetition:
The while Statement

while (condition)
statement;while is a

reserved word

If the condition is true, the statement is executed.
Then the condition is evaluated again.

The statement is executed repeatedly until
the condition becomes false.

statement

true

condition
evaluated

false

36

The while Statement

Note that if the condition of a while statement is false
initially, the statement is never executed

Therefore, the body of a while loop will execute zero
or more times

7

37

The While Statement:
Average.java

import java.text.DecimalFormat;
import cs1.Keyboard;

public class Average
{

// Computes the average of a set of values
public static void main (String[] args)
{

int sum = 0, value, count = 0;
double average;

DecimalFormat fmt = new DecimalFormat("0.###");

System.out.print("Enter an integer (0 to quit) ");
value = Keyboard.readInt();

Continued… 38

The While Statement:
Average.java (cont)

while (value != 0) // sentinal 0 terminates the loop
{

count++;

sum += value;
System.out.println("The sum so far is " + sum);

System.out.print("Enter an integer (0 to quit) ");
value = Keyboard.readInt();

}

System.out.println("Number of values entered: " + count);
average = (double) sum/count;
System.out.println("Average number entered: " + average);

}
}

39

Avoiding Infinite Loops

The body of a while loop eventually must make the
condition false

If not, it is an infinite loop, which will execute until the
user interrupts the program

This is a common logical error

You should always double check to ensure that your
loops will terminate normally

40

Avoiding infinite loops:
Forever.java
public class Forever

{
// Computes the average of a set of values

public static void main (String[] args)
{

int count = 1;

while (count <= 25)
{

System.out.println(count);
count--;

}

System.out.println("Done");
}

}

41

Nested Loops
Similar to nested if statements, loops can be nested
as well

That is, the body of a loop can contain another loop

Each time through the outer loop, the inner loop goes
through its full set of iterations

See PalindromeTester.java (page 167)

42

The do Statement

do
{

statement;
}
while (condition)

do and
while are
reserved

words

The statement is executed once initially,
and then the condition is evaluated

The statement is executed repeatedly
until the condition becomes false

true

condition
evaluated

statement

false

8

43

The do Statement
A do loop is similar to a while loop, except that the
condition is evaluated after the body of the loop is
executed
Therefore the body of a do loop will execute at least
once
What is printed if count = 0 and LIMIT =5?
What is printed if count = 5 and LIMIT = 5?
What is printed if count = 6 and LIMIT = 5?

do while (count < LIMIT)
{ {

count = count + 1; count = count + 1;
system.out.println(count); system.out.println(count);

} }
while (count < LIMIT); 44

Comparing while and do

statement

true

condition
evaluated

false

while loop

true

condition
evaluated

statement

false

do loop

45

The for Statement

for (initialization ; condition ; increment)
statement;

Reserved
word

The initialization
is executed once

before the loop begins

The statement is
executed until the

condition becomes false

The increment portion is executed at the end of each iteration
The condition-statement-increment cycle is executed repeatedly

46

The for Statement
A for loop is functionally equivalent to the
following while loop structure:

Like a while loop, the condition of a for statement is tested
prior to executing the loop body

Therefore, the body of a for loop will execute zero or more
times

initialization;
while (condition)
{

statement;
increment;

}

statement

true

condition
evaluated

false

increment

initialization

47

The for Statement:
Stars.java

public class Stars
{

// Print lines of stars, from 1 to 10

public static void main (String[] args)
{

final int MAXROWS = 10;

for (int row = 1; row <= MAXROWS; row++)
{

for (int star = 1; star <= row; star++)
System.out.print(‘*’);

System.out.println();
}

}
}

48

The for Statement
Each expression in the header of a for loop is optional

If the initialization is left out, no initialization
is performed
If the condition is left out, it is always
considered to be true, and therefore creates an
infinite loop
If the increment is left out, no increment
operation is performed

Both semi-colons are always required in the for loop
header

9

49

Choosing a Loop Structure:
Some guidelines

When you can’t determine how many times you want
to execute the loop body, use a while statement or
a do statement

If it might be zero or more times, use a while
statement

If it will be at least once, use a do statement

If you can determine how many times you want to
execute the loop body, use a for statement

50

A word about
Program Development
The creation of software involves four basic activities:

establishing the requirements

creating a design

implementing the code

testing the implementation

The development process is much more involved
than this, but these are the four basic development
activities

51

Program Development
Suppose you were given some initial requirements:

accept a series of test scores

compute the average test score

determine the highest and lowest test scores

display the average, highest, and lowest test scores

Discuss how you would follow the program
development steps to create a solution

52

Program Development:
Requirement Analysis

Clarify and flesh out specific requirements
How much data will there be?
How should data be accepted?
Is there a specific output format required?

After conferring with the client, we determine:
the program must process an arbitrary number of test
scores
the program should accept input interactively
the average should be presented to two decimal
places

The process of requirements analysis may take a
long time

53

Program Development:
Design

Determine a possible general solution

Input strategy? (Sentinel value?)

Calculations needed?

An initial algorithm might be expressed in pseudo-code

Multiple versions of the solution might be needed to
refine it

Alternatives to the solution should be carefully
considered

54

Program Development:
Implementation
Translate the design into source code

Make sure to follow coding and style guidelines
Implementation should be integrated with compiling
and testing your solution
This process mirrors a more complex development
model we'll eventually need to develop more complex
software
The result is a final implementation

See the solution at ExamGrades.java (page 186)

10

55

Program Development:
Testing
Attempt to find errors that may exist in your

programmed solution

Compare your code to the design and resolve any
discrepancies

Determine test cases that will stress the limits and
boundaries of your solution

Carefully retest after finding and fixing an error

56

Summary: Chapter 3
Understand the concepts of “flow of control” through a
method
Selection statements: if, if-else and switch

Understand how to use Operators
Boolean operators: AND, OR, NOT
Other Java operators: increment ++, decrement --,
assignment += and conditional ?

Repetition statements: while, do and for
Understand the important program development stages

