
1

CSI1102
Introduction to Software Design

Chapter 2:
Objects and Primitive Data

2

Learning objectives:
Objects and Primitive Data
Introducing objects and their properties

Predefined objects: System.out
Variables and assignment
Primitive data types

Definition of the 8 types
Working with arithmetic expressions: operator
precedence and data conversion

Creating Objects in Java (using String examples)
Class libraries and packages: Random, Math,
Keyboard
Introducing Java applets

3

Introduction to Objects

An object represents something with which we can
interact in a program

An object provides a collection of services that we
can tell it to perform for us

The services are defined by methods in a class that
defines the object

A class represents a concept, and an object
represents the embodiment of a class

A class can be used to create multiple objects
4

A Predefined Object
The System.out object represents a destination to
which we can send output

A service is performed for us

In the Hello program, we invoked the println
method of the System.out object:

System.out.println (“Hello World. My name in Suzy");

object method information provided to the method
(parameters)

5

The print versus the println
Methods

// Countdown.java (p.65)
// demonstrate difference between print and println

public class Countdown
{

// prints lines of output representing a rocket countdown
//
public static void main (String[] args)
{

System.out.print(“Three…”);
System.out.print(“Two…”);
System.out.print(“One…”);
System.out.print(“Zero…”);

System.out.println(“Liftoff!”);
System.out.println(“Houston, we have a problem.”);

}
}

6

The print versus the println
Methods

The print method is similar to the println
method, except that it does not advance to the next
line
Both methods form part of the System.out object
Methods are invoked by means of parameters, which
is a “message” sent to the method.

println
Main

Countdown System.out

2

7

So what are
Objects and Classes?

Bank
Account

A class
(the concept)

John’s Bank Account
Balance: $5,257

An object
(the realization)

Bill’s Bank Account
Balance: $1,245,069

Mary’s Bank Account
Balance: $16,833

Multiple objects
from the same class

8

Object orientation definitions

Object orientation is a set of principles that is
based on the idea of conceptually autonomous,
independent structures called objects

Object: Waiter at Restaurant
Actions:Communicate with himself (?!!?), clients and personnel

An Object is an abstract representation of a real world entity with
a unique identity, built-in properties. It can communicate with itself
as well as other objects.

9

Object property 1: Inheritance
One class can be used to derive another via inheritance
Classes can be organized into inheritance hierarchies

Bank
Account

Account

Charge
Account

Savings
Account

Checking
Account

10

Object property 2: Abstraction

An abstraction hides (or suppresses) the right details at the
right time

we do not know its internal details

An object is abstract in that we don't have to think about
its internal details in order to use it, i.e. it is a black box

For example, we don't have to know how the println
method works in order to invoke it

11

Object property 2: Abstraction
Why abstraction?

A human being can manage only seven (plus or
minus 2) pieces of information at one time

But if we group information into chunks (such
as objects) we can manage many complicated
pieces at once

Classes and objects help us write complex software

12

Example Predefined Object:
Strings (See Facts.java p.68)

// Facts.java
// Demonstrate the use of string concatenation and automatic conversion

public class Facts
{

// print “good to know” facts
public static void main (String[] args)
{

// concatenate two strings into one
System.out.println(“We present the following facts for your “ + “use: ”);

// A string containing numeric digits
System.out.println(“Letters in Hawaiian alphabet: 12”);

// concatenating numeric values to a string
System.out.println (“Dialing code for Italy:” + 81);

}
}

3

13

Example Predefined Object in
Java: Character Strings

Every character string is an object in Java, defined by the
String class

Every string literal, delimited by double quotation marks,
represents a String object

The string concatenation operator (+) is used to append
one string to the end of another

It can also be used to append a number to a string

A string literal cannot be broken across two lines
in a program

14

Example Object in Java (cont):
String concatenation versus Arithmetic
Addition

// Addition.java
// Demonstrate the difference between string concatenation and

arithmetic addition
public class Addition
{

// Concatenate and adds two numbers and print the result

public static void main (String[] args)
{

System.out.println(“24 and 60 concatenated:” + 24 + 60);
System.out.println(“24 and 60 added:” + (24 + 60));

}
}

15

Example Object in Java (cont):
String concatenation versus Arithmetic
Addition

The plus operator (+) is also used for arithmetic addition

The function that the + operator performs depends on
the type of the information on which it operates

If both operands are strings, or if one is a string
and one is a number, it performs string
concatenation

If both operands are numeric, it adds them

The + operator is evaluated left to right

Parentheses can be used to force the operation order
16

More about strings:
Escape Sequences

What if we wanted to print a double quote character?
The following line would confuse the compiler because it
would interpret the second quote as the end of the
string
System.out.println ("I said "Hello" to you.");

An escape sequence is a series of characters that
represents a special character
An escape sequence begins with a backslash character
(\), which indicates that the character(s) that follow
should be treated in a special way
System.out.println ("I said \"Hello\" to you.");

17

More about strings:
Escape Sequences

Some Java escape sequences:

See Roses.java (page 71)

Escape Sequence

\b
\t
\n
\r
\"
\'
\\

Meaning

backspace
tab

newline
carriage return
double quote
single quote
backslash

18

Using Variables in Java

A variable is a name for a location in memory

A variable must be declared by specifying the
variable's name and the type of information that it
will hold

int total;

int count, temp, result;

Multiple variables can be created in one declaration

data type variable name

4

19

Variables and Assignments
// Geometry.java
// Illustrate the use of variable assignments
public class Geometry
{

// Prints the number of sides on a geometric shape

public static void main (String[] args)
{

int sides = 7;
System.out.println(“ A hegtagon has “ + sides + “ sides”.);
sides = 12;
System.out.println(“ A dodegan has “ + sides + “ sides”.);

}
}

20

Variables and Assignments
A variable can be given an initial value in the
declaration

When a variable is referenced in a program, its current
value is used

int sum = 0;
int base = 32, max = 149;

An assignment statement changes the value of a
variable total = 55;

You can assign only a value to a variable that is
consistent with the variable's declared type

21

Constants
A constant is an identifier that is similar to a variable
except that it holds one and only one value while
the program is active
The compiler will issue an error if you try to change the
value of a constant during execution
In Java, we use the final modifier to declare a
constant final int MIN_HEIGHT = 69;

Constants:
give names to otherwise unclear literal values
facilitate updates of values used throughout a
program
prevent inadvertent attempts to change a value 22

Primitive Data Types

There are exactly eight primitive data types in Java

Four of them represent integers:
byte, short, int, long

Two of them represent floating point numbers:
float, double

One of them represents characters:
char

And one of them represents boolean values:
boolean

23

Primitive data types 1-6:
Numeric
The difference between the various numeric primitive
types is their size, and therefore the values they can
store:

Type

byte
short
int
long

float
double

Storage

8 bits
16 bits
32 bits
64 bits

32 bits
64 bits

Min Value

-128
-32,768
-2,147,483,648
< -9 x 1018

+/- 3.4 x 1038 with 7 significant digits
+/- 1.7 x 10308 with 15 significant digits

Max Value

127
32,767
2,147,483,647
> 9 x 1018

24

Binary Math (revision)

Once information is digitized, it is represented and
stored in memory using the binary number system

A single binary digit (0 or 1) is called a bit

Devices that store and move information are cheaper
and more reliable if they have to represent only two
states

A single bit can represent two possible states, like a
light bulb that is either on (1) or off (0)

Permutations of bits are used to store values

5

25

Bit Permutations

1 bit
0
1

2 bits
00
01
10
11

3 bits
000
001
010
011
100
101
110
111

4 bits
0000
0001
0010
0011
0100
0101
0110
0111

1000
1001
1010
1011
1100
1101
1110
1111

Each additional bit doubles the number of possible
permutations 26

Bit Permutations (cont)

Each permutation can represent a particular item

There are 2N permutations of N bits

Therefore, N bits are needed to represent 2N unique items.
One bit could be used for sign (negative numbers).

How many
items can be
represented by

1 bit?
2 bits?
3 bits?
4 bits?

27

Primitive data type 7:
Characters

A char variable stores a single character from the
Unicode character set

A character set is an ordered list of characters, and
each character corresponds to a unique number

The Unicode character set uses sixteen bits per
character, allowing for 65,536 unique characters

It is an international character set, containing
symbols and characters from many world languages

Character literals are delimited by single quotes:

'a' 'X' '7' '$' ',' '\n'
28

Primitive data type 7:
Characters (cont)

The ASCII character set is older and smaller (uses 7
bits) than Unicode, but is still quite popular

The ASCII characters are a subset of the Unicode
character set, including:

uppercase letters
lowercase letters
punctuation
digits
special symbols
control characters

A, B, C, …
a, b, c, …
period, semi-colon, …
0, 1, 2, …
&, |, \, …
carriage return, tab, ...

29

Primitive data type 8:
Boolean

A boolean value represents a true or false
condition

A boolean also can be used to represent any two
states, such as a light bulb being on or off

The reserved words true and false are the only
valid values for a boolean type

boolean done = false;

30

Using primitive data:
Arithmetic Expressions

An expression is a combination of one or more
operands and their operators
Arithmetic expressions compute numeric results and
make use of the arithmetic operators:

Addition +
Subtraction -
Multiplication *
Division /
Remainder %

If either or both operands associated with an arithmetic
operator are floating point, the result is a floating point

6

31

Using primitive data:
Division and Remainder

If both operands to the division operator (/) are
integers, the result is an integer (the fractional part is
discarded)

The remainder operator (%) returns the remainder after
dividing the second operand into the first

14 / 3 equals?

8 / 12 equals?

14 % 3 equals?

8 % 12 equals?
32

Primitive data
Operator Precedence

Operators can be combined into complex expressions
result = total + count / max - offset;

Operators have a well-defined precedence which
determines the order in which they are evaluated

Multiplication (*), division (/), and remainder (%) are
evaluated prior to

addition (+), subtraction (-), and string
concatenation (+)

Arithmetic operators with the same precedence are
evaluated from left to right
Parentheses can be used to force the evaluation order

33

Operator Precedence

What is the order of evaluation in the following
expressions?

a + b + c + d + e a + b * c - d / e

a / (b + c) - d % e

a / (b * (c + (d - e)))

34

Assignment Revisited
The assignment operator has a lower precedence
than the arithmetic operators

First the expression on the right hand
side of the = operator is evaluated

Then the result is stored in the
variable on the left hand side

answer = sum / 4 + MAX * lowest;

35

Assignment Revisited
The right and left hand sides of an assignment
statement can contain the same variable

First, one is added to the
original value of count

Then the result is stored back into count
(overwriting the original value)

count = count + 1;

36

Data Conversions
For example, we may want to treat an integer as a
floating point value during a computation
Conversions must be handled carefully to avoid losing
information
In Java, data conversions can occur in three ways:

assignment conversion
arithmetic promotion
casting

7

37

Data conversions:
Widening versus Narrowing

byte short, int, long, float,
or double

short int, long, float, or
double

char int, long, float, or
double

int long, float, or double

long float or double

float double

byte char

short byte or char

char byte or short

int byte, short, or char

long byte, short, char, or
int

float byte, short, char, int,
or long

double byte, short, char, int,
long, or float 38

Data Conversions
Assignment conversion occurs when a value of one
type is assigned to a variable of another

Only widening conversions can happen via
assignment

Money = dollars; // int to float

Arithmetic promotion happens automatically when
operators in expressions convert their operands

result = sum/count; // float = float/int

39

Data Conversions
Casting is the most powerful, and dangerous,
technique for conversion

Both widening and narrowing conversions can be
accomplished by explicitly casting a value
To cast, the type is put in parentheses in front of
the value being converted

For example, if total and count are integers, but
we want a floating point result when dividing them,
we can cast total:

result = (float) total / count;

40

Creating Objects

A variable holds either a primitive type or a
reference to an object
A class name can be used as a type to declare an
object reference variable

String title;

No object is created with this declaration
An object reference variable holds the address of an
object
The object itself must be created separately

41

Creating Objects
Generally, we use the new operator to create an
object

title = new String ("Java Software Solutions");

This calls the String constructor, which is
a special method that sets up the object

Creating an object is called instantiation

An object is an instance of a particular class

42

Creating Objects
Because strings are so common, we don't have to use the
new operator to create a String object

title = "Java Software Solutions";

This is special syntax that works only for strings

Once an object has been instantiated, we can use the dot
operator to invoke its methods

title.length()

System.out.println()

8

43

String Methods
The String class has several methods that are
useful for manipulating strings, including

length
toLowercase
Substring

See p.89 and Appendix M of the text book for others

Many of the methods return a value, such as an
integer or a new String object

44

An example use of String
methods

// StringMutation.Java
public class StringMutation
{

public static void main (String[] args)
{

String phrase = new String (“Change in unavoidable”);
String mutation1, mutation2, mutation3, mutation4;

mutation1 = phrase.concat(“, except for some machines.”);
mutation2 = mutation1.toUpperCase();
mutation3 = mutation2.replace(‘O’, ‘Z’);
mutation4 = mutation3.substring(3, 12);

System.out.println(“Final string: “ + mutation4);
System.out.println(“Final string length: “ + mutation4.length());

}
}

45

Java Class Libraries
A class library is a collection of classes that we can
use when developing programs

The Java standard class library is part of any Java
development environment

Its classes are not part of the Java language per se,
but we rely on them heavily
The System class and the String class are part of
the Java standard class library
Other class libraries can be obtained through
third party vendors, or you can create them
yourself

46

Java Class Libraries
Classes of the Java Standard Class Library are
grouped into Packages, i.e. related classes
A cluster of related classes are called Java APIs, or
Application Programming Interfaces,

e.g. the Java Database API, Java Swing API
A given API may consist of classes from various
packages
See Appendix M of the text book

47

Packages
Some of the packages in the standard class library are:

See Appendix M

Package

java.lang
java.applet
java.awt
javax.swing
java.net
java.util
javax.xml.parsers

Purpose

General support
Creating applets for the web
Graphics and graphical user interfaces
Additional graphics capabilities and components
Network communication
Utilities
XML document processing

48

The import Declaration
When you want to use a class from a package, you could
use its fully qualified name

java.util.Random

Or you can import the class, and then use just the class
name

import java.util.Random;

To import all classes in a particular package, you can use
the * wildcard character

import java.util.*;

9

49

The import Declaration
All classes of the java.lang package are imported
automatically into all programs

That's why we didn't have to import the System or
String classes explicitly in earlier programs

For example, the Random class is part of the
java.util package

It provides methods that generate pseudorandom
numbers

50

An example:
Importing the Random Class

// Randomnumbers.java
//
import java.util.Random;

public class RandomNumbers
{

public static void main (String[] args)
{

Random generator = new Random();
//generator is an object of class Random

int num1;

num1 = generator.nextInt();
System.out.println(“A random integer: “ + num1);

num1 = generator.nextInt(15);
System.out.println(“From 0 to 14: “ + num1);

}
}

51

Class (Static) Methods
Some methods can be invoked through the class
name, instead of through an object of the class

These methods are called class methods or static
methods

The Math class (see figure 2.13 on p.99) contains many
static methods, providing various mathematical
functions, such as absolute value, trigonometry
functions, square root, etc.

temp = Math.cos(90) + Math.sqrt(delta);

52

The Keyboard Class
The Keyboard class is NOT part of the Java standard
class library; It is provided by the authors of the textbook
to make reading input from the keyboard easy
The System.in object is part of the Java Standard
library; as discussed in Chapter 8
Details of the Keyboard class are explored in Chapter 5
The Keyboard class is part of a package called cs1

It contains several static methods for reading particular
types of data
Also See Quadratic.java (page 102)

53

The Keyboard Class
// Echo.java
// Demonstrate ReadString and ReadInt methods of Keyboard class

import cs1.Keyboard;

public class Echo
{

// read from the user and print it out
public static void main (String[] args)
{

String message;
int a;

System.out.println(“Enter any text: “);
message = Keyboard.readString();

System.out.println(“Enter any integer: “);
a = Keyboard.readInt();

System.out.println(“You entered: \”” + message + “\”” + “ and ” + a);
}

} 54

Formatting Output
The DecimalFormat class can be used to format a floating
point value in generic ways

For example, you can specify that the number should be printed
to three decimal places

The constructor of the DecimalFormat class takes a string
that represents a pattern for the formatted number

See CircleStats.java (page 107)

Also see the NumberFormat class on p.103

10

55

Introduction to Applets
A Java application is a stand-alone program with a
main method (like the ones we've seen so far)

A Java applet is a program that is intended to
transported over the Web and executed using a web
browser

An applet also can be executed using the appletviewer
tool of the Java Software Development Kit

An applet doesn't have a main method

Instead, there are several special methods that serve
specific purposes

56

An example Applet:
Einstein.java

// Demonstrate a basic Applet
import java.applet.Applet;
import java.awt.*;

public class Einstein extends Applet
{

// Draw a quotation and some shapes
public void paint (Graphics page)
{

page.drawRect(50, 50, 40, 40); //square
page.drawOval(75,65, 20, 20); //circle
page.drawString(“Imagination is more important than knowledge.”, 110, 70);
page.drawString(“- Albert Einstein”, 130, 100);

}
}

57

Discussion of
the Einstein.java Applet
The class that defines an applet extends the Applet
class

This makes use of inheritance, which is explored in
more detail in Chapter 7

The paint method, for instance, is executed
automatically and is used to draw the applet’s contents
The paint method accepts a parameter that is an
object of the Graphics class
A Graphics object defines a graphics context on which
we can draw shapes and text
The Graphics class has several methods for drawing
shapes 58

How are Applets Executed?
An applet is embedded into an HTML file using a tag
that references the bytecode file of the applet class

The bytecode version of the program is transported
across the web and executed by a Java interpreter
that is part of the browser

See Appendix J for more information

59

The HTML applet Tag
<html>

<head>
<title>The Einstein Applet</title>

</head>

<body>
<applet code="Einstein.class" width=350 height=175>
</applet>

</body>

</html>

60

Drawing Shapes
The Graphics class draw shapes in more detail

A shape can be filled or unfilled, depending on which
method is invoked

The method parameters specify coordinates and sizes

The Java coordinate system has the origin in the top
left corner

Shapes with curves, like an oval, are usually drawn by
specifying the shape’s bounding rectangle

See Figure 2.18 (p.112) for some methods

11

61

For Example:
Drawing a Rectangle

X

Y

50

20

100

40

page.SetColor (Color.Green);
page.fillRect (50, 20, 100, 40);

See Snowman.java on page 115 62

Drawing an Oval X

Y

page.drawOval (175, 20, 50, 80);

175

20

50

80

bounding
rectangle

63

Summary: Chapter 2
predefined objects
primitive data
the declaration and use of variables
expressions and operator precedence
creating and using objects
class libraries
Java applets
drawing shapes

