
1

CSI1102:
Introduction to Software Design

Chapter 12:
Data Structures

2

Learning objective:
Data Structures

Some convenient techniques for organizing and
managing information

Understand what the following entails:
Collections in Java
Abstract Data Types (ADTs)
dynamic structures and linked lists
Linear data structures: queues and stacks

3

A collection is an object that serves as a repository for
other objects,

e.g. collection of students, CD, magazines, food

A collection usually provides services such as adding,
removing, and otherwise managing the elements it
contains

Sometimes the elements in a collection are ordered,
sometimes they are not
Sometimes collections are homogeneous, sometimes the
are heterogeneous

What is a Collection?

4

Abstract Data Types:
Implementing a collection

An abstract data type (ADT) is
an organized collection of information and
a set of operations used to manage that information

The set of operations defines the interface to the ADT

We implement an ADT using a dynamic data structure
A dynamic data structure grows and shrinks at
execution time as required by its contents
A dynamic data structure is implemented using links

QuestionQuestion: Is an Array a dynamic data structure?

5

Object References:
Used for ADTs

Recall that an object reference is a variable that stores
the address of an object

A reference also can be called a pointer

References often are depicted graphically:
student

John Smith
40725
3.58

Student john = new Student(“John Smith…”);
6

Object References as Links

Suppose a Student class contains a reference to another
Student object

John Smith
40725
3.57

Jane Jones
58821
3.72

class Student
{

STRecord info; // info about the student
Student next; // link to another Student object

}

Student john = new Student(“John Smith…”, null);
Student jane = new Student(“Jane Jones…”, null);
john.next = jane;

2

7

References as Links:
The Linked List

References can be used to create a variety of linked
structures, such as a linked list:

studentList

8

The content of the
Intermediate Nodes

The objects being stored should not be concerned with the
details of the data structure in which they may be stored

For example, the Student class should not have to
store a link to the next Student object in the list

Instead, we can use a separate node class with two parts:
1) a reference to an independent object and
2) a link to the next node in the list

The internal representation becomes a linked list of nodes

9

An example:
A Magazine Collection

Let’s explore an example of a collection of Magazine
objects
The collection is managed by the MagazineList class,
which has an private inner class called MagazineNode
Because the MagazineNode is private to
MagazineList, the MagazineList methods can
directly access MagazineNode data without violating
encapsulation

info

next

info

next

info

next
10

MagazineRack.java
public class MagazineRack

{
// Creates a MagazineList object, adds several magazines to the
// list, then prints it.

public static void main (String[] args)
{

MagazineList rack = new MagazineList();

rack.add (new Magazine("Time"));
rack.add (new Magazine("Woodworking Today"));
rack.add (new Magazine("Communications of the ACM"));
rack.add (new Magazine("House and Garden"));
rack.add (new Magazine("GQ"));

System.out.println (rack);
}

}

11

MagazineList.java
public class MagazineList

{
private MagazineNode list;

// Sets up an initially empty list of magazines.

MagazineList()
{

list = null;
}

Continued….

12

MagazineList.java
// Creates a new MagazineNode object and adds it to the end of the linked list.

public void add (Magazine mag)
{

MagazineNode node = new MagazineNode (mag);
MagazineNode current;

if (list == null) list = node;
else
{

current = list; // we are at the list’s beginning
while (current.next != null) // walk through the list to the end

current = current.next;
current.next = node;

}
}

Continued….

3

13

MagazineList.java
// Returns this list of magazines as a string.

public String toString ()
{

String result = "";

MagazineNode current = list;

while (current != null)
{

result += current.magazine + "\n";
current = current.next;

}

return result;
}

Continued….

14

MagazineList.java
//public class MagazineList continued

// An inner class that represents a node in the magazine list.
// The public variables are accessed by the MagazineList class.

private class MagazineNode
{

public Magazine magazine;
public MagazineNode next;

//--
// Sets up the node
//--
public MagazineNode (Magazine mag)
{

magazine = mag;
next = null;

}
}

}

15

Magazine.java
public class Magazine

{
private String title;

//---
// Sets up the new magazine with its title.
//---
public Magazine (String newTitle)
{

title = newTitle;
}

//---
// Returns this magazine as a string.
//---
public String toString ()
{

return title;
}

}
16

Magazine Collection
A method called insert could be defined to add a
node anywhere in the list, to keep it sorted, for
example

info

next

info

next

info

next

info

next

newnode

17

Magazine Collection
A method called delete could be defined to remove
a node from the list

info

next

info

next

info

next

18

Other Dynamic List
Representations

It may be convenient to implement as list as a doubly
linked list, with next and previous references

list

4

19

Other Dynamic List
Implementations

It may be convenient to use a separate header node,
with a count and references to both the front and
rear of the list

count: 4
front
rear

list

20

Other Dynamic List
Implementations

A linked list can be circularly linked in which case the last
node in the list points to the first node in the list

If the linked list is doubly linked, the first node in the list
also points to the last node in the list

Choice of linking:
The representation should

facilitate the intended operations and
make them easy to implement

21

Other Classic Data Structures
Classic linear data structures include queues and stacks
Classic nonlinear data structures include trees, binary
trees, graphs, and digraphs

CSI2114 explores Data Structures in much more detail
Introduction to abstract data types. Trees, binary search
trees, balanced trees. Searching. Sorting. Simple examples
of complexity analysis. Graphs, simple graph algorithms:
depth-first and breadth-first search, minimum spanning
tree, shortest path. (Lab work will be done in the Java
programming language). Prerequisite: CSI1101 or CSI1102

22

Linear data structure 2:
Queues

A queue is similar to a list but adds items only to the rear
of the list and removes them only from the front
It is called a FIFO data structure: First-In, First-Out
Analogy:

a line of people at a bank teller’s window
Used quite a lot in Operating Systems
Queues often are helpful in simulations or any situation in
which items get “backed up” while awaiting processing

enqueue dequeue

23

More about Queues

We can define the operations for a queue
enqueue - add an item to the rear of the queue
dequeue (or serve) - remove an item from the front of
the queue
isEmpty - returns true if the queue is empty

A queue can be represented by a singly-linked list; it is
most efficient if the references point from the front toward
the rear of the queue

24

Linear data structure 2:
Stacks

A stack ADT is also linear, like a list or a queue
Items are added and removed from only one end of a
stack
It is therefore LIFO: Last-In, First-Out
Analogies:

a stack of plates in a cupboard,
a stack of bills to be paid,
or a stack of hay bales in a barn

poppush

5

25

More about Stacks
Some stack operations:

push - add an item to the top of the stack
pop - remove an item from the top of the stack
peek (or top) - retrieves the top item without
removing it
empty - returns true if the stack is empty

The java.util package contains a Stack class
See Decode.java (page 649)

26

Decode.java
import java.util.Stack;
import cs1.Keyboard;

public class Decode
{

// Decodes a message by reversing each word in a string.

public static void main (String[] args)
{

Stack word = new Stack();
String message;
int index = 0;

System.out.println ("Enter the coded message:");
message = Keyboard.readString();
System.out.println ("The decoded message is:");

Continued…

27

Decode.java (cont)
while (index < message.length())

{
// Push word onto stack
while (index < message.length() && message.charAt(index) != ' ')
{

word.push (new Character(message.charAt(index)));
index++;

}

// Print word in reverse
while (!word.empty())

System.out.print (((Character)word.pop()).charValue());
System.out.print (" ");
index++;

}

System.out.println();
}

}

Enter the coded message:
Hello world
The decoded message is:
olleH dlrow

28

Data structures in Java:
Collection Classes

The Java standard library contains several classes that
represent collections, often referred to as the Java
Collections API

Their underlying implementation is implied in the class
names such as ArrayList and LinkedList
Several interfaces are used to define operations on the
collections, such as List, Set, SortedSet, Map, and
SortedMap

29

Summary:
Chapter 12

Understand what the following entails:
Collections in Java
Abstract Data Types (ADTs)
Dynamic structures and linked lists
Linear data structures: queues and stacks

Remember about CSI2114!!!

