
1

CSI1102:
Introduction to Software Design

Chapter 10:
Introduction to Software Engineering

2

Learning objectives:
Software Engineering
The quality of the software is a direct result of the
process we follow to create it

Understand the need for and use of
software development models
the software life cycle and its implications
linear vs. iterative development approaches
goals and techniques of testing
an evolutionary approach to object-oriented
development

3

The Software Life Cycle

The overall life cycle of a program includes use and
maintenance:

A version of the software that is made available to
user is called a release

UseDevelopment

Maintenance

4

About Maintenance

Maintenance tasks include any modifications to an existing
program;

enhancements and
defect removal

Easy, careful design and velopment easy to maintain

Maintenance efforts tend to far outweigh the development
effort in today’s software

Software engineering GOAL:
minimize the overall effort required to create and to
maintain the program

5

Development vs. Maintenance

Use and
Maintenance

Development

e.g. Y2K

6

Development and
Maintenance Effort

Development Maintenance

Development Maintenance

Small increases in development effort canSmall increases in development effort can
reduce maintenance effort reduce maintenance effort

Spend more time on design, documentation and implementationSpend more time on design, documentation and implementation

2

7

Development and
Maintenance Effort

Often the maintainers of a program are not the program’s
original developers (average 3 year “rule”)
Maintainers must be able to understand a program must be
able to understand a program they didn’t design

The ability to read and understand a program depends on
how clearly the requirements are established
how well the program is designed
how well the program is implemented
how well the program is documented

8

Developing high quality software:
Software Development Models

A software development model is an organized approach
to creating quality software

Too many programmers follow a build-and-fix approach

They write a program and modify it until it is functional,
without regard to system design
Errors are addressed haphazardly if and as they are
discovered
It is not really a development model at all

9

The Build-and-Fix Approach

Write
program

Modify
program

10

The Waterfall Model
The waterfall model was developed in the mid 1970s

Activities that must be specifically addressed during
development include:

Establishing clear and unambiguous requirements
Creating a clean design from the requirements
Implementing the design
Testing the implementation

Originally it was proposed as a linear model, without
backtracking

11

The Waterfall Model

Establish
requirements

Create
design

Implement
code

Test
system

12

Iterative Development:
Waterfall method with backtracking

Iterative development allows the developer to cycle
through the different development stages

Backtracking should not be used irresponsibly

When use backtracking?

To deal with unexpected problems arising only
in later stages of development

3

13

An Iterative Development
Process

Establish
requirements

Create
design

Implement
code

Test
system

14

Important:
Iterative Testing
The results of each stage should be evaluated
carefully prior to going on to the next stage

Before moving on to the design, for example, the
requirements should be evaluated to ensure

completeness, consistency, and clarity

A design evaluation should ensure that each
requirement was addressed adequately

15

Testing Techniques:
Walkthrough

A design or an implementation may be evaluated during a
walkthrough

The goal of a walkthrough is to identify problems, not
to solve them

16

Testing Techniques:
Create test cases

Generally, the goal of testing is to find errors

Often it is called defect testing

A good test uncovers problems in a program

A test case includes
a set of inputs
user actions or other initial conditions
expected output

It is not feasible to test every possible case

17

Testing technique:
Black-Box Testing

Black-box testing maps a set of specific inputs to a set of
expected outputs
An equivalence category is a collection of input sets

E.g. positive integer category, 0..99
Test cases: -9, -500, 5, 12, 101, 300

Two input sets belong to the same equivalence category if
there is reason to believe that if one works, it will work for
the other

Therefore testing one input set essentially tests the
entire category

18

Testing technique:
White-Box Testing

White-box testing also is referred to as glass-box testing
It focuses on the internal logic such as the
implementation of a method we walk through the
code

Statement coverage guarantees that all statements in a
method are executed
Condition coverage guarantees that all paths through a
method are executed

4

19

Prototypes:
Use to sell your ideas

A prototype is a program created to explore a particular
concept
Prototyping is more useful, time-effective, and cost-
effective than merely acting on an assumption that later
may backfire
Usually a prototype is created to communicate to the client:

a particular task
the feasibility of a requirement
a user interface

It is a way of validating requirements
20

Throw-away vs. Evolutionary
Prototypes

A “quick and dirty” prototype to test an idea or a concept is
called a throw-away prototype

Throw-away prototypes are not incorporated into final
systems

Because it is designed more carefully, an evolutionary
prototype can be incorporated into the final system

Evolutionary prototypes provide a double benefit, but at
a higher cost

21

Developing large software:
Evolutionary Development Approach

Evolutionary development divides the design process into
architectural (high level) design- primary classes and
interaction
detailed design - specific classes, methods, and
algorithms

This allows us to create refinement cycles
Each refinement cycle focuses on one aspect of the
system
As each refinement cycle is addressed, the system
evolves

22

An Evolutionary Development
Model

Establish
requirements

Architectural
design

Establish
refinement

scope

Unit and
integration test

Implementation

System test

Identify classes
& objects

Identify
relationships

Detailed
design

23

Refinement Cycle: #1
Establish the Scope

First, we establish the refinement scope to define the
specific nature of the next refinement

For example:
the user interface
the feasibility of a particular requirement
utility classes for general program support

Object-oriented programming is well suited to this approach

Choosing the most appropriate next refinement is important
and requires experience

24

Refinement Cycle: #2
Identify relevant classes/objects

Identify classes and objects that relate to the current
refinement

Look at the nouns in the requirements document
Candidates categories include

physical objects (books, balls, etc.)
People (student, clerk, professor, etc.)
Places (room, airport, etc.)
Containers (bookcase, transaction list, etc.)
Occurrences (sale, meeting, accident, etc.)
Information stores (catalog, event log)

Categories may overlap
Consider reusing existing classes

5

25

Refinement Cycle: #3
Identify relationships

Identify relationships among classes
general association (“uses”)
aggregation (“has-a”)
inheritance (“is-a”)

Associated objects use each other for the services they
provide
Aggregation, also called composition, permits one object to
become part of another object

Cardinality describes the numeric relationship between
the objects
For example, a car might have four wheels associated
with it 26

Refinement Cycle: #3 (cont.)
Inheritance

Inheritance, discussed in detail in Chapter 7, may lead to
the creation of a new “parent” abstract class whose sole
purpose is to

gather common data and common methods in one
place

Use UML class diagrams to show the relationships

27

Refinement Cycle: #4-6
Detailed design, implement and test

Finally, a refinement cycle includes detailed design,
implementation, and testing

All the members of each class need to be defined
Each class must be implemented (coded)
Stubs sometimes are created to permit the refinement
code to be tested

A unit test focuses on one particular component, such as a
method or a class

An integration test focuses on the interaction between
components

28

Specification of code
Specification of design details

Invariant: collection of facts which are true
Precondition/Postcondition

Preconditions: Conditions which are required
for code to execute correctly
Postconditions: Correct changes which result
after code has been executed

29

Specification of code:
An Example (AlarmClock class)
Invariant
An Alarmclock object
- Keeps track of a single alarm time in terms of time and minutes
- Cannot distinguish between AM and PM times
- Has attribute values restricted to the following ranges:

- 1 <= hour <= 12 and 0 <= minutes <= 59

Update Methods
public void advanceOneHour()

precondition
hour < 12
modifies
hour
postcondition
The value of hour is one unit larger than before 30

Specification of code:
An Example (AlarmClock class)

Update Methods (cont…)
public void advanceTenMinutes()

precondition
minute < 50
modifies
minute
postcondition
The value of minute is 10 units higher than before

- We can use formal logic to express the invariant, pre/post conditions
- We can then use formal logic to prove that a piece of code is “True”.

Source: “The object of Jva, David D Riley, Addison-Wesley, 2002

6

31

Obtaining the requirements:
The PaintBox project

TASK (High level):
Create a program which allows the user to draw various
shapes and sizes on the screen

How will we go about accomplishing this?

32

The PaintBox project:
Requirements

Create a mouse driven GUI
Allow user to draw lines, circles, ovals, rectangles and
squares
Allow user to change drawing color
Allow user to fill a shape, except a line, with a color.
Allow user to being new drawing
Allow user to create polylines

33

The PaintBox Project:
Initial Refinement steps

create the basic user interface
allow the user to draw and fill shapes and to change color
allow the user to select, to move, and to modify shapes
allow the user to cut, copy, and paste shapes
allow the user to save and to reload drawings
allow the user to begin a new drawing at any time

34

The PaintBox Project:
The Basic User Interface

File Edit

Select OvalLine Rect Color

Drawing Area

35

The PaintBox Project
Discussions with the client lead to additional requirements
which are integrated into the requirements document
Next the architectural design is prepared
Refinement steps are determined

#1: the basic user interface
#2: drawing basic shapes using different stroke colors
#3: cutting, copying, and pasting shapes
#4: selecting, moving, and filling shapes
#5: modifying the dimensions of shapes
#6: saving and reloading drawings
#7: final touches such as the splash screen

36

Remaining PaintBox
Refinements

The full implementation can be downloaded for the Book’s
Website
See 10.4 of the text book

7

37

Obtaining user requirements:
The “toughest part”

“Knowledge acquisition bottleneck”:
Difficulty to extract information from humans

Different personality types:
Levels of detail, concepts, thinking holistic, etc.
Myers Briggs (16 types), amongst others

Processing data and information: concrete versus abstract
Decision making: logical and objective versus value related
and subjective
Introvert versus extravert: stimuli from outside or inside
Judgment: random versus “open-ended”

See WWW for tests and for sceptics!!!!

38

Summary:
Chapter 10
Chapter 10 has focused on:

software development models
the software life cycle and its implications
linear vs. iterative development approaches
goals and techniques of testing
an evolutionary approach to object-oriented
development

