
September 8, 1995
LOTOS Generation
from Timethread Maps:
A Language and a Tool

Daniel Amyot

Project report presented to
Luigi Logrippo and
Raymond J.A. Buhr.
CSI 5900
chal-
ed in

e
s and

r sys-
infor-
 given
igned
ments).
le.

 They
 still
ter-
e has
g and
Generating LOTOS specifications from informal timethread maps is an interesting 
lenge. This projects aims at automating part of the interpretation method introduc
the author’s master thesis. We define a textual language (TMDL) to represent timethread
maps, and a compiler that translates TMDL descriptions into LOTOS specifications. Th
reader of the current report is assumed to have a background on timethread
LOTOS.

1.0 Introduction

1.1 Tools and the Design Method

The timethread-centered approach [BuC 93] [BuC 94a] helps designers to discove
tems functionalities. When a timethread map satisfies the requirements from an 
mal perspective, we use an interpretation method to generate a description in a
formal method. This formal specification is then used to validate the system des
against requirements, scenarios, use cases or previous design (after some refine
However, for such method to be useful to designers, different tools must be availab

1.1.1 Timethread Maps
Timethread maps contain possibly more than one timethreads that may interact.
represent causality flows within a system in a visual way. Timethread maps are
informal, and composition rules only start to emerge [Loc 94]. A graphical user in
face (GUI), or a timethread maps construction tool, needs to be created since non
been programed yet. Such tool would prove very helpful to designers when creatin
manipulating timethread maps.
1 of 53



Introduction

hods
e other
rpre-
hread
 auto-

t val-
uage
n of
pec-

ormal
h-
st two

 of
ternal
ed in

n in a
1.1.2 Interpretation Methods
We can interpret timethread maps in many ways. Two partial interpretation met
have already been defined: one gives a Petri nets semantics to timethreads, and th
uses the Formal Description Technique LOTOS as its underlying model. Other inte
tation techniques could be invented in order to validate different aspects of a timet
map against the requirements of previous maps. Again, a lack of tools prevents the
mated generation of formal descriptions from timethread maps.

1.1.3 Formal Methods
During the last decade, many different formal methods have emerged, and differen
idation tools were created accordingly. For instance, LOTOS is an algebraic lang
that includes powerful constructs allowing the definition of a system as a collectio
interacting processes. Validation tools for executing, testing and verifying LOTOS s
ifications are already available from several research groups around the world.

1.2 Problem Definition

A severe lack of tools for the creation of timethread maps and the generation of f
specifications (via interpretation methods [Bor 93]) causes the timethread design met
odology to be less appealing to system designers. It is necessary to have at lea
types of tools to fulfill designers’ needs, as presented by the ellipses in figure 1:

• An intelligent GUI, allowing the creation, transformations and manipulations
timethread maps. This tool would be based on a flexible and manageable in
representation. Such a representation, based on hypergraphs, is propos
[Loc 94].

• Some translator, which translates the internal representation into a specificatio
given formal language. This tool in fact an automated interpretation method.

FIGURE 1. High-level view of a translation from a timethread map to a LOTOS specification.

Timethread Map

Internal Representation

LOTOS Specification

GUI

Translator
2 of  53 LOTOS Generation from Timethread Maps: A Language and a Tool



Proposed Approach

port
me-
d.

from
tion
sible

re 1
 94],
The GUI is a very complex topic by itself, and it will not be discussed here. This re
deals with the second type of tool only. More precisely, we will define a textual inter
diate representation (called TMDL) and an automated LOTOS interpretation metho
The creation of a prototype compiler, which generates LOTOS specifications 
TMDL descriptions, will help us formalize timethreads and the LOTOS interpreta
method. We will test this compiler and give some examples, followed by pos
enhancements and a conclusion.

2.0 Proposed Approach

2.1 A More Concrete View

We can expand the “Internal Representation” box and “Translator” ellipse from figu
to get a more concrete view of the translation procedure proposed (fig. 1). In [Loc
the author suggested that the internal representation be composed of visual information
(location, shapes, colors, size...) and a graph representation based on hypergraphs.

FIGURE 2. More concrete view of a translation from a timethread map to a LOTOS specification.

Timethread Map

Internal Representation

LOTOS Specification

GUI

Compiler

Hypergraph Visual Information

Hyp2TMDL

TMDL Description

Translator
LOTOS Generation from Timethread Maps: A Language and a Tool 3 of 53



Proposed Approach

eads.
infor-
yper-
ps as
nera-
resen-
ly-

ve to
 code

nternal
ntation

TOS
resen-
haded

ion of

-

hough

o

, and
Hypergraphs allow the creation, management, and transformations of timethr
Could we generate LOTOS specifications from hypergraphs? No doubt that the 
mation needed is there, but we believe it is too high a step to go directly from h
graphs to LOTOS. We want hypergraphs to remain as close to timethread ma
possible, without too much influence coming from the problems caused by the ge
tion of a specification in some formal language. Also, because this hypergraph rep
tation is still evolving, any change might result in very difficult problems for a high
coupled translator.

We therefore propose an interface between hypergraphs and LOTOS. It would ha
be generated from hypergraphs, but in a format suitable for an eventual LOTOS
generation. This interface is the Timethread Maps Description Language (TMDL).
TMDL has to be close to both timethreads (and hypergraphs) and LOTOS.

Such an interface has the advantage of separating concerns w.r.t. timethreads i
representation and LOTOS code generation. Changes in the hypergraph represe
will not affect the way LOTOS specifications are generated, and vice-versa.

As shown in figure 1, we would of course need a tool (called Hyp2TMDL) to generate
TMDL descriptions from hypergraphs (and this must be easier than generating LO
directly). However, this tool will not be discussed here because the hypergraph rep
tation is still ongoing work. We will discuss instead the shaded language and the s
tool from the figure: TMDL and a TMDL-to-LOTOS compiler.

2.2 The Language

We present here several requirements for this textual intermediate representat
timethread maps. The language we obtain is an extension of STDL, presented in the the-
sis [Amy 94], that will include LARG descriptions.

2.2.1 STDL
This Single Timethread Description Language was created to represent individual time
threads as entities in their own right. Because it is defined as an EBNF grammar, STDL
implicitly includes several creation rules, indicating what is a valid timethread.

2.2.2 LARGs
These LOTOS Architectural Representation Graphs [Bor 93], now called SR-Graphs,
are used in the thesis in order to represent interactions between timethreads. Alt
formally defined as tuples in Bordeleau’s thesis, no LARG language or tool is available
yet.

2.2.3 TMDL
This new language’s intent is to include both STDL and LARGs in one unique model.
The Timethread Map Description Language is to be defined as a BNF grammar t
which a set of external semantic rules will be attached. Issues related to TMDL are:

• Creation of a new grammar.

• Definition of constructors representing interactions (timethreads and events)
recursive groupings.

• Specification of rules indicating valid and invalid interactions.
4 of  53 LOTOS Generation from Timethread Maps: A Language and a Tool



Proposed Approach

stem

tion

on-

fi-
ph of
tions

ic

 prob-

inary

e
be

 a

thesis

,

laces.
• Inclusion of internal (hidden) and external events, therefore defining the sy
interface.

• Integration (and perhaps modification) of STDL in TMDL.

• Keeping in mind the extensibility of the language.

• Taking in account the generality of the language (independent from LOTOS).

2.3 The Compiler

The automated tool would have two functionalities. The first one is a transforma
based on the analysis and grouping phases of the LAEG (LOTOS Architectural Expres-
sion Generation) method defined in Bordeleau’s thesis. The second functionality c
sists in compiling the transformed TMDL description into a LOTOS specification.

2.3.1 LAEG Method
Some algorithms developed in the LAEG method can help generating a LOTOS speci
cation. Since LOTOS possesses binary operators only, we cannot map any gra
interacting components onto LOTOS. Therefore, a reorganization of the interac
between timethreads is often necessary.

We do not have to use the whole LAEG method. It is too general for timethread-specif
needs:

• The analysis phase could be reduced and adapted to suit timethread-specific
lems.

• The general grouping algorithm could be reduced to a deterministic linear or b
grouping algorithm, which is sufficient for LOTOS validation purposes.

These analysis and grouping phases should be automated. The input TMDL description
could be transformed into a TMDL description with binary grouping. However, th
LAEG method will not be implemented in the current compiler and this will still 
work to be done.

2.3.2 Analysis and Code Generation
Once the binary grouped TMDL description is available, it has to be compiled into
complete and functional LOTOS specification. Many issues can be raised:

• Lexical, syntactical and semantic analysis.

• Generation of the structure from the interaction part of the TMDL description. This
was already introduced in the LAEG method.

• Generation of LOTOS processes corresponding to single timethreads. The 
already attacked that problem.

• Management of gate parameters.

• Management of Abstract Data Types (for tags): type definition, message passing
tags availability, consistency...

• Management of unique names for additional internal synchronization gates.

• Management of additional sub-processes created for loops or special waiting-p
LOTOS Generation from Timethread Maps: A Language and a Tool 5 of 53



From STDL to TMDL

l, will

to rep-
ting-

timeth-

ta-

t the

 a

rac-

ys-
 will
2.4 Objectives

Many implementation choices and design decisions, perhaps not always optima
have to be taken. The resulting tool is a prototype and might not implement all desirable
functionalities. However, the compiler prototype will allow:

• A first taste of automated translation of timethread maps into LOTOS.

• To raise new issues related to the formalization of timethreads.

• To improve the interpretation method and TMDL.

• To build case studies more easily.

• To show the potential of this design method.

3.0 From STDL to TMDL

3.1 Need for TMDL

STDL is a language built to describe single timethreads. Its possesses constructs 
resents activities, timethread constructs (AND-Joins, OR-Forks...), special wai
places, internal/external activities, tags, etc. However, STDL cannot represent entire
timethread maps because it lacks constructs to represent interactions between 
reads.

TMDL intends to augment STDL with a set of new constructs allowing the represen
tions of whole maps. These simple constructs will allow the generation of a LARG from
which LOTOS structures can be derived. Also, since we do not plan to implemen
LAEG method directly in our compiler, TMDL will allow groupings (see [Bor 93]) as
input. In this way, an additional LAEG module could be added later on to produce
grouped TMDL structure from an ungrouped one.

3.2 TMDL Sections

A TMDL description is to be structured in different sections: internal (optional), inte
tions (mandatory), and descriptions (mandatory). Reserved words are in bold.

Map Map_Id  Is

Internal

   ...  { List of internal activities }

Interactions

   ...  { List of timethreads/groups interactions }

Descriptions

   ...  { List of STDL single timethread descriptions }

EndMap

In the optional Internal  section, we can place the list of activities internal to the s
tem. They will therefore be unobservable from a user’s viewpoint. These activities
become the list of hidden gates in the global LARG.

Example: Internal   Event1, Event2, Event3
6 of  53 LOTOS Generation from Timethread Maps: A Language and a Tool



From STDL to TMDL

n a set
 are

 in

iffer-
nce -
ule is

(rule

 rule

ge,
The mandatory section Interactions  is where we use the new TMDL interaction con-
structs. An interaction is described as a set of timethreads/groupings interacting o
of events. We can have a list of interactions in this section. Finally, groupings
defined recursively as list of interactions.

Example: Interactions

   TT1, &Gr1, TT2 on  Event1, Event2;
   TT3, TT4 on Nothing ;
   Where
      Group  &Gr1 Is
         TT5, TT6 on  Event3;
      EndGroup

The Descriptions  section simply includes the list of single timethreads described
STDL. This section is also mandatory.

Example: Descriptions

   Timethread TT1 Is

      ... { STDL description }

   EndTT

   Timethread TT2 Is

      ... { STDL description }

   EndTT

3.3 Modifications to STDL

The original STDL [Amy 94] is slightly modified in this report.

• A new rule that describe the timethread level of specification is added. Three d
ent options are available: single instance - no recursion (default), single insta
end recursion, and parallel recursion (multiple simultaneous instances). The r
defined as: <R_level> : “ NoRec” | “ EndRec” | “ ParaRec ” |  ;

• A timethread can now be aborted by more than one abort event 
<R_LIST_aborted> ).

• Waiting places options now also include Signal  and Memory waiting places (rule
<R_wpoptions> ).

• Rules for compulsory and optional loop segments now merged into a unique
(<R_loopcompandopt> ).

• The <R_Constrained>  waiting place option, although still accepted by the langua
will not be given any special semantics. The use of level options (NoRec and EndRec)
will be promoted instead.
LOTOS Generation from Timethread Maps: A Language and a Tool 7 of 53



From STDL to TMDL

aur

ile,
 to get

son
or “
l-

L
ernal

 in
es are
3.4 TMDL Grammar

3.4.1 From EBNF to BNF
In the thesis [Amy 94], the STDL grammar was defined using an Extended Backus-N
Form (EBNF), where lists ({...} ) and options ([...] ) are permitted. However, since
the compiler-builder tool bison needs a regular BNF context-free grammar as input f
we have to expand lists and options. Table 1 presents the general guidelines used
BNF rules from EBNF rules.

As suggested in bison documentation, left-recursion is used to expand lists. Also, bi
allows rules that have the same left-hand-side to be regrouped using the separat| ”.
For instance, the two rules <Rest_R1>  in the previous table could be rewritten as the fo
lowing single rule (for clarity): <Rest_R1> : <R3> | <R4> ;  

3.4.2 Resulting TMDL Grammar
The resulting TMDL BNF grammar is given in appendix A. It includes all the STD
(equivalent) rules, plus additional ones corresponding to the map definition, the int
section, and the interactions section.

Note that rules start with R_ and they are in rectangles while reserved words are
ellipses. Rounded box represent lexical tokens returned from the scanner. Two typ
used here, and we can define them as regular expressions:

IDENTIFIER = [a..z]([a..z][0..9])*

NUMALPHA   = [0..9]([a..z][0..9])*

TABLE 1. From EBNF rules to equivalent BNF rules.

EBNF Rule. Equivalent BNF Rules.

List:

<R1> : <R2> {<R3>} <R4> ;

<R1> : <R2> <List_R3> <R4> ;

<List_R3> : <List_R3> <R3> ;

<List_R3> : ;

Non-emtpy list:

<R1> : <R2> {<R3>}* <R4> ;

<R1> : <R2> <List_R3> <R4> ;

<List_R3> : <List_R3> <R3> ;

<List_R3> : <R3> ;

Option:

<R1> : <R2> [<R3>] <R4> ;

<R1> : <R2> <Opt_R3> <R4> ;

<Opt_R3> : <R3> ;

<Opt_R3> : ;

Choice between parenthesis:

<R1> : <R2> (<R3> | <R4>) ;

<R1> = <R2> <Rest_R1> ;

<Rest_R1> : <R3> ;

<Rest_R1> : <R4> ;
8 of  53 LOTOS Generation from Timethread Maps: A Language and a Tool



Building a Compiler

logy

uage

by

 the
rrect

tored
ted

if no
ts the

ro-
mpat-
text-

p as

ode.

 ver-
s
e,

at
he 
e. The
.

4.0 Building a Compiler

4.1 Terminology

In the compilers-world, many words and expressions have their specific termino
[FLB 88]. We recall the most important ones here:

• Tokens: They are the lowest level symbols used to define a programming lang
syntax (reserved words, integers, arithmetic symbols, punctuation...)

• Lexical analyzer or Scanner: A function that reads an input stream, character 
character, and returns tokens one by one. It also usually eliminates comments.

• Parser: A function that recognizes valid sentences of a language by analyzing
syntax structure of a set of tokens returned from a lexical analyzer. It verifies co
syntax w.r.t. the rules expressed in the context-free grammar.

• Symbol table: A data structure where symbol names and associated data are s
during parsing to allow for recognition and use of existing information in repea
uses of a symbol.

• Semantic routines: They check the static semantics of each construct and then, 
problem is detected, they generate the (internal) code that correctly implemen
construct (they give its meaning to a construct).

• Static semantics: Set of restrictions that determine which syntactically legal p
grams are actually considered valid (identifiers declared, operators are type-co
ible, right number of parameters...). We usually cannot express them in a con
free grammar.

4.2 Compiler Tools

Being a prototype, we want our TMDL-to-LOTOS compiler to be as easy to develo
possible. This is why we use compiler-generator tools such as lex (or flex) and yacc (or
bison). These tools run under UNIX and generate portable (and quite efficient) C c
The current compiler was developed on a PC-486 under Linux 1.0 [Wel 93], and then
ported to Sun workstations under SunOS. In both cases, the GNU C compiler gcc was
used. Portability to MS-DOS with Turbo C is also possible.

4.2.1 Flex
flex is a tool for generating scanners (or lexical analyzers). It is an enhanced GNU
sion of the well-known UNIX tool lex [LeS 75]. The description is in the form of pair
of regular expressions and C code, called rules. flex generates as output a C source fil
lex.yy.c, which defines the scanning routine yylex().

We preferred flex (version 2.3) to lex because of a useful feature of the former th
allows the generation of a case-insensitive scanner. The case of letters given in tflex
input patterns is ignored, and tokens in the input are matched regardless of cas
matched text given in yytext (returned for identifiers) however has the preserved case
LOTOS Generation from Timethread Maps: A Language and a Tool 9 of 53



Building a Compiler

tible
IX.
a C
es and

 by

ng. 

om-
in our
4.2.2 Bison
bison is a general-purpose parser generator from GNU which is upwardly compa
with input files designed for yacc [Joh 75], the standard parser generator under UN
bison converts a grammar description for an LALR(1) context-free grammar into 
program to parse that grammar. C code can also be inserted for semantic routin
code generation. The version 1.18 was used in our case.

Several bison operators are often used in grammar descriptions:

• %token: Declares a terminal symbol (or token).

• %start: Specifies the grammar’s start symbol.

• YYSTYPE: Macro for the data type of semantic values; set to ‘int’ (integers)
default. 

• ‘ :’ : Separates a rule’s result from its components.

• ‘ ;’ : Terminates a rule.

• ‘|’  : Separates alternate rules for the same result nonterminal.

• yyparse(): The parser function produced by Bison; call this function to start parsi

• yyerror(): User-supplied function to be called by yyparse() on error.

4.2.3 Files Structure
Many different files written in different languages are involved in the making of a c
piler. We can see, in figure 3, all the files (rectangles) and tools (ellipses) needed 
case.

FIGURE 3. Files and tools involved in the making of the TMDL-to-LOTOS compiler.

tmdl.lex

flexbison

gcc

tmdl.c

tmdl.parser.c tmdl.h

flex.skeldansimple.skeltmdl.bison

tmdl

lex.yy.c
10 of  53 LOTOS Generation from Timethread Maps: A Language and a Tool



TMDL-to-LOTOS Compiler

ly

-

sing

pila-

re is
, tag

enti-
efined,
ile is
bison needs the grammar file tmdl.bison and a skeleton file (simple.skel, provided with
the tool) to generate the parser function yyparse() in tmdl.parser.c.

To generate the scanner yylex() in lex.yy.c, flex uses a scanner description (tmdl.lex) and
another skeleton file (skeldan.flex) for general routines. This time, however, we slight
modified the given skeleton file for portability to MS-DOS.

Data structures, type definitions and constants are regrouped in tmdl.h. tmdl.c contains
the main function and most of semantic routines. It is used as input to gcc to get the final
tmdl compiler.

5.0 TMDL-to-LOTOS Compiler

5.1 Functionalities

The TMDL-to-LOTOS compiler, referred as tmdl  from now on, takes as input a timeth
read map described in TMDL (figure 4). It outputs three different files:

• A LOTOS specification corresponding to the timethread map. It is generated u
the interpretation method explained in [Amy 94].

• An error file including all error and warning messages generated during the com
tion process. tmdl  also gives a summary of the number of errors/warnings.

• The different symbol tables used during the compilation. First, the map structu
shown (interaction tree) followed by global symbol tables (timethreads, groups
values, internal/external activities). Then, for each timethread in the map, tmdl  pre-
sents the local symbol tables for internal activities, external activities, and tag id
fiers. Note that some table elements possess flags that are also displayed (d
undefined, used, unused, activity type, number of value parameters...). This f
used for debugging purpose only.

FIGURE 4. TMDL compiler functionalities (input and output files).

The user calls tmdl  in the following UNIX-oriented way:

tmdl { <Options> }

where the possible list of <Options>  may include:

• [-i input_file]   :TMDL description file (default is standard input).

• [-o output_file] :LOTOS specification file (default is standard output).

tmdlmap.tmdl

map.tables

map.errors

map.lotos
LOTOS Generation from Timethread Maps: A Language and a Tool 11 of 53



TMDL-to-LOTOS Compiler

no

nown

s sec-

imple
 since

antic
larity

ever,
r pro-
irectly

d the

d rule
upling
 way
there-
et the

ode

rate its

gnized
e

• [-t output_file] :Symbol tables file (no file by default).

• [-e output_file] :Error and warning file (default is standard error).

• [-b buffer_size] :Size of internal buffers, in bytes (default is 8192).

• [-f]                      :Flag for forced output, if an error is encountered (by default, 
                             LOTOS file is output when an error occurs).

The validity of each file is verified, and an error message is emitted when an unk
option is encountered.

5.2 Prototyping

In prototyping a compiler, many important design decisions have to be made. Thi
tion enumerates some of the most import ones.

• Use of compiler generators:
In order to build tmdl , we chose to make use of usual UNIX compiler generators flex
and bison. They are simple to use, portable, and generate quite efficient code for s
compilers like ours. This choice almost dictates C as the implementation language
the two functions (yylex() and yyparse()) generated from these tools are C functions.

• Strong coupling:
In a normal compiler, it is useful to have separate modules for parsing, static sem
analysis, and code generation (refer to figure 14 for an example). To get this modu
(or loose coupling), the problem to solve must be very well understood. How
because we were uncertain of what type of problems could arise with our compile
totype, it seemed simpler to check the static semantic and to generate code d
while parsing (by inserting C code in the grammar in tmdl.bison). This strong-coupling
solution is common for very simple compilers, but we will see later that we reache
limitations of this approach for tmdl .

• Semantic value and buffers:
bison’s default semantic value for grammar rule is set to integer, so each recognize
returns an integer to the calling one. The problem here is that, due to our strong co
approach, we generate LOTOS code while parsing the input description. The only
to do so is by generating code by parts from the bottom rules to the top rule and 
fore a rule must be able to return code to its calling rule. We hence decided to s
semantic value to a pointer to a string (char * ). To generate the code, we use sprintf  to
print in internal buffers. Three large buffers (their size can be set with the tmdl  -b

option), and other small ones (of 1024 bytes) are defined for flexibility. When a c
part is complete, the used buffer is duplicated in memory with strdup  (for the buffer to
be reused) and returned to the calling rule which can use it as a parameter to gene
own code part.

Knowing these decisions, we can understand now how each grammar rule is reco
and executed within bison. The following steps (figure 5) give a general idea of how w
try to insert and to structure C code in each grammar rule:
12 of  53 LOTOS Generation from Timethread Maps: A Language and a Tool



TMDL-to-LOTOS Compiler

ome

gment

ler)

 have

tion

d one
 have
 event.

izing
coping
o have
e sort
tion.
every
nd
FIGURE 5. Overview of the steps involved in the recognition and execution of a grammar rule.

1. Set flags (if necessary)

2. Save context on stacks (identifiers, parenthesis, levels...)

3. Set tabulators (if necessary)

4. For each sub-rule/token on the right-hand-side

    4.1     Match the sub-rule/token (using bison’s engine)

    4.2     Get the corresponding code part (associated to parameters such as $1)

5. Retrieve context

6. Analyze static semantics

7. Generate code in buffer (using parameters $1, $2...)

8. Reset tabulators

9. Duplicate buffer

10.Return the duplicated code to the calling rule ($$ = ...).

Note that flags, stacks, and tabulators are discussed later on in section 5.

5.3 Restrictions on TMDL

Due to the complexity coming from the previous decision (strong coupling), s
restrictions are made on particular constructs:

• Restriction on loops:
Timethread loops are not allowed to include constructs interpreted as a parallel se
in LOTOS (with operator |||  or |[...]| ). Such constructs are Par , Choice , OrFork ,
AndFork , Async , Loss , and special waiting places (Delayed , Time , Signal ). This restric-
tion comes from the decision of implementing the loop in a way different (but simp
than the one in the thesis. The current loop needs the use of the exit  LOTOS construct,
which creates many problems when combined to concurrency problems (all exits
to synchronize, and this cannot happen).

• Restriction on interactions:
The LAEG method is not part of the current compiler, so the timethread interac
structure needs to be grouped, or linearized, in the TMDL input description. This means
that there must be only one interaction listed at each level (one at the top level, an
per grouping sub-definitions), as in a tree structure. Naturally, an interaction might
more than one member (timethreads or groups) and more than one synchronizing

• Restriction on tags:
Our compiler allows the definitions of tags. The management of tags over synchron
processes is however a complex task, mainly because of LOTOS semantics and s
rules. Synchronizing processes or behaviours need for each synchronizing event t
the same number, order, and sort of value parameters (luckily, we only use on
named Tag). This consistency has to be dealt with when we generate the specifica
Right now, this task is not completed. The main restrictions are therefore to define 
tag before using them (with the Tag construct), and not to define new tags in loops a
special waiting places (with the ? construct).
LOTOS Generation from Timethread Maps: A Language and a Tool 13 of 53



TMDL-to-LOTOS Compiler

e is a
t yet

res
f these

.)

)

4)

hich

is
piler is

LL

o

• Restriction on special waiting places:
Beside avoiding to use them in loops and not defining new tags within them, ther
last restriction applied to special waiting places. Memory waiting places are no
available, but they are replaced with normal waiting places instead.

5.4 Data Structures and Related Functions

5.4.1 Constants
Many constants are defined in tmdl.h to generalize the data types and data structu
definitions. They also enhance the understanding, management and consistency o
types and structures. Such constants are defined for:

• Symbol types in symbol tables (TYPETT, TYPEGROUP, TYPETAGVAL...)

• Symbol attributes in symbol tables (DEFINED, USED, ACTABORT, ACTSYNC.

• Timethread levels of specification (NOREC, ENDREC, PARAREC)

• Types of waiting places (WPNORMAL, WPDELAYED, WPTIME...)

• Values returned by symbol tables management functions (INSERTED, SET, ...)

• Number of spaces per tab for tabulation (TABSPACE, MORETABS, LESSTABS

Several constants also constrain to a certain extent what is accepted as TMDL input
code:

• Maximum depth for paths within paths and other stacks (MAXDEPTH is set to 6

• Maximum number of members in an interaction (MAXMEMBER is set to 32)

• Maximum number of characters in an identifier (IDMAX is set to 32)

5.4.2 Identifiers
Identifiers are string of IDMAX characters. We also define a structure named id w
is composed of:

• char Orig[IDMAX+1]  : Original symbol identifier. 

• char Low[IDMAX+1]  : Symbol identifier, in lowercase.

Orig  is used for code generation while Low is used for comparisons when a symbol 
inserted or retrieve in a symbol table, to speed-up the searching process (the com
case insensitive, but output the original symbol uppercase/lowercase).

Note that the ‘+1’ in the array relates to strings representation in C; an additional NU
character is needed to end a string.

Two functions in tmdl.c relate to identifiers:

• void lower (Dest, Source) : Puts in Dest  the lowercase string corresponding t
Source . 

• char * trunc(IdToCheck)  : Truncates identifiers longer than IDMAX characters.
14 of  53 LOTOS Generation from Timethread Maps: A Language and a Tool



TMDL-to-LOTOS Compiler

cture

t).

ol

e

es

also
ic
struc-

 suffi-

.

5.4.3 Symbol Tables
The symbol tables used in our compiler are ordered chained lists with a stru
(named symtab ) found in tmdl.h:

• id Id  : Symbol identifier.

• int Defined, Used  : Symbol attributes.

• int Line  : Line number of first occurence (for error/warning messages). 

• struct symtab *Next  : Link field (pointer to next list element).

Global symbol tables are used for timethreads (TTTab), groups (GroupTab ), tag identifi-
ers (TagIdTab ), tag values (TagValTab ), and activities (ActTab ).

An extensive set of functions managing these tables are defined in tmdl.c:

• int putsym (SymTable, SymId)  : Adds an element to a symbol table (ordered lis

• symtab *getsym (SymTable, SymId)  : Returns a pointer to an element in a symb
table.

• int setsym (SymTable, SymId, SetDefined, SetUsed)  : Sets an element’s
attributes in a symbol table. 

• void clearsym (SymTable)  : Clears a symbol table.

• void printsym (SymTable, TableType)  : Formats and prints a symbol table (to th
table file).

• void printallsym ()  : Formats and prints all symbol tables (to the table file). Us
printsym .

Symbol tables for external activities, internal activities, and tag identifiers are 
defined for each timethread in the TMDL description. We use them for static semant
analysis and for the generation of the symbol table file. They are grouped in a list 
ture, named localtt , in the following way:

• char *LowTTId  : Timethread identifier (lowercase only).

• symtab *Ext  : Timethread local external activities.

• symtab *Int  : Timethread local internal activities.

• symtab *Tag  : Timethread local tag identifiers.

• struct localtt *Next  : Pointer to next timethread in chained list.

5.4.4 Map Structure
Since we require timethread interactions to be linearized, a simple tree structure is
cient to represent them (the tree width is MAXMEMBER at most). Thus, the mapstruct

structure is defined as:

• id Id  : Timethread or group identifier.

• int Type  : Node type (TYPETT or TYPEGROUP).

• symtab *Interactions  : List of synchronization events (NULL when Nothing ).

• int NumMembers  : Number of members in group (0 when it is a timethread).

• struct mapstruct *Member[MAXMEMBER]  : Group members list (node children)
Each node is limited to MAXMEMBER members (and children).
LOTOS Generation from Timethread Maps: A Language and a Tool 15 of 53



TMDL-to-LOTOS Compiler

or

e

in

.

ini-

g.,

nted

 possi-

 the
ion.

sed to

rmat

d

d to
ed in
Three functions, found in tmdl.c, manage the map structure:

• int putmem (MapStruct, SymId, SymType)  : Places a new member (timethread 
group) in the map tree structure.

• mapstruct *getmem (MapStruct, SymId)  : Returns a pointer to a member in th
map structure.

• void printmem (MapStruct, ParTab)  : Formats and prints a map tree structure (
the table file).

5.4.5 Stacks
Some grammar rules require context saving. Different stacks were used to do so:

• int Levels[MAXDEPTH]  : To manage Results from rules R_firstpath and R_orfork

• int ParCount[MAXDEPTH]  : To save the number of open parenthesis (in tag def
tions, guards, forks...).

• char * UniqueId[MAXDEPTH]  : To save unique identifier temporary variables (e.
for a And-Fork within a And-Fork).

• char OldTabs[4*MAXDEPTH] : To save current tabulation.

No functions were created; four global variables were incremented/decreme
instead.

5.5 Static Semantics

Static semantic routines intend to detect as many possible semantic problems as
ble in the timethread map, whatever GUI tool there is on top of tmdl  or whatever
LOTOS tool used afterwards. Trying to detects problems here will either validate
output of a GUI tool, or prevent a LOTOS tool from analysis an incorrect specificat

Note that each function related to static semantic starts with “sem” and that semantic
analysis sections in the source code are identified and commented.

5.5.1 Generic Functions
Before getting into real semantics, we should present the two generic functions u
output all errors and warnings.

• void semwarning (Category, SymId, Message)  : Outputs a given warning mes-
sage and increments counter ‘warningnum’ for the final summary report. The fo
is: “WARNING (line %d): %s ‘%s’ %s\n”, linenum, Category, SymId, Message

• void semerror (Category, SymId, Message)  : Outputs a given error message an
increments counter ‘errornum’ for the final summary report. The format is:
“ERROR (line %d): %s ‘%s’ %s\n”, linenum, Category, SymId, Message

Usually, an error leads to an invalid LOTOS specification while a warning could lea
a valid LOTOS specification but a semantics possibly different than the one intend
the timethread map.
16 of  53 LOTOS Generation from Timethread Maps: A Language and a Tool



TMDL-to-LOTOS Compiler

d be
 func-

y

tions

f

ady

annot

re
lysis).
bols

y for

ed, the

c-
5.5.2 Parsing
If an error occurs during parsing, bison makes a call to yyerror(s)  for error handling.
This function then calls: semerror(“Symbol”, yytext, “caused a parse error.”)

where yytext  is the last symbol read. No error recovery is intended.

5.5.3 Symbols
Symbols and especially identifiers can be overloaded with many types, coul
reserved words, or could lead to static dataflow analysis problems. We use three
tions (found in tmdl.c) to detect these problems. 

• int semchecksym (SymType, SymId) : Checks whether or not a symbol is alread
in other symbol tables. The diffent types of symbols are are treated differently.

It has been decided that an error is output when:
- A value identifier is also a timethread, tag, or activity identifier,
- Any type of identifier is the same as the map identifier.

A warning occurs when:
- An activity identifier is also a timethread or tag identifier,
- A timethread identifier is also a tag identifier.

The approach taken offers much flexibility in these aspects, and other combina
could be considered.

• char * checklotosword(IdToCheck)  : Checks an identifier against the list o
LOTOS reserved words (char * LOTOSwords[] ). Common TMDL keywords
(Choice, Is, Par, and Where) are excluded from the list because the parser alre
takes care of such identifiers.

When a LOTOS identifier ‘idlotos’ is detected, it is renamed to ‘ID_idlotos’, and a
warning message is output. No error is necessary since the renamed identifier c
interfere with other ones (the underscore forbidden in TMDL).

• void semcheckdefuse (SymType)  : Checks that defined symbols in a given table a
used, and that used symbols in a given table are defined (static dataflow ana
The different types (timethreads, groups, tag identifiers, and tag values) of sym
are treated differently, and error messages output accordingly (warnings onl
tags).

5.5.4 Interactions
Timethread interactions also have to be validated. When the map structure is pars
following static semantic routines are applied:

• void seminteractions (MapStruct)  : Checks all interactions in a map tree stru
ture. Calls semcheckttint  on each nodes. Errors are output when:
- A timethread cannot be found in the description section,
- One of the synchronizing event is not found in an interacting timethread.
LOTOS Generation from Timethread Maps: A Language and a Tool 17 of 53



TMDL-to-LOTOS Compiler

ds
ence
g the

 pro-

asily

s

a-
rror

yncs,
ens, a
ity is
• void semcheckttint (IntList)  : Checks interactions between timethrea
involved in an interaction. It uses a collection of boolean flags to check the pres
and type of activities involved in the interaction. These flags are set by checkin
corresponding activity type stored in timethreads local symbol tables.

Warning are output when:
- The number of tag parameters are not the same for all activities (the LOTOS
cesses could not synchronize),
- An abort event is detected without an aborted event,
- A waiting place interacts with a trigger,
- An action interacts with other activities,
- A trigger interacts with a trigger,
- A sync event interacts with activities different from syncs and asyncs.
- The interaction is composed of asyncs and results only.

Errors come from:
- Abort or aborted event interacting with other types of activities.

Again, the approach used is much flexible and allow different semantic rules to be e
created.

5.5.5 Loops
The Compulsory  and Optional  sections of a Loop  must not contain any asynchronou
event (Async, AndFork, Par, ...). This leads to a problem with the LOTOS exit  used in
our mapping:

(exit ||| stop) ~ stop

Because parallel processes would never synchronize on exit , the functionality of the
Loop  process, defined as exit , should become noexit  and the loop would never termi-
nate. This is detected by LOTOS tools such as TOPO and XELUDO.

To detect this particular problem in tmdl , we check that we do not add a parallel oper
tor (|||  or |[...]| ) while creating the loop. If such an operator is found, then an e
message is output.

5.5.6 Internal Activities
Some activities are by definition external to timethreads, e.g., triggers, results, s
asyncs, abort... Therefore, we cannot make then locally internal. When this happ
warning is emitted (saying that such activity should not be internal), and the activ
then considered as external.
18 of  53 LOTOS Generation from Timethread Maps: A Language and a Tool



TMDL-to-LOTOS Compiler

 code
mantics
. In
ted in
aiting
, and

rsing
and
rtant

e.

le.
nter-

d
ults,
on to

ifi-
OS

bol

m
 gates
n in
5.6 Code generation

Explaining 3000 lines of C code is not an easy task, especially when it comes to
generation routines. We assume here that the reader already understands the se
of the mapping from TMDL constructs to LOTOS constructs covered in [Amy 94]
this section, we will try to cover the generic routines used to solve issues (enumera
the thesis) related to lists of gates, ADT generation, loop extra process, complex w
places, interactions, unique identifiers, dangling parenthesis, levels of specification
tabulation (for pretty-printing).

5.6.1 Solving Difficult TMDL Constructs Issues
As explained in section 5.2, we decided to generate LOTOS code directly when pa
the input TMDL description. However, this does not forbid us to create generic 
modular functions to accomplish this task, on the contrary. Here are the most impo
ones:

Lists of Gates

• char * makegates (SymTable)  : Returns the list of all gates from a symbol tabl
Used to generate LOTOS processes formal and actual parameters.

• char * makeinternal (SymTable)  : Returns the list of internal activities from a
symbol table. Used when generating the LOTOS hide...in construct.

• void makespecgates()  : Places the list of map external activities in a symbol tab
Computes this list from all the timethread external gates that are not globally i
nal.

ADTs

• char * maketaglist (SymTable, SendReceive)  : Makes the list of tags, separate
with ? for send and ! for receive, from a symbol table. Used for triggers, res
waiting places, etc. Internal LOTOS synchronization gates also use this functi
pass data values from one scope to another.

• char * makeadt()  : Creates the ADT Tag definition at the beginning of the spec
cation. The sort Tag  is created and mapped onto natural numbers (from the LOT
library) with an equation of the format N : Tag -> Nat . A dummy tag value is
always created first (dummy_val ), and then all the tag values from the ordered sym
table are mapped onto naturals. Two equations over tags are provided: eq for equal-
ity and ne for inequality.

Loop

• char * makelooppar (SymTable, Type)  : Makes the loop parameters for tags fro
a symbol table. When the loop is first created, formal and actual parameters for
and values are unknown and are therefore replaced with symbols (forbidde
TMDL to avoid side-effects):
   -  ‘@’ for actual parameters,
   -  ‘+’ for formal parameters,
   -  ‘#’ for formal parameters between parenthesis,
LOTOS Generation from Timethread Maps: A Language and a Tool 19 of 53



TMDL-to-LOTOS Compiler

orre-

hen

tree).

d-
lation

vents

e

 some

 needed
-

   -  ‘%’ for exit parameters,
   -  ‘^’ for accept.

When all the information is available, these symbols are replaced with their c
sponding parameter list (by using function subst ).

• void subst (Dest, Source, CharFrom, StringTo)  : Generic function that
replaces a character (CharFrom ) from the Source  string with StringTo  and places the
result in Dest .

Abort

• void makeabort(Buf)  : Completes an aborted timethread LOTOS process, w
necessary, by adding the disabling event ([> AbortEvent; ... ) at the end of the
process.

Waiting Places

• void makewait(Buf, SymWPType, SymId, SymPar)  : Creates complex waiting
places from SymWPType. It generates new tag identifiers and values for Time  and
Signal  waiting places, and manages the internal synchronizations. Memory waiting
places are not implemented yet, but this generic process would allow to do so.

Interactions

• int makeintlist(IntList, MapStruct, SymId, IntDepth)  : Creates the activity
interaction list corresponding to the map structure (or a sub map in the global 
Used to synchronize LOTOS processes ( TT1 |[intlist]| TT2  ).

• char * makebeh(MapStruct, ParTab)  : Creates the LOTOS behaviour correspon
ing to the map structure. Groups are replaced with simple parenthesis, and tabu
is managed.

5.6.2 Unique Identifiers
Unique identifiers are necessary when creating new internal synchronization e
(SyncPar_0 , SyncChoice_2 , ...) and new sub-processes (Loop_1 , Loop_3 , ...). To ensure
each of these identifiers is unique, we use a counter (UniqueNameGen), initialized to 0,
and the following function:

• char *namegen (Name)  : Creates a unique name identifier from parameter Name. The
returned identifier is the concatenation of Name, an underscore (to avoid interferenc
with users identifiers), and the value of UniqueNameGen. The counter is incremented
at each call.

5.6.3 Dangling Parenthesis
Because we have a highly-coupled 1-pass compiler, it is not always possible, for
constructs such as Guard  and Tag (mapped onto LOTOS guard and Let ), to know in
advance where a parenthesis should be close. The best we can do is to open the
parenthesis (as in “(  [Guard] -> ... rest of path ” ), remember that we have a dan
gling parenthesis, and then close it later on.
20 of  53 LOTOS Generation from Timethread Maps: A Language and a Tool



Testing and Example

. When

 or

indi-

flects
pretty-

ghetti-
-cou-

ould
n, we
 exam-
In our prototype, we use a stack of open parenthesis counters (int ParCount[] ) that is
updates each time a parenthesis is open. A stack is needed for paths within paths
a TMDL path is finished (a Result  is encountered), the following function is called:

• void closepar(Code)  : Adds dangling closing parenthesis ‘)’ at the end of a path
sub-path. Manages tabulation and adjust the stack accordingly.

5.6.4 Levels
TMDL allows the use of three important levels of specification, for each timethread 
vidually:

• Single instance, no recursion (NoRec),

• Single instance, tail recursion (EndRec),

• Multiple instances at once (parallel recursion ParaRec ).

This influences how the LOTOS process ends. When the timethread’s Result  is encoun-
tered, the code generated between the result and the last parenthesis is:

• When NoRec :  stop

• When EndRec : TimethreadId [>]

• When ParaRec  : stop ||| TimethreadId [>]

where ‘>’ is replaced with the process list of parameters at a later stage.

5.6.5 Tabulation
For a LOTOS specification to be readable, it must be indented in some way that re
the structure. Tabulators are used in our case, in every code generation rule, for 
printing:

• TABSPACE: (Constant) Number of space characters in a tab, found in tmdl.h.

• ATab: Tab with TABSPACE spaces.

• Tabs : (string) Tabulation of the current line.

• void adjusttab(Command)  : Adjusts the number of leading tabs for indentation. 
    If Command is MORETABS, adds a tab to Tabs .
    If Command is LESSTABS, removes a tab from Tabs .

• OldTabs[] : Stack of tabulator strings (to keep context).

• TabDepth : Pointer to the current old tab string in OldTabs  stack

Because we manage tabs during parsing, many adjustments that might look spa
like are needed. Also, loops tabulations are incorrect due to our now famous strong
pling approach.

6.0 Testing and Example

One of the major problems with testing a program such as a compiler is that we w
have to be exhaustive in order to cover its functionalities adequately. In this sectio
present how were tested the grammar rules and semantic routines, and we give an
ple of a complete compilation (the Traveler System).
LOTOS Generation from Timethread Maps: A Language and a Tool 21 of 53



Testing and Example

 not
wever,

al
ments

re

 the

would
here-
r

 gener-
led

rect-
6.1 Testing Grammar Rules

The TMDL syntax was tested during the compiler implementation. The tests are
enumerated here because they are simple, numerous and not very interesting. Ho
here is a short description of what has been tested.

6.1.1 Scanner
The scanner (generated by flex) determines tokens from the input description:

• All TMDL keywords have been tested and recognized (even Comp, Compulsory , Opt ,
and Optional ).

• Identifiers and numalpha are also correctly recognized. If they have more than IDMAX

characters, then they are truncated to IDMAX characters with a call to trunc()  before
being returned to the parser. checklotosword  is also applied to rename LOTOS
identifiers when necessary.

• Comments (between ‘{ ’ and ‘} ’) are correctly recognized and ignored during lexic
analysis. However, a comment must not go over more than one line, and com
cannot include other comments.

• Tabs, newlines and spaces are correctly skipped.

• Symbol case-insensitivity tested.

• Forbidden symbols (~, @, #, $, %, ^, *, -, +, _, |, \, [, ], <, >, ., /, }, :, ’, ", ‘) a
detected and they cause a parse error.

6.1.2 Parser
The parser (generated by bison) recognizes the grammar rules, especially because
rules are defined in BNF and then directly used in tmdl.bison. We tested that:

• All individual rules are correctly parsed.

• Syntax errors are detected at any point.

• TMDL reserved words cannot be interpreted as identifiers.

6.2 Testing Semantic Routines

Semantic routine are a lot more interesting to test. However, an exhaustive testing 
be very expensive in our case, even if our prototype compiler is not very large. T
fore, we will simply present a test TMDL description for interactions, and anothe
TMDL description to test the language’s complex operators.

6.2.1 Static Semantics
The errors and warnings presented through sections 5.5 and 5.6 were tested and
ated from multiple short test TMDL descriptions. They are too numerous to be recal
again here. No problem with the detection methods used seemed to happen.

6.2.2 Interactions
Code generation for interactions is particularly new in this project. To test its cor
ness, we can use the following timethread map (figure 6). Note that Event1  and Event3

(in the dotted box) are internal events.
22 of  53 LOTOS Generation from Timethread Maps: A Language and a Tool



Testing and Example

nd a
FIGURE 6. Timethread map TestInteractions for interaction testing

We can get a LARG corresponding to these five interacting timethreads (fig.7a), a
linear grouped LARG (fig. 7b) after applying the LAEG method [Bor 93].

FIGURE 7. Original LARG and grouped LARG of TestInteractions

The TMDL representation of these interactions would be:

T4

TT3

TT1TT2

TT4

TT5
T5

R5

R3

R1

T2

Event1 Event3

Event1

TT5

TT1

TT2

TT3

TT4

Event1,
Event3

Event2

Event2

TestInteractions

hide Event1, Event3 in

TT5

TT2TT4

Event1,
Event3

TestInteractions

hide Event1, Event3 in

TT3

TT1

Event2

Gr1 Gr2

Gr3

(a) (b)
LOTOS Generation from Timethread Maps: A Language and a Tool 23 of 53



Testing and Example

ble in
om-

en
action

 No
flects
rame-
Map TestInteractions Is

{ This TMDL description comes directly from the original LARG. }
{ It cannot be used as-is by our compiler. Groupings are needed. }

Internal
   Event1, Event3                { 2 internal events }

Interactions
   TT1, TT2, tt4 on  Event2;
   TT3, TT2, tt4 on  Event2;
   TT4, TT5 on  Event1, Event3;

Descriptions
 ... { Timethread TT1 to TT5 descriptions, in any order. }

The problem here is that interactions are not linear, i.e., not directly representa
LOTOS. Using the LAEG method, one could form the grouping in figure 7b. Our c
piler does require this grouping since the LAEG method is not implemented yet.

A second TMDL interactions description for this new LARG is required. The chos
grouping is interesting because it allows us to test internal events and many inter
parameters (number of groups and events).

Map TestInteractions Is

{ This TMDL description tests the internal and interactions sections. }
{- Internal and external events }
{- Interactions with 1, 2, and 3 members }
{- Interactions with 0 (Nothing), 1, and 2 events }
{- Groups enumerated in wrong order }
{- Group within a group }

Internal
   Event1, Event3                { 2 internal events }

Interactions
   &Gr1, TT2, &Gr2 on  Event2; { 3 members. 1 event }
   Where
      Group  &Gr2 is            { Group Gr2 before Group Gr1 }
         TT1, TT3 on  Nothing ; { 2 members, 0 event }
      EndGroup  { &Gr2 }

      Group  &Gr1 is
         TT4, &Gr3 on  Event1, Event3;   { 2 members, 2 events }
         Where
            Group  &Gr3 is      { Group within a group }
               TT5 on Nothing ;{ 1 member, 0 event }
            EndGroup  { &Gr3 }
      EndGroup  { &Gr1 }

Descriptions
 ... { Timethread TT1 to TT5 descriptions, in any order. }

Using our compiler, we obtain a LOTOS specification partially reproduced here.
compilation errors or warnings were detected. As you can see, this specification re
correctly the internal events and map structure in a LOTOS form, and the gate pa
ters are also correct. Tabulation makes this part easier to read.
24 of  53 LOTOS Generation from Timethread Maps: A Language and a Tool



Testing and Example

ted in

test

pped

alistic)
 con-
ication

 opera-

pact on
specification  TestInteractions[Event2, R1, R3, R5, Tr2, Tr4, Tr5]: noexit

   ... { Libraries and tag ADT }
behaviour

hide  Event1, Event3 in

   (
      (
         TT4[Event1, Event2, Event3, Tr4]
         |[Event1, Event3]|
         (
            TT5[Event1, Event3, R5, Tr5]
         )
      )
      |[Event2]|
      TT2[Event2, Tr2]
      |[Event2]|
      (
         TT1[Event2, R1]
         |||
         TT3[Event2, R3]
      )
   )

where
   ... { Process TT1 to TT5 descriptions }
endspec  (* Map TestInteractions *)

In the symbol table file generated by our compiler, the map structure is also reflec
the following way:

MAP STRUCTURE:
   TestInteractions      TYPEGROUP  3 Event2
      Gr1                   TYPEGROUP  2 Event1, Event3
         TT4                   TYPETT     0 
         Gr3                   TYPEGROUP  1 
            TT5                   TYPETT     0 
      TT2                   TYPETT     0 
      Gr2                   TYPEGROUP  2 
         TT1                   TYPETT     0 
         TT3                   TYPETT     0 
*************************************************************************

6.2.3 Complex Constructs
Testing all TMDL constructs is a huge (and tedious) task. In this section, we will 
complex constructs only. Simple constructs (stub , trigger , result , action , sync , seg-

stub , and wait ) will not be discussed as such, mainly because they are usually ma
onto a simple LOTOS gate.

The approach taken here is to regroup all constructs to test into a single (and unre
TMDL map description presented in appendix B.1. In this way, we can test multiple
structs at once, reducing the number of timethread processes. The LOTOS specif
(file tests.lot) is in appendix B.2, and appendix B.3 is the symbol tables (file tests.tab).

Here are the test descriptions and results. It is suggested to read the TMDL description
and its corresponding LOTOS process at the same time.:

• Abort and Levels: Timethreads TestAbort, TestAborted1, TestAborted2.
These timethreads test aborts and levels of specifications. We see how the disable
tor is used in LOTOS processes to implement AbortedOn . The three levels of specifica-
tion (NoRec, EndRec, and ParaRec) have also been tested, and we can see the im
the recursion in the LOTOS processes.
LOTOS Generation from Timethread Maps: A Language and a Tool 25 of 53



Testing and Example

e two
 two

e rest
inally,

lel
vents
o
ronous

t tag
r 
ses
an-

ops,

event

ion

anage
ren-

abula-
ted in

l way.
• Choice, Async, Tags, and Guards: Timethread TestChoice.
This timethread tests a Choice  within a Choice . It also uses the Async  activity and bool-
ean operators over guards. Also, tag passing over internal synchronizations (for th
Choice ) is tested. In the LOTOS process, the choices are correctly specified and
unique internal synchronization events (Sync_Or_0  and Sync_Or_1 ) are created. The tag
Cond used is passed over the two synchronizing events to make it accessible to th
of the process. Guards, boolean, and equality operators are well translated too. F
the asynchronous event Act3  is mapped onto an interleaving sub-behaviour.

• Par, Async, and Tags: Timethread TestPar.
This timethread tests a Par  within a Par . It also uses the Async , and tag passing over
internal synchronizations (for the two Par ) is tested. In the LOTOS process, the paral
segments are correctly specified and two unique internal synchronization e
(Sync_And_2  and Sync_And_3 ) are created. The tag Cond used is passed over the tw
synchronizing events to make it accessible to the rest of the process. The asynch
event Act3  is again mapped onto an interleaving sub-behaviour.

• Loops, Tags, and Guards: Timethread TestLoops.
A Loop  within a Loop  is tested in this timethread. Tags and guards are used to tes
passing from and to loop sub-processes. We also use short and long keywords foCom-

pulsory  and Optional  segments. Within the LOTOS process, two loop sub-proces
are created (Loop_4  and Loop_5 ). Tag and gate parameters are correctly listed and m
aged when entering loops, and when exiting loops (with the >> accept...in  construct).
Of course, no activity leading to LOTOS parallel operators were used in the lo
because this would have led to an error.

• Special waiting places: Timethread TestWP.
Here we test waiting place options Time , Delayed , and Signal . The timed trigger causes
two new internal events to be created (TimeOut6  and Sync_Time_7 ). They are used to
decide the verdict (values TOut  or OK) passed to the new tag TimeT8 . The delay of the
delayed waiting place is represented with the simple new internal action Delay_8 .
Finally, the signal waiting place causes the creation of an internal synchronization 
(Sync_Signal_9 ). Its result (Yes or No) is passed to the new tag SigAct13 . Again we can
see that the previous tag (TimeT8 ) was also correctly passed over the synchronizat
event.

In this quite impressive test, we can see from the LOTOS specification seems to m
in a working way the map structure building, the tag ADT generation, dangling pa
thesis, unique identifiers, gates lists, parameters lists, levels of specification, and t
tion (except for loops). Therefore, we can have some trust in the solutions enumera
section 5.6 for these complex problems.

6.3 Traveler System Example

As a more concrete example, we use the Traveler System as defined in [Amy 94]. This
system is simple to understand and complex enough to test our compiler in a usefu
The purpose of this example is to give a complete view of all files involved in one tmdl
compilation, and to see that the LOTOS specification effectively works.
26 of  53 LOTOS Generation from Timethread Maps: A Language and a Tool



Testing and Example

sfy a

ge
nous
sys-
e best

em in

is

, they
6.3.1 The Timethread Map
The map of figure 8 comes from the thesis. It has been slightly altered to sati
restriction on loops discussed in section 5.5.5. The timethread Dispatcher includes an
asynchronous event (DaskC) in its loop. Because our prototype compiler cannot mana
constructs in loop that lead to parallelism in LOTOS, we transform this asynchro
interaction into a synchronous one. This of course modify the functionality of this 
tem (a dispatcher and a cab now have to synchronize with each other), but this is th
we can do with the current version of the compiler.

Note that the original and grouped LARGs are not given here. Readers can find th
[Amy 94].

FIGURE 8. Timethread map of the new traveler system

6.3.2 TMDL Description
The STDL descriptions of the Traveler System timethreads are the ones from the thes
and are reproduced in figure 9. To complete the TMDL description (file newtrav.tdl), we
add the internal and interaction sections derived from the grouped LARG.

Timethread descriptions also have their level of specification defined. In our case
are all set to simple instance with end recursion (EndRec).

Traveler

Dispatcher PlaneCab

Tnew

TphoneD

TgetinC TgetoutC

DaskC

TCride

DlookforC
Dfillstats

Dready

Din Dout

Cin

Cout

Cgarage

CgoD

Tairport

TgetonP

TPflight

TgetoffP

Phangar

Tdest

Pready
LOTOS Generation from Timethread Maps: A Language and a Tool 27 of 53



Testing and Example
FIGURE 9. TMDL description of the traveler system (newtrav.tdl)

{ This is a new version of the traveler example developed in the thesis. }
{ It includes modifications to satisfy compiler’s restrictions on loops }
{ Daniel Amyot, 22/09/94 }

Map TaxiCompany is

Internal  TPhoneD, TgetinC, TCride, TgetoutC, TgetonP, TPFlight,
 TgetoffP, Pready, Phangar, Din, DaskC, Dout, Cin, Cout

{ Grouping from the thesis }
Interactions
   Traveler, &Gr1 on  TphoneD, TgetinC, TCride, TgetoutC,
     TgetonP, TPflight, TgetoffP;
   where
      Group  &Gr1 is
         Plane, &Gr2 on Nothing ;
         where
            Group  &Gr2 is
               Dispatcher, Cab on  DaskC;
            EndGroup  { &Gr2 }
      EndGroup  { &Gr1}

Descriptions

Timethread  Traveler is
   EndRec             { End Recursion }
   Internal  Tairport  { Internal action }
   
   Trigger  (Tnew)
   Async  (TphoneD)
   Sync  (TgetinC)
   Action  (TCride)
   Sync  (TgetoutC)
   Action  (Tairport)
   Sync  (TgetonP)
   Action  (TPflight)
   Sync  (TgetoffP)
   Result  (Tdest)
EndTT { Traveler }
28 of  53 LOTOS Generation from Timethread Maps: A Language and a Tool



Testing and Example
Timethread  Dispatcher is
   EndRec             { End Recursion }
   Constrained         { Not used here. }
   Internal            { Internal actions }
      DlookforC, Dfillstats, Dready
      
   Trigger  (Din)
   Loop
      Compulsory
         Sync  (TphoneD)
         Action  (DlookforC)
         Sync  (DaskC)  { Instead of Async (Loop restriction).  }
         Action  (Dfillstats)
      Optional
         Action  (Dready)
   EndLoop
   Result  (Dout)
EndTT { Dispatcher }

Timethread  Cab is
   EndRec             { End Recursion }
   Constrained         { Not used here. }
   Internal            { Internal actions }
      CgoD, Cgarage
      
   Trigger  (Cin)
   Loop                { No parallel here }
      Compulsory
         Sync  (DaskC)
         Sync  (TgetinC)
         Action  (TCride)
         Sync  (TgetoutC)
      Optional
         Action  (CgoD)
   EndLoop
   Action  (Cgarage)
   Result  (Cout)
EndTT { Cab }

Timethread  Plane is
   EndRec             { End Recursion }
   Trigger  (Pready)
   Sync  (TgetonP)
   Action  (TPflight)
   Sync  (TgetoffP)
   Result  (Phangar)
EndTT { Plane }

EndMap { TaxiCompany }

6.3.3 LOTOS Specification
To get the LOTOS specification from the TMDL description, we use the command:

tmdl -i newtrav.tdl -o newtrav.lot -t newtrav.tab -e newtrav.err

Figure 10 presents the specification (file newtrav.lot). As shown by the error file
(newtrav.err), no errors were found during compilation:

    TMDL-to-LOTOS Compiler, version 0.9.

    Found 0 Warning and 0 Error.

    LOTOS specification output.

The main points to observe in figure 10 are:

• The Tag ADT description (dummy_val  only since no tags were used),

• The map structure,
LOTOS Generation from Timethread Maps: A Language and a Tool 29 of 53



Testing and Example
• The gate parameters,

• The two loop processes (in Dispatcher and Cab),

• The management of unique identifers and tabulators.

FIGURE 10. LOTOS specification of the traveler system (newtrav.lot)

(* TMDL-to-LOTOS Compiler, version 0.9. *)

specification  TaxiCompany[Tdest, Tnew]: noexit

library
   Boolean, NaturalNumber
endlib

(* Tag ADT definition *)
type  Tag is  Boolean, NaturalNumber
sorts  Tag
opns  dummy_val : -> Tag
     N : Tag -> Nat
     _eq_, _ne_ : Tag, Tag ->Bool
eqns  forall  x, y: Tag
     ofsort  Nat
     N(dummy_val)= 0;   (* dummy value *)
     ofsort  Bool
     x eq y = N(x) eq N(y);
     x ne y = not(x eq y);
endtype

behaviour

hide  Cin, Cout, DaskC, Din, Dout, Phangar, Pready, TCride, TgetinC,
     TgetoffP, TgetonP, TgetoutC, TPFlight, TPhoneD in

   (
      Traveler[TCride, Tdest, TgetinC, TgetoffP, TgetonP, TgetoutC, Tnew,
               TPflight, TphoneD]
      |[TCride, TgetinC, TgetoffP, TgetonP, TgetoutC, TPflight, TphoneD]|
      (
         Plane[Phangar, Pready, TgetoffP, TgetonP, TPflight]
         |||
         (
            Dispatcher[DaskC, Din, Dout, TphoneD]
            |[DaskC]|
            Cab[Cin, Cout, DaskC, TCride, TgetinC, TgetoutC]
         )
      )
   )

where
30 of  53 LOTOS Generation from Timethread Maps: A Language and a Tool



Testing and Example
   process  Traveler[TCride, Tdest, TgetinC, TgetoffP, TgetonP, TgetoutC,
                    Tnew, TPflight, TphoneD]: noexit  :=

   hide  Tairport in

      Tnew;
      (
         (
            TphoneD; stop
            |||
            TgetinC;
            TCride;
            TgetoutC;
            Tairport;
            TgetonP;
            TPflight;
            TgetoffP;
            Tdest; Traveler[TCride, Tdest, TgetinC, TgetoffP, TgetonP,
               TgetoutC, Tnew, TPflight, TphoneD]  (* End recursion *)
         )
      )
   endproc   (* Timethread Traveler *)

   (*********************************************)

   process  Dispatcher[DaskC, Din, Dout, TphoneD]: noexit  :=

   hide  Dfillstats, DlookforC, Dready in

      Din;
      (
         (
            Loop_0[DaskC, Din, Dout, TphoneD, Dfillstats, DlookforC,
                   Dready]>>
            Dout; Dispatcher[DaskC, Din, Dout, TphoneD] (* End recursion *)
         )
      )

   where
      process  Loop_0[DaskC, Din, Dout, TphoneD, Dfillstats, DlookforC,
                     Dready] : exit  :=
         TphoneD;
         DlookforC;
         DaskC;
         Dfillstats;
         (
            (
               Dready;
               Loop_0[DaskC, Din, Dout, TphoneD, Dfillstats, DlookforC,
                      Dready]
            )
            []
            (
                     exit   (* Exit Loop *)
            )
         )
      endproc   (* Loop_0 *)

   endproc   (* Timethread Dispatcher *)

   (*********************************************)
LOTOS Generation from Timethread Maps: A Language and a Tool 31 of 53



Testing and Example

 can

, tag

and
ame-
   process  Cab[Cin, Cout, DaskC, TCride, TgetinC, TgetoutC]: noexit  :=

   hide  Cgarage, CgoD in

      Cin;
      (
         (
            Loop_1[Cin, Cout, DaskC, TCride, TgetinC, TgetoutC, Cgarage,
                   CgoD]>>
            Cgarage;
            Cout; Cab[Cin, Cout, DaskC, TCride, TgetinC, TgetoutC] (* End
                  recursion *)
         )
      )

   where
      process  Loop_1[Cin, Cout, DaskC, TCride, TgetinC, TgetoutC, Cgarage,
                    CgoD] : exit  :=
         DaskC;
         TgetinC;
         TCride;
         TgetoutC;
         (
            (
               CgoD;
               Loop_1[Cin, Cout, DaskC, TCride, TgetinC, TgetoutC, Cgarage,
                     CgoD]
            )
            []
            (
                     exit   (* Exit Loop *)
            )
         )
      endproc   (* Loop_1 *)

   endproc   (* Timethread Cab *)

   (*********************************************)

   process  Plane[Phangar, Pready, TgetoffP, TgetonP, TPflight]: noexit  :=
      Pready;
      (
         TgetonP;
         TPflight;
         TgetoffP;
         Phangar; Plane[Phangar, Pready, TgetoffP, TgetonP, TPflight] 
                  (* End recursion *)
      )
   endproc   (* Timethread Plane *)

endspec  (* Map TaxiCompany *)

6.3.4 Symbol Tables
The file newtrav.tab contains the symbol tables presented in figure 11. There we
find:

• The map structure.

• The line number associated with the first use of each symbol.

• Global symbol tables: timethreads with defined/used, groups with defined/used
values, and activities.

• The map external and internal activities.

• The local symbol tables of the four timethreads: internal activities with type 
number of parameters involved, external activities with type and number of par
ters involved, and tag identifiers.
32 of  53 LOTOS Generation from Timethread Maps: A Language and a Tool



Testing and Example
FIGURE 11. Symbol tables generated from the traveler system (newtrav.tab)

TMDL-to-LOTOS Compiler, version 0.9. Symbol Tables.

MAP STRUCTURE:
   TaxiCompany           TYPEGROUP  2 TCride, TgetinC, TgetoffP, TgetonP,
TgetoutC, TPflight, TphoneD
      Traveler              TYPETT     0 
      Gr1                   TYPEGROUP  2 
         Plane                 TYPETT     0 
         Gr2                   TYPEGROUP  2 DaskC
            Dispatcher            TYPETT     0 
            Cab                   TYPETT     0 
*************************************************************************

TIMETHREAD SYMBOL TABLE:
19:Cab                                 DEFINED      USED        
19:Dispatcher                          DEFINED      USED        
16:Plane                               DEFINED      USED        
12:Traveler                            DEFINED      USED        
*************************************************************************

GROUP SYMBOL TABLE:
12:Gr1                                 DEFINED      USED        
16:Gr2                                 DEFINED      USED        
*************************************************************************

TAG VALUE SYMBOL TABLE:
*************************************************************************

GLOBAL ACTIVITY SYMBOL TABLE:
64:Cgarage                            
66:CgoD                               
8:Cin                                
8:Cout                               
8:DaskC                              
45:Dfillstats                         
8:Din                                
47:DlookforC                          
8:Dout                               
45:Dready                             
8:Phangar                            
8:Pready                             
29:Tairport                           
7:TCride                             
38:Tdest                              
7:TgetinC                            
8:TgetoffP                           
7:TgetonP                            
7:TgetoutC                           
29:Tnew                               
7:TPFlight                           
11:TPhoneD                            
*************************************************************************
LOTOS Generation from Timethread Maps: A Language and a Tool 33 of 53



Testing and Example
MAP INTERNALS:
8:Cin                                
8:Cout                               
8:DaskC                              
8:Din                                
8:Dout                               
8:Phangar                            
8:Pready                             
7:TCride                             
7:TgetinC                            
8:TgetoffP                           
7:TgetonP                            
7:TgetoutC                           
7:TPFlight                           
11:TPhoneD                            
*************************************************************************

MAP EXTERNALS:
89:Tdest                              
89:Tnew                               
*************************************************************************

TIMETHREAD traveler INTERNALS:
29:Tairport                            ACTION       0 PARAMETER.
*************************************************************************

TIMETHREAD traveler EXTERNALS:
32:TCride                              ACTION       0 PARAMETER.
38:Tdest                               RESULT       0 PARAMETER.
31:TgetinC                             SYNC         0 PARAMETER.
37:TgetoffP                            SYNC         0 PARAMETER.
35:TgetonP                             SYNC         0 PARAMETER.
33:TgetoutC                            SYNC         0 PARAMETER.
29:Tnew                                TRIGGER      0 PARAMETER.
36:TPflight                            ACTION       0 PARAMETER.
30:TphoneD                             ASYNC        0 PARAMETER.
*************************************************************************

TIMETHREAD traveler TAG IDENTIFIERS:
*************************************************************************

TIMETHREAD dispatcher INTERNALS:
45:Dfillstats                          ACTION       0 PARAMETER.
47:DlookforC                           ACTION       0 PARAMETER.
45:Dready                              ACTION       0 PARAMETER.
*************************************************************************

TIMETHREAD dispatcher EXTERNALS:
52:DaskC                               SYNC         0 PARAMETER.
47:Din                                 TRIGGER      0 PARAMETER.
57:Dout                                RESULT       0 PARAMETER.
50:TphoneD                             SYNC         0 PARAMETER.
*************************************************************************

TIMETHREAD dispatcher TAG IDENTIFIERS:
*************************************************************************

TIMETHREAD cab INTERNALS:
64:Cgarage                             ACTION       0 PARAMETER.
66:CgoD                                ACTION       0 PARAMETER.
*************************************************************************

TIMETHREAD cab EXTERNALS:
66:Cin                                 TRIGGER      0 PARAMETER.
77:Cout                                RESULT       0 PARAMETER.
69:DaskC                               SYNC         0 PARAMETER.
71:TCride                              ACTION       0 PARAMETER.
70:TgetinC                             SYNC         0 PARAMETER.
72:TgetoutC                            SYNC         0 PARAMETER.
*************************************************************************

TIMETHREAD cab TAG IDENTIFIERS:
*************************************************************************
34 of  53 LOTOS Generation from Timethread Maps: A Language and a Tool



Testing and Example

tool

lem.

e vali-
 and

ach
de-

t it is
.

TIMETHREAD plane INTERNALS:
*************************************************************************

TIMETHREAD plane EXTERNALS:
86:Phangar                             RESULT       0 PARAMETER.
82:Pready                              TRIGGER      0 PARAMETER.
85:TgetoffP                            SYNC         0 PARAMETER.
83:TgetonP                             SYNC         0 PARAMETER.
84:TPflight                            ACTION       0 PARAMETER.
*************************************************************************

TIMETHREAD plane TAG IDENTIFIERS:
*************************************************************************

6.3.5 Execution of the Specification with LOLA
In order to check the validity of our LOTOS specification, we use the validation 
LOLA on a PC computer.

First of all, LOLA accepted the specification without any syntactic or semantic prob

Then, we used step-by-step simulation to execute a sequence of action used for th
dation of the Traveler specification in the thesis. Again, the sequence was accepted
no problem was found (fig. 12).

Finally, using the TestExpand command, we tested that it was always possible to re
the resulting event (tdest ) for all sequences of actions. As shown by figure 13, no un
sirable deadlock happened and the test result became a must pass.

These simple tests do not prove that our specification is correct, but they show tha
at least possible to play with a generated specification with standard LOTOS tools
LOTOS Generation from Timethread Maps: A Language and a Tool 35 of 53



Future Work

ing a
ore

eve it
ion of
FIGURE 12. Sequence of actions used during step-by-step simulation with LOLA

 [  1] - tnew;
 [  1] - i; (* pready *)
 [  2] - i; (* cin *)
 [  1] - i; (* din *)
 [  1] - i; (* tphoned *)
 [  1] - i; (* dlookforc *)
 [  1] - i; (* daskc *)
 [  2] - i; (* dfillstats *)
 [  3] - i; (* exit *)
 [  2] - i; (* dout *)
 [  1] - i; (* tgetinc *)
 [  1] - i; (* tcride *)
 [  1] - i; (* tgetoutc *)
 [  4] - i; (* exit *)
 [  3] - i; (* cgarage *)
 [  3] - i; (* cout *)
 [  1] - i; (* tairport *)
 [  1] - i; (* tgetonp *)
 [  1] - i; (* tpflight *)
 [  1] - i; (* tgetoffp *)
 [  2] - i; (* phangar *)
 [  1] - tdest;

FIGURE 13. Testing the reachability of activity tdest  with TestExpand command under LOLA

LOLA> testexpand 12 tdest -y

    Analysed states       = 1375
    Generated transitions = 2214
    Duplicated states     = 0
    Deadlocks             = 0

    Test result  = MUST PASS .

                   successes = 840
                       stops = 0
                       exits = 0
               cuts by depth = 0

7.0 Future Work

Most problems enumerated in this project are related to the fact that we are us
highly-coupled approach in our 1-pass prototype compiler. By redesigning it in a m
structured and modular way, it is possible to solve many problems.

Figure 14 presents suggests a new way of implementing the compiler. We beli
makes problems easier to manage, and that it facilitates the modification or addit
functionalities.
36 of  53 LOTOS Generation from Timethread Maps: A Language and a Tool



Future Work

wever,
ion of
ture,

s by
 like

lidate
FIGURE 14. More structured and complete compiler

Parsing

The parser and scanner rules would not have to be changed in this approach. Ho
while parsing, the semantic routines would simply generate an internal representat
the TMDL description. The format could be a graph (LARG) representing the struc
and syntax trees representing timethread descriptions (behaviours).

LARG Grouping

From the newly generated LARG, we could get LOTOS-representable grouping
using the LAEG method [Bor 93]. The resulting grouped structure could be a tree
the one used in our prototype compiler.

Static Semantic Analysis

Static semantic routines would be regroups in one module. These routines could va
the structure and behaviour internal trees.

LOTOS Specification

Static Sem.

TMDL Description

Code Gen.

Parsing

LAEG

BehavioursStructure

Grouped Structure
LOTOS Generation from Timethread Maps: A Language and a Tool 37 of 53



Conclusion

 we can
ment

prob-

i-

es to
naly-

ait a

hread
a
date

rules.
w our
olu-
 some

g
ested

mplex
t, and
Code Generation

One the trees are validated, code can be generated in an easier way because
traverse tree nodes to collect all the information we need. We could therefore imple
our functions in a much cleaner and clearer way, and find solutions to our current 
lems related to:

• ADT passing over internal synchronization events (with use of dummy_val  to get the
same number of tag parameters on each gate).

• Implementation and management of Memory waiting places and other new ones.

• Implementation the Loop  construct following the thesis description, therefore elim
nating all the loop restrictions.

A separate code generator module would also allow for other LOTOS-like languag
be used as output, without any modification to the parsing, LAEG, and semantic a
sis modules.

Of course, this approach would result in a slower 3-pass compiler, but who can’t w
few tenths of a second for a better solution?!

8.0  Conclusion

In this report, we presented an approach to get LOTOS specifications from timet
maps. We use a text representation, called TMDL, which is based on BNF rules. Then, 
TMDL description is compiled into a LOTOS specification that can be used to vali
the design.

We presented the language in section 3.0, with its requirements and grammar 
Then, we showed how this could be used in a compiler. Section 5.0 presented ho
TMDL-to-LOTOS prototype compiler was built. We deeply discussed issues and s
tions related to static semantic analysis and code generation. Section 6.0 showed
tests applied to the scanner, parser, and code generator. Many complex TMDL operators
were used. A complete example (the Traveler System) was developed, and the resultin
specification was rapidly validated. Enhancements to the compiler design are sugg
in section 7.0.

We believe this prototype represents another step towards the design of a co
design tool based on timethreads. Current results are very encouraging at this poin
we hope it will raise some interest.

9.0 References

[Amy 93] D. Amyot, “From Timethreads to LOTOS: A First Pass”, TR-SCE-93-38, Dept. of Sys-
tems and Computer Engineering, Carleton University, Ottawa, Canada (1993)

[Amy 94] D. Amyot, “Formalization of Timethreads in LOTOS”, M.Sc. Thesis, Dept. of Computer
Science, University of Ottawa, Ottawa, Canada (1994)
38 of  53 LOTOS Generation from Timethread Maps: A Language and a Tool



References

 a
ton

ns-

nada

3)

h-
iver-

mal
g,
[BoA 93] F. Bordeleau and D. Amyot, “LOTOS Interpretation of Timethreads: A Method and
Case Study”, TR-SCE-93-34, Dept. of Systems and Computer Engineering, Carle
University, Ottawa, Canada (1993)

[BoL 94] F. Bordeleau and M. Locas, “Timethread-Centered Design Process: A Study on Tra
formation Techniques and a Telephone System Case Study”, TR-SCE-94-18, Dept. of
Systems and Computer Engineering, Carleton University, Ottawa, Canada (1994)

[Bor 93] F. Bordeleau, “Visual Descriptions, Formalisms and the Design Process”, M.Sc. Thesis,
School of Computer Science, TR-SCE-93-35, Carleton University, Ottawa, Ca
(1993)

[BuC 93] R.J.A. Buhr and R.S. Casselman, “Designing with Timethreads”, TR-SCE-93-05, Dept.
of Systems and Computer Engineering, Carleton University, Ottawa, Canada (199

[BuC 94a] R.J.A. Buhr and R.S. Casselman, “Architecture of the Whole: with Roles and Timet
reads”, TR-SCE-94-07, Dept. of Systems and Computer Engineering, Carleton Un
sity, Ottawa, Canada (1994)

[FLB 88] C.N. Fischer and R.J. LeBlanc Jr., “Crafting a Compiler”, The Benjamin/Cummings
Publishing Company, Menlo Park (CA), USA (1988)

[GeJ 90] D. Gelernter and S. Jagannathan, “Programming Linguistics”, MIT Press, Cambridge,
USA (1990)

[Jac 93] R. Jacobs, “Architectural Framework for the Telepresence Voice Server”, Ontario Telep-
resence Project, Technical Report OTP-93-03 (1993)

[Joh 75] S.C. Johnson, “Yacc: Yet Another Compiler Compiler”, Computing Science TR-32, Bell
Laboratories, Murray Hill (NJ), USA (1975)

[LeS 75] M.E. Lesk and E. Schmidt, “Lex - A Lexical Analyser Generator”, Computing Science
TR-39, Bell Laboratories, Murray Hill (NJ), USA (1975)

[Loc 94] M. Locas “A Hypergraph-replacement based Notation for Timethread Maps For
Representation and Transformation”, Dept. of Systems and Computer Engineerin
Carleton University, Ottawa, Canada (1994)

[Man 93] M. Mantei, “Telepresence User Interface Design Issues and Solutions”, Ontario Telep-
resence Project, Technical Report OTP-93-02 (1993)

[Mil 92] T. Milligan, “ The telepresence Integrated Interactive Intermedia Facility (iiif)”, Ontario
Telepresence Project, Technical Report OTP-93-04 (1992)

[Val 91] J.J. Valley, “UNIX Programmer’s Reference”, Que Corporation, Carmel (IN), USA
(1991)

[Wel 93] M. Welsh, “Linux Installation and Getting Started”, Wilson (NC), USA (1993)
LOTOS Generation from Timethread Maps: A Language and a Tool 39 of 53



TMDL Syntax Diagrams
Appendix A TMDL Syntax Diagrams

Here are the BNF syntax diagrams of the TMDL grammar rules.

R_ttmap Map R_mapid Is R_internals Interactions R_interactions Descriptions R_ttdescriptions EndMap

R_mapid IDENTIFIER

R_internals
Internal R_intid R_LIST_internals

R_LIST_internals
R_LIST_internals , R_intid

R_interactions R_LIST_interaction R_where

R_LIST_interaction
R_LIST_interaction R_interaction

R_where
Where R_LIST_group

R_interaction R_members On R_REST_interaction

R_REST_interaction
Nothing ;

R_events ;

R_LIST_group
R_LIST_group R_group

R_group

R_group Group R_groupid Is R_interactions EndGroup

R_members R_ttorgroup R_LIST_members

R_LIST_members
R_LIST_members , R_ttorgroup

R_ttorgroup
R_ttid

R_groupid

R_ttdescriptions R_timethread R_LIST_timethread

R_LIST_timethread
R_LIST_timethread R_timethread

R_events R_eventid R_LIST_events

R_LIST_events
R_LIST_events , R_eventid

R_groupid & R_alphanum

R_timethread Timethread R_ttid Is R_stubortt EndTT

R_stubortt
R_stub

R_genoptions R_REST_stubortt
40 of  53 LOTOS Generation from Timethread Maps: A Language and a Tool



TMDL Syntax Diagrams
R_REST_stubortt R_internals R_trigger R_firstpath

R_stub Stub R_trigger R_result EndStub

R_genoptions R_level R_LIST_aborted R_constrained

R_level
NoRec

EndRec

ParaRec

R_LIST_aborted
R_LIST_aborted R_aborted

R_aborted AbortedOn ( R_eventid )

R_constrained
Constrained

R_trigger Trigger R_wpoptions ( R_triggerid R_rectagvalues )

R_firstpath R_LIST_seg R_result

R_LIST_seg
R_LIST_seg R_seg

R_result Result ( R_resultid R_sendtagvalues )

R_wpoptions
R_delayed

R_time

R_signal

R_memory

R_delayed Delayed

R_time Time

R_signal Signal

R_memory Memory

R_seg

R_abort

R_action

R_andFork

R_async

R_choice

R_loop

R_loss

R_orfork

R_par

R_segstub

R_sync

R_tag

R_waiting
LOTOS Generation from Timethread Maps: A Language and a Tool 41 of 53



TMDL Syntax Diagrams
R_abort Abort ( R_eventid )

R_action Action ( R_actionid )

R_async Async ( R_eventid R_sendtagvalues )

R_sync Sync ( R_eventid R_rectagvalues )

R_choice Choice R_guard R_LIST_seg R_LIST_choice EndChoice

R_LIST_choice
R_LIST_choice Or R_guard R_LIST_seg

Or R_guard R_LIST_seg

R_orfork OrFork R_guard Continue R_LIST_orfork EndOrFork

R_LIST_orfork
R_LIST_orfork Or R_guard R_path

Or R_guard R_path

R_path Path R_LIST_seg R_result EndPath

R_loop Loop R_loopcompandopt EndLoop

R_loopcompandopt Compulsory R_guard R_LIST_seg Optional R_guard R_LIST_seg

R_loss Loss ( R_guard R_lossid )

R_par Par R_LIST_seg R_LIST_par EndPar

R_LIST_par
R_LIST_par And R_LIST_seg

And R_LIST_seg

R_andFork AndFork R_path R_LIST_andfork EndAndFork

R_LIST_andfork
R_LIST_andfork And R_path

R_segstub SegStub ( R_segstubid )

R_waiting Wait R_wpoptions ( R_eventid R_rectagvalues )

R_tag Tag ( R_tagid = R_valueid )

R_rectagvalues
R_rectagvalues ! R_tagid

R_sendtagvalues
R_sendtagvalues ? R_tagid

R_guard
Guard ( R_guardexpr )

R_guardexpr

R_tagid R_eqop R_valueid

Not ( R_guardexpr )

( R_guardexpr ) R_boolop ( R_guardexpr )
42 of  53 LOTOS Generation from Timethread Maps: A Language and a Tool



TMDL Syntax Diagrams
R_eqop
Eq

Ne

R_boolop

And

Or

Xor

implies

Iff

R_actionid IDENTIFIER

R_alphanum
IDENTIFIER

NUMALPHA

R_eventid IDENTIFIER

R_intid IDENTIFIER

R_lossid IDENTIFIER

R_resultid IDENTIFIER

R_segstubid IDENTIFIER

R_tagid IDENTIFIER

R_triggerid IDENTIFIER

R_ttid IDENTIFIER

R_valueid R_alphanum
LOTOS Generation from Timethread Maps: A Language and a Tool 43 of 53



Tests

OS
Appendix B Tests

All tests on TMDL constructs are regrouped in one single description. The LOT
specification follows, and then the symbol tables are given.

B.1 TMDL Description
{ This TMDL description tests the complex TMDL constructs. }
{ Daniel Amyot, 20/09/94. }

Map Tests Is

Interactions
   &GrAbort, TestChoice, TestPar, TestForks, TestLoops, TestWP on  Nothing;
   Where
      Group  &GrAbort B
         TestAbort, &GrAborted on  Ab1, Ab2;  
         Where
            Group  &GrAborted is  
              TestAborted1, TestAborted2  on  Nothing; 
            EndGroup  { &GrAborted }
      EndGroup  { &GrAbort }

Descriptions

{ These three interacting processes test the Abort and }
{ the three levels of specification. }
Timethread  TestAbort Is
   NoRec
   Trigger  (T1)
   Abort  (Ab1)
   Abort  (Ab2)
   Result  (R1)
EndTT { TestAbort }

Timethread  TestAborted1 Is
   EndRec
   AbortedOn  (Ab1)
   Trigger  (T2)
   Result  (R2)
EndTT { TestAborted1 }

Timethread  TestAborted2 Is
   ParaRec
   AbortedOn  (Ab2)
   Trigger  (T3)
   Result  (R3)
EndTT { TestAborted1 }

{ This timethread tests a Choice within a Choice. }
{ The Async activity is also used. }
{ Boolean operators over guards are tested }
{ Finally, tag passing over internal synchronization is tested. }
Timethread  TestChoice Is
   Trigger  (T4 ? Cond)
   Choice
      Guard  (Cond eq  Yes)
      Action  (Act1)
    OR
      Choice
         { Do nothing }
       OR
         Guard  ( (Cond ne  Yes) implies  ( not (Cond eq  No)) )
         Async  (Act3 ! Cond)
      EndChoice
   EndChoice
   Result  (R4)
EndTT { TestChoice }
44 of  53 LOTOS Generation from Timethread Maps: A Language and a Tool



Tests
{ This timethread tests a Par within a Par. }
{ The Async activity is also used. }
{ Finally, tag passing over internal synchronization is tested. }
Timethread  TestPar Is
   Trigger  (T5 ? Cond)
   Par
      Wait  (Act4)
    AND
      Par
         Async  (Act5 ! Cond)
       AND
         Sync  (Act6)
      EndPar
   EndPar
   Result  (R5)
EndTT { TestPar }

{ Timethread that tests Orfork and AndFork }
{ with three branches. The AndFork is in the OrFork. }
{ Again, tag passing and guards are tested. }
Timethread  TestForks Is
   Trigger  (T6 ? Cond1 ? Cond2)

   OrFork
      Guard  (Cond2 ne No)
      Continue
    OR
      Path
         AndFork
            Path
               Action  (Act7)
               Result  (Rfork1)
            EndPath
          AND
            Path
               { Do nothing }
               Result  (Rfork2 ! Cond1)
            EndPath
          AND
            Path
               Action  (Act8)
               Result  (Rfork3)
            EndPath
         EndAndFork
         Result  (Rfork4)
      EndPath
    OR
      Path
         { Do nothing }
         Result  (Rfork5)
      EndPath
   EndOrFork

   Result  (R6)
EndTT { TestForks }

{ Tests a loop within a loop, and value passing. }
Timethread  TestLoops Is
   ParaRec
   Trigger  (T7 ? Cond)
   Loop
      Compulsory
         Guard  (Cond ne No)
            Action  (Act9)
      Optional
         Guard  (Cond eq No)
         Loop
            Comp
               Action (Act10)
            Opt
               Action  (Act11)
         EndLoop
LOTOS Generation from Timethread Maps: A Language and a Tool 45 of 53



Tests
   EndLoop
   Result  (R7)
EndTT { TestLoops }

{ Tests the different waiting place options. }
Timethread  TestWP Is
   Trigger Time (T8)
   Wait Delayed  (Act12)
   Wait Signal  (Act13)
   Result  (R8 ! TimeT8 ! SigAct13)
EndTT { TestWP }

EndMap { Tests }

B.2 LOTOS Specification

(* TMDL-to-LOTOS Compiler, version 0.9. *)

specification  Tests[Ab1, Ab2, Act1, Act10, Act11, Act12, Act13, Act3,
Act4, Act5, Act6, Act7, Act8, Act9, R1, R2, R3, R4, R5, R6, R7, R8,
Rfork1, Rfork2, Rfork3, Rfork4, Rfork5, T1, T2, T3, T4, T5, T6, T7,
T8]: noexit

library
   Boolean, NaturalNumber
endlib

(* Tag ADT definition *)
type  Tag is  Boolean, NaturalNumber
sorts  Tag
opns  dummy_val, No, OK, TOut, Yes : -> Tag
     N : Tag -> Nat
     _eq_, _ne_ : Tag, Tag ->Bool
eqns  forall  x, y: Tag
     ofsort  Nat
     N(dummy_val)= 0;   (* dummy value *)
     N(No) = Succ(N(dummy_val));
     N(OK) = Succ(N(No));
     N(TOut) = Succ(N(OK));
     N(Yes) = Succ(N(TOut));
     ofsort Bool
     x eq y = N(x) eq N(y);
     x ne y = not(x eq y);
endtype

behaviour
   (
      (
         TestAbort[Ab1, Ab2, R1, T1]
         |[Ab1, Ab2]|
         (
            TestAborted1[Ab1, R2, T2]
            |||
            TestAborted2[Ab2, R3, T3]
         )
      )
      |||
      TestChoice[Act1, Act3, R4, T4]
      |||
      TestPar[Act4, Act5, Act6, R5, T5]
      |||
      TestForks[Act7, Act8, R6, Rfork1, Rfork2, Rfork3,Rfork4, Rfork5,T6]
      |||
      TestLoops[Act10, Act11, Act9, R7, T7]
      |||
      TestWP[Act12, Act13, R8, T8]
   )

where
46 of  53 LOTOS Generation from Timethread Maps: A Language and a Tool



Tests
   process  TestAbort[Ab1, Ab2, R1, T1]: noexit  :=
      T1;
      (
         Ab1;  (* Abort event *)
         Ab2;  (* Abort event *)
         R1; stop   (* No recursion *)
      )
   endproc   (* Timethread TestAbort *)

   (*********************************************)

   process  TestAborted1[Ab1, R2, T2]: noexit  :=
      (
         T2;
         (
            R2; TestAborted1[Ab1, R2, T2]  (* End recursion *)
         )
      )
      [> ab1; TestAborted1[Ab1, R2, T2]
   endproc   (* Timethread TestAborted1 *)

   (*********************************************)

   process  TestAborted2[Ab2, R3, T3]: noexit  :=
      (
         T3;
         (
            R3; stop
            |||
            TestAborted2[Ab2, R3, T3]  (* Parallel recursion *)
         )
      )
      [> ab2; TestAborted2[Ab2, R3, T3]
   endproc   (* Timethread TestAborted2 *)

   (*********************************************)

   process  TestChoice[Act1, Act3, R4, T4]: noexit  :=
   hide  Sync_Or_0, Sync_Or_1 in

      T4 ? Cond:Tag;
      (
         (
            (
               [Cond eq Yes]->
               Act1;
               Sync_Or_0 ! Cond; stop
            )
            []
            (
               (
                  (
                     Sync_Or_1 ! Cond; stop
                  )
                  []
                  (
                     [(Cond ne Yes) implies (not(Cond eq No))]->
                     (
                        Act3 ! Cond; stop
                        |||
                        Sync_Or_1 ! Cond; stop
                     )
                  )
               )
               |[Sync_Or_1]|
               Sync_Or_1 ? Cond:Tag;
               Sync_Or_0 ! Cond; stop
            )
         )
         |[Sync_Or_0]|
         Sync_Or_0 ? Cond:Tag;
         R4; stop   (* No recursion *)
      )
   endproc   (* Timethread TestChoice *)
LOTOS Generation from Timethread Maps: A Language and a Tool 47 of 53



Tests
   (*********************************************)

   process  TestPar[Act4, Act5, Act6, R5, T5]: noexit  :=

   hide  Sync_And_2, Sync_And_3 in

      T5 ? Cond:Tag;
      (
         (
            (
               Act4;
               Sync_And_2 ! Cond; stop
            )
            |[Sync_And_2]|
            (
               (
                  (
                     (
                        Act5 ! Cond; stop
                        |||
                        Sync_And_3 ! Cond; stop
                     )
                  )
                  |[Sync_And_3]|
                  (
                     Act6;
                     Sync_And_3 ! Cond; stop
                  )
               )
               |[Sync_And_3]|
               Sync_And_3 ? Cond:Tag;
               Sync_And_2 ! Cond;stop
            )
         )
         |[Sync_And_2]|
         Sync_And_2 ? Cond:Tag;
         R5; stop   (* No recursion *)
      )
   endproc   (* Timethread TestPar *)

   (*********************************************)

   process  TestForks[Act7, Act8, R6, Rfork1, Rfork2, Rfork3, Rfork4,
Rfork5, T6]: noexit  :=
      T6 ? Cond1:Tag ? Cond2:Tag;
      (
         (
            (
               (
                  Act7;
                  Rfork1; stop
                  |||
                  Rfork2 ! Cond1; stop
                  |||
                  Act8;
                  Rfork3; stop
                  |||
                  Rfork4; stop   (* No recursion *)
               )
            )
            []
            (
               Rfork5; stop   (* No recursion *)
            )
            []
            (
            [Cond2 ne No]->
               R6; stop   (* No recursion *)
            )
         )
      )
   endproc   (* Timethread TestForks *)
48 of  53 LOTOS Generation from Timethread Maps: A Language and a Tool



Tests
   (*********************************************)

   process  TestLoops[Act10, Act11, Act9, R7, T7]: noexit  :=
      T7 ? Cond:Tag;
      (
         (
            Loop_4[Act10, Act11, Act9, R7, T7](Cond) >>
               accept  Cond :Tag  in  
            R7; stop
            |||
            TestLoops[Act10, Act11, Act9, R7, T7]  (* Parallel recursion *)
         )
      )

   where
      process  Loop_5[Act10, Act11, Act9, R7, T7](Cond :Tag): exit (Tag) :=
         Act10;
         (
            (
               Act11;
               Loop_5[Act10, Act11, Act9, R7, T7](Cond) 
            )
            []
            (
                     exit (Cond)   (* Exit Loop *)
            )
         )
      endproc   (* Loop_5 *)

      process  Loop_4[Act10, Act11, Act9, R7, T7](Cond :Tag): exit (Tag) :=
         Act9;
         (
            (
               [Cond eq No]->
               (
                  Loop_5[Act10, Act11, Act9, R7, T7](Cond) >>
                     accept  Cond :Tag  in  
                  Loop_4[Act10, Act11, Act9, R7, T7](Cond) 
               )
            )
            []
            (
               [Cond ne No]->
               exit (Cond)   (* Exit Loop *)
            )
         )
      endproc   (* Loop_4 *)

   endproc   (* Timethread TestLoops *)

   (*********************************************)

   process  TestWP[Act12, Act13, R8, T8]: noexit  :=

   hide  Delay_8, Sync_Signal_9, Sync_Time_7, TimeOut_6 in

      (
         TimeOut_6;  (* Timeout occured *)
         Sync_Time_7 ! TOut; stop
         []
         T8;  (* Event occured *)
         Sync_Time_7 ! OK; stop
      )
      |[Sync_Time_7]|
      Sync_Time_7 ? TimeT8:Tag;
      (
         Delay_8;  (* Internal delay *)
         Act12;
         (
            Act13; Sync_Signal_9 ! TimeT8 ! Yes; stop   (* Signal occured *)
            []
            Sync_Signal_9 ! TimeT8 ! No; stop   (* No signal occured *)
         )
         |[Sync_Signal_9]|
LOTOS Generation from Timethread Maps: A Language and a Tool 49 of 53



Tests
         Sync_Signal_9 ? TimeT8:Tag ? SigAct13:Tag;
         R8 ! TimeT8 ! SigAct13; stop   (* No recursion *)
      )
   endproc   (* Timethread TestWP *)

endspec  (* Map Tests *)

B.3 Symbol Tables
TMDL-to-LOTOS Compiler, version 0.9. Symbol Tables.

MAP STRUCTURE:
   Tests                 TYPEGROUP  6 
      GrAbort               TYPEGROUP  2 Ab1, Ab2
         TestAbort             TYPETT     0 
         GrAborted             TYPEGROUP  2 
            TestAborted1          TYPETT     0 
            TestAborted2          TYPETT     0 
      TestChoice            TYPETT     0 
      TestPar               TYPETT     0 
      TestForks             TYPETT     0 
      TestLoops             TYPETT     0 
      TestWP                TYPETT     0 
*************************************************************************

TIMETHREAD SYMBOL TABLE:
10:TestAbort                           DEFINED      USED        
13:TestAborted1                        DEFINED      USED        
13:TestAborted2                        DEFINED      USED        
7:TestChoice                          DEFINED      USED        
7:TestForks                           DEFINED      USED        
7:TestLoops                           DEFINED      USED        
7:TestPar                             DEFINED      USED        
7:TestWP                              DEFINED      USED        
*************************************************************************

GROUP SYMBOL TABLE:
7:GrAbort                             DEFINED      USED        
10:GrAborted                           DEFINED      USED        
*************************************************************************

TAG VALUE SYMBOL TABLE:
57:No                                  DEFINED      USED        
146:OK                                  DEFINED      UNUSED      
146:TOut                                DEFINED      UNUSED      
51:Yes                                 DEFINED      USED        
*************************************************************************

GLOBAL ACTIVITY SYMBOL TABLE:
24:Ab1                                
25:Ab2                                
52:Act1                               
135:Act10                              
137:Act11                              
147:Act12                              
148:Act13                              
58:Act3                               
71:Act4                               
74:Act5                               
76:Act6                               
96:Act7                               
106:Act8                               
130:Act9                               
147:Delay_8                            
26:R1                                 
33:R2                                 
40:R3                                 
61:R4                                 
79:R5                                 
119:R6                                 
140:R7                                 
149:R8                                 
50 of  53 LOTOS Generation from Timethread Maps: A Language and a Tool



Tests
97:Rfork1                             
102:Rfork2                             
107:Rfork3                             
110:Rfork4                             
115:Rfork5                             
70:Sync_And_2                         
73:Sync_And_3                         
50:Sync_Or_0                          
54:Sync_Or_1                          
148:Sync_Signal_9                      
146:Sync_Time_7                        
23:T1                                 
32:T2                                 
39:T3                                 
49:T4                                 
69:T5                                 
87:T6                                 
126:T7                                 
146:T8                                 
146:TimeOut_6                          
*************************************************************************

MAP INTERNALS:
*************************************************************************

MAP EXTERNALS:
152:Ab1                                
152:Ab2                                
152:Act1                               
152:Act10                              
152:Act11                              
152:Act12                              
152:Act13                              
152:Act3                               
152:Act4                               
152:Act5                               
152:Act6                               
152:Act7                               
152:Act8                               
152:Act9                               
152:R1                                 
152:R2                                 
152:R3                                 
152:R4                                 
152:R5                                 
152:R6                                 
152:R7                                 
152:R8                                 
152:Rfork1                             
152:Rfork2                             
152:Rfork3                             
152:Rfork4                             
152:Rfork5                             
152:T1                                 
152:T2                                 
152:T3                                 
152:T4                                 
152:T5                                 
152:T6                                 
152:T7                                 
152:T8                                 
*************************************************************************

TIMETHREAD testabort INTERNALS:
*************************************************************************

TIMETHREAD testabort EXTERNALS:
24:Ab1                                 ABORT        0 PARAMETER.
25:Ab2                                 ABORT        0 PARAMETER.
26:R1                                  RESULT       0 PARAMETER.
23:T1                                  TRIGGER      0 PARAMETER.
*************************************************************************

TIMETHREAD testabort TAG IDENTIFIERS:
LOTOS Generation from Timethread Maps: A Language and a Tool 51 of 53



Tests
*************************************************************************

TIMETHREAD testaborted1 INTERNALS:
*************************************************************************

TIMETHREAD testaborted1 EXTERNALS:
31:Ab1                                 ABORTED      0 PARAMETER.
33:R2                                  RESULT       0 PARAMETER.
32:T2                                  TRIGGER      0 PARAMETER.
*************************************************************************

TIMETHREAD testaborted1 TAG IDENTIFIERS:
*************************************************************************

TIMETHREAD testaborted2 INTERNALS:
*************************************************************************

TIMETHREAD testaborted2 EXTERNALS:
38:Ab2                                 ABORTED      0 PARAMETER.
40:R3                                  RESULT       0 PARAMETER.
39:T3                                  TRIGGER      0 PARAMETER.
*************************************************************************

TIMETHREAD testaborted2 TAG IDENTIFIERS:
*************************************************************************

TIMETHREAD testchoice INTERNALS:
50:Sync_Or_0                           CHOICE       0 PARAMETER.
54:Sync_Or_1                           CHOICE       0 PARAMETER.
*************************************************************************

TIMETHREAD testchoice EXTERNALS:
52:Act1                                ACTION       0 PARAMETER.
58:Act3                                ASYNC        1 PARAMETER.
61:R4                                  RESULT       0 PARAMETER.
49:T4                                  TRIGGER      1 PARAMETER.
*************************************************************************

TIMETHREAD testchoice TAG IDENTIFIERS:
49:Cond                                DEFINED      USED        
*************************************************************************

TIMETHREAD testpar INTERNALS:
70:Sync_And_2                          PAR          0 PARAMETER.
73:Sync_And_3                          PAR          0 PARAMETER.
*************************************************************************

TIMETHREAD testpar EXTERNALS:
71:Act4                                WAIT         0 PARAMETER.
74:Act5                                ASYNC        1 PARAMETER.
76:Act6                                SYNC         0 PARAMETER.
79:R5                                  RESULT       0 PARAMETER.
69:T5                                  TRIGGER      1 PARAMETER.
*************************************************************************

TIMETHREAD testpar TAG IDENTIFIERS:
69:Cond                                DEFINED      USED        
*************************************************************************

TIMETHREAD testforks INTERNALS:
*************************************************************************

TIMETHREAD testforks EXTERNALS:
96:Act7                                ACTION       0 PARAMETER.
106:Act8                                ACTION       0 PARAMETER.
119:R6                                  RESULT       0 PARAMETER.
97:Rfork1                              RESULT       0 PARAMETER.
102:Rfork2                              RESULT       1 PARAMETER.
107:Rfork3                              RESULT       0 PARAMETER.
110:Rfork4                              RESULT       0 PARAMETER.
115:Rfork5                              RESULT       0 PARAMETER.
87:T6                                  TRIGGER      2 PARAMETERS.
*************************************************************************
52 of  53 LOTOS Generation from Timethread Maps: A Language and a Tool



Tests
TIMETHREAD testforks TAG IDENTIFIERS:
87:Cond1                               DEFINED      USED        
87:Cond2                               DEFINED      USED        
*************************************************************************

TIMETHREAD testloops INTERNALS:
*************************************************************************

TIMETHREAD testloops EXTERNALS:
135:Act10                               ACTION       0 PARAMETER.
137:Act11                               ACTION       0 PARAMETER.
130:Act9                                ACTION       0 PARAMETER.
140:R7                                  RESULT       0 PARAMETER.
126:T7                                  TRIGGER      1 PARAMETER.
*************************************************************************

TIMETHREAD testloops TAG IDENTIFIERS:
126:Cond                                DEFINED      USED        
*************************************************************************

TIMETHREAD testwp INTERNALS:
147:Delay_8                             DELAY        0 PARAMETER.
148:Sync_Signal_9                       TIME         1 PARAMETER.
146:Sync_Time_7                         TIME         1 PARAMETER.
146:TimeOut_6                           TIME         0 PARAMETER.
*************************************************************************

TIMETHREAD testwp EXTERNALS:
147:Act12                               WAIT         0 PARAMETER.
148:Act13                               WAIT         0 PARAMETER.
149:R8                                  RESULT       2 PARAMETERS.
146:T8                                  TRIGGER      0 PARAMETER.
*************************************************************************

TIMETHREAD testwp TAG IDENTIFIERS:
148:SigAct13                            DEFINED      USED        
146:TimeT8                              DEFINED      USED        
*************************************************************************
LOTOS Generation from Timethread Maps: A Language and a Tool 53 of 53


	LOTOS Generation from Timethread Maps: A Language ...
	1.0 Introduction
	1.1 Tools and the Design Method
	1.1.1 Timethread Maps
	1.1.2 Interpretation Methods
	1.1.3 Formal Methods

	1.2 Problem Definition

	2.0 Proposed Approach
	2.1 A More Concrete View
	2.2 The Language
	2.2.1 STDL
	2.2.2 LARGs
	2.2.3 TMDL

	2.3 The Compiler
	2.3.1 LAEG Method
	2.3.2 Analysis and Code Generation

	2.4 Objectives

	3.0 From STDL to TMDL
	3.1 Need for TMDL
	3.2 TMDL Sections
	3.3 Modifications to STDL
	3.4 TMDL Grammar
	3.4.1 From EBNF to BNF
	3.4.2 Resulting TMDL Grammar


	4.0 Building a Compiler
	4.1 Terminology
	4.2 Compiler Tools
	4.2.1 Flex
	4.2.2 Bison
	4.2.3 Files Structure


	5.0 TMDL-to-LOTOS Compiler
	5.1 Functionalities
	5.2 Prototyping
	5.3 Restrictions on TMDL
	5.4 Data Structures and Related Functions
	5.4.1 Constants
	5.4.2 Identifiers
	5.4.3 Symbol Tables
	5.4.4 Map Structure
	5.4.5 Stacks

	5.5 Static Semantics
	5.5.1 Generic Functions
	5.5.2 Parsing
	5.5.3 Symbols
	5.5.4 Interactions
	5.5.5 Loops
	5.5.6 Internal Activities

	5.6 Code generation
	5.6.1 Solving Difficult TMDL Constructs Issues
	5.6.2 Unique Identifiers
	5.6.3 Dangling Parenthesis
	5.6.4 Levels
	5.6.5 Tabulation


	6.0 Testing and Example
	6.1 Testing Grammar Rules
	6.1.1 Scanner
	6.1.2 Parser

	6.2 Testing Semantic Routines
	6.2.1 Static Semantics
	6.2.2 Interactions
	6.2.3 Complex Constructs

	6.3 Traveler System Example
	6.3.1 The Timethread Map
	6.3.2 TMDL Description
	6.3.3 LOTOS Specification
	6.3.4 Symbol Tables
	6.3.5 Execution of the Specification with LOLA


	7.0 Future Work
	8.0 Conclusion
	9.0 References
	Appendix A TMDL Syntax Diagrams
	Appendix B Tests
	B.1 TMDL Description
	B.2 LOTOS Specification
	B.3 Symbol Tables



