
Spotting the Difference

A Source Code Comparison Tool

by

Marconi Lanna

Thesis submitted to the

Faculty of Graduate and Postdoctoral Studies

in partial fulfillment of the requirements for the degree of

Master of Computer Science

under the auspices of the Ottawa-Carleton Institute for Computer Science

School of Information Technology and Engineering

Faculty of Engineering

University of Ottawa

c� Marconi Lanna, Ottawa, Canada, 2009

To the very first person who, with a bunch of rocks, invented computing.

And to that old, dusty 80286 and its monochromatic screen.

Abstract

Source Code Management (SCM) is a valuable tool in most software development projects,

whichever their size. SCM provides the ability to store, retrieve, and restore previous versions

of files. File comparison tools complement SCM systems by offering the capability to compare

files and versions, highlighting their differences.

Most file comparison tools are built around a two-pane interface, with files displayed side

by side. Such interfaces may be inefficient in their use of screen space — wasting horizontal

real estate — and ineffective, for duplicating text makes it difficult to read, while placing most

of the comparison burden on the user.

In this work, we introduce an innovative metaphor for file comparison interfaces. Based

on a single-pane interface, common text is displayed only once, with differences intelligently

merged into a single text stream, making reading and comparing more natural and intuitive.

To further improve usability, additional features were developed: difference classification —

additions, deletions, and modifications — using finer levels of granularity than is usually found

in typical tools; a set of special artifacts to compare modifications ; and intelligent white space

handling.

A formal usability study conducted among sixteen participants using real-world code sam-

ples demonstrated the interface adequacy. Participants were, on average, 60% faster performing

source code comparison tasks, while answer quality improved, on our weighted scale, by almost

80%. According to preference questionnaires, the proposed tool conquered unanimous partici-

pant preference.

iv

Acknowledgments

This thesis would never be possible without the help of my family, friends, and colleagues.

First and foremost, I would like to thank my wife for her infinite support and not so

infinite patience — Eu nunca teria feito nada disto sem você, — my mom, who always gave me

encouragement and motivation, my brother Marcelo, my little sister Marina, and my beloved

in-laws, Artur, Joeli, and Vanessa.

I am immensely grateful to my supervisor, Professor Daniel Amyot. I never worked with

someone for so long without hearing or having a single complain. Many, many thanks.

Many friends contributed helpful feedback and advice. Professor Timothy Lethbridge helped

us with many usability questions. Alejandro, Gunter, Jason, Jean-Philippe, and Patŕıcia were

kind enough to experiment with early versions of the tool. Professor Azzedine Boukerche offered

me assistance during my first year.

Finally, I want to express my gratitude to my examiners, Professors Tim Lethbridge and

Dwight Deugo, and all volunteers who agreed to participate on the usability study.

Thank you all.

Marconi Lanna

Ottawa, Ontario, July 2009

v

Table of Contents

Abstract iv

Acknowledgments v

List of Figures xiii

List of Tables xiv

List of Algorithms xv

List of Acronyms xvi

1 Introduction 1

1.1 Motivation . 1

1.2 Research Hypothesis and Proposed Interface . 4

1.3 Thesis Contributions . 5

1.4 Background Information . 6

1.4.1 The Longest Common Subsequence . 6

1.4.2 Files and Differences . 7

1.4.3 Alternatives to the LCS . 7

1.5 Related Work . 8

1.6 Sample Test Case . 9

1.7 Thesis Outline . 9

2 Comparison Tools Survey 13

2.1 File Comparison Features . 13

2.2 Comparison Tools . 14

vi

vii

2.2.1 diff . 15

2.2.2 Eclipse . 16

2.2.3 FileMerge . 17

2.2.4 IntelliJ IDEA . 18

2.2.5 Kompare . 19

2.2.6 Meld . 20

2.2.7 NetBeans . 21

2.2.8 WinDiff . 22

2.2.9 WinMerge . 23

2.3 Feature Summary . 24

2.4 Chapter Summary . 25

3 Spotting the Difference 26

3.1 Research Hypothesis Restated . 26

3.2 Display Design . 27

3.2.1 Principles of Display Design . 27

3.3 The Proposed Interface . 29

3.3.1 Single-pane Interface . 29

3.3.2 Difference Classification . 30

3.3.3 Displaying Modifications . 32

3.3.4 Granularity . 34

3.4 File Comparison Features Revisited . 34

3.5 Chapter Summary . 35

4 Architecture and Implementation 36

4.1 The Platform . 36

4.2 Design and Architecture . 37

4.3 Making a Difference . 39

4.3.1 Difference Computation . 39

4.3.2 Difference Classification . 41

4.3.3 Merged Document . 43

4.3.4 White Space Handling . 43

4.4 Chapter Summary . 44

viii

5 Usability Evaluation 45

5.1 Methodology . 45

5.1.1 Test Cases . 46

5.1.2 Answer Grading . 47

5.1.3 Environment Configuration . 47

5.2 Participants . 48

5.2.1 Self Assessment Form . 48

5.3 Experimental Results . 49

5.3.1 Participant Performance . 49

5.3.2 Task Performance . 51

5.3.3 Participant Answers . 55

5.4 Experiment Summary . 58

5.5 Preference Questionnaire . 60

5.6 Chapter Summary . 61

6 Lessons from the Usability Study 63

6.1 General Remarks . 63

6.2 The Reference Tool . 63

6.2.1 Automatic Scroll to First Difference . 64

6.2.2 Pair Matching . 64

6.2.3 Differences on the Far Right . 65

6.2.4 Vertical Alignment . 65

6.2.5 Vertical Scrolling . 65

6.2.6 Dangling Text and Line Reordering . 65

6.3 The Proposed Tool . 66

6.3.1 Short Differences . 66

6.3.2 Dangling Text . 67

6.3.3 Token Granularity . 68

6.3.4 Difference Classification Heuristics . 68

6.3.5 Line Reordering . 69

6.4 Miscellaneous Observations . 71

6.5 Chapter Summary . 72

ix

7 Conclusion 73

7.1 Main Contributions . 73

7.2 Threats to Validity . 74

7.3 Future Work . 75

7.4 Final Remarks . 77

References 79

A Test Cases 85

A.1 1.old.java . 86

A.2 1.new.java . 88

A.3 2.old.java . 90

A.4 2.new.java . 92

A.5 3.old.java . 95

A.6 3.new.java . 98

A.7 4.old.java . 102

A.8 4.new.java . 105

A.9 5.old.java . 108

A.10 5.new.java . 111

A.11 6.old.java . 114

A.12 6.new.java . 118

B List of Differences 123

B.1 Test Case 1 . 123

B.2 Test Case 2 . 124

B.3 Test Case 3 . 124

B.4 Test Case 4 . 124

B.5 Test Case 5 . 125

B.6 Test Case 6 . 126

C Experimental Data 128

D Statistical Information 135

E Outlier Data 137

x

F Experiment Script 139

G Recruitment Letter 142

H Consent Form 143

I Self Assessment Form 146

J Preference Questionnaire 148

List of Figures

1.1 Sample diff Output . 3

1.2 Eclipse Compare Editor . 4

1.3 Proposed Tool . 5

1.4 Test Case, Original . 10

1.5 Test Case, Modified . 11

2.1 GNU diffutils . 15

2.2 Eclipse . 16

2.3 FileMerge . 17

2.4 IntelliJ IDEA . 18

2.5 Kompare . 19

2.6 Meld . 20

2.7 NetBeans . 21

2.8 WinDiff . 22

2.9 WinMerge . 23

3.1 Spot the Difference . 29

3.2 Cheating on a Kids Game . 30

3.3 Microsoft Word’s Track Changes . 31

3.4 Apple Pages’ Track Text Changes . 31

3.5 Tooltips . 33

3.6 Hot Keys . 33

4.1 Vision UML Class Diagram . 37

4.2 BWUnderscore . 39

xi

xii

4.3 Highlighting All White Space Differences . 44

4.4 Ignoring White Space Differences . 44

5.1 Participant Experience . 48

5.2 Task Frequency . 49

5.3 Participant Time . 50

5.4 Weighted Score . 50

5.5 Time × Weighted Score . 51

5.6 Time to Perform 1st Comparison Task . 52

5.7 Time to Perform 2nd Comparison Task . 52

5.8 Time to Perform 3rd Comparison Task . 53

5.9 Time to Perform 4th Comparison Task . 53

5.10 Time to Perform 5th Comparison Task . 54

5.11 Time to Perform 6th Comparison Task . 54

5.12 Partial Answers . 55

5.13 Omissions . 56

5.14 Errors . 56

5.15 Total Incorrect Answers . 57

5.16 Weighted Score . 57

5.17 Mean Time to Perform Tasks . 58

5.18 Speed-up . 58

5.19 Incorrect Answers . 59

5.20 Answer Improvement . 59

5.21 Usability . 60

5.22 Proposed Features . 61

5.23 Modification Visualization Preference . 61

6.1 Pair Matching . 64

6.2 Short Differences . 66

6.3 Dangling Text . 67

6.4 Token Granularity . 68

6.5 Difference Classification Heuristics . 69

6.6 Difference Classification Heuristics . 69

xiii

6.7 Line Reordering . 71

7.1 Merging Mock-up . 76

E.1 Mean Time to Perform Tasks . 137

E.2 Speed-up . 138

List of Tables

2.1 Comparison of File Comparison Tools . 24

2.2 Comparison of File Comparison Tools (continued) 24

C.1 Self Assessment Form . 129

C.2 Preference Questionnaire . 129

C.3 Test Case 1 . 130

C.4 Test Case 2 . 130

C.5 Test Case 3 . 131

C.6 Test Case 4 . 132

C.7 Test Case 5 . 133

C.8 Test Case 6 . 134

D.1 Time to Perform the Experiment . 135

D.2 Time to Perform the Experiment . 135

D.3 Total Number of Incorrect Answers . 136

D.4 Preference Questionnaire . 136

xiv

List of Algorithms

4.1 DifferenceComputation . 40

4.2 DifferenceClassification . 42

xv

List of Acronyms

Acronym Definition

GUI Graphical User Interface

IDE Integrated Development Environment

LCD Liquid Crystal Display

LCS Longest Common Subsequence

SCM Source Code Management

UML Unified Modeling Language

xvi

Chapter 1

Introduction

Code is read much more often than code is written1. Rarely, though, is code read for amusement

or poetry. Code is read to be understood, and usually code needs to be understood when code

has to be maintained.

Software maintenance leads to code changes, modifications which themselves have to be

read, understood, and reviewed. Communicating those changes among a team can be particu-

larly difficult for projects in which developers may be working on the same files concurrently.

While Source Code Management (SCM) is widely employed to control and trace modifi-

cations, allowing developers to store and retrieve arbitrary sets of changes from a repository,

little attention has been given in recent years to File Comparison Tools, a companion piece of

software used to inspect differences between files.

This work presents a specialized source code comparison tool based on a set of metaphors

and features aimed at improving ease of use, intuitiveness, and efficiency. A comprehensive us-

ability study conducted among sixteen participants using real-world code samples has demon-

strated the feasibility and adequacy of the proposed interface.

1.1 Motivation

Software projects are living beings. Requirement changes, bug fixes, compliance to new stan-

dards or laws, updated systems and platforms are some of the reasons software constantly

requires updating [34]. The more complex a software project, the more likely frequent changes

are to occur and the larger the maintenance team is supposed to be.
1This citation can be attributed to multiple authors.

1

Introduction 2

Developers working on the same set of files need to be concerned with duplicated or con-

flicting changes. Redefined semantics, classes, or members may compel a developer to update

code she is maintaining, even when working on distinct files, to conform with changes made by

others. On largely distributed projects, such as in most open source software projects, patches

submitted by third parties need to be reviewed before being committed to an SCM repository.

Proper mechanisms for communicating changes among software developers are essential, as is

the ability to glance at new versions of code and quickly spot differences.

Take, for instance, the testimony given by two senior executives of a leading SCM software

vendor justifying why their legacy code is not updated to comply with the company’s own code

conventions:

“While we like pretty code, we like clean merges even better. Changes to variable

names, whitespace, line breaks, and so forth can be more of an obstacle to merging

than logic changes.” [55]

Effective file comparison tools help mitigate this kind of problem, giving software developers

a better understanding of source code changes.

One of the first widely used file comparison tool was developed in 1974 by Douglas McIlroy

for the Unix operating system. diff, a command-line tool, “reports differences between two

files, expressed as a minimal list of line changes” [27]. The standard diff output (Figure 1.1),

thus, does not show lines common to both files necessary to understand changes in context.

Differences are computed and displayed line-by-line, being hard to identify particular changes

within lines.

Most contemporary file comparison tools, though, have Graphical User Interfaces (GUI)

and a set of advanced features such as synchronized display of files side by side, underlining

of individual changes within a line, syntax highlighting, and integration with Source Code

Management systems and Integrated Development Environments (IDE) tools (Figure 1.2).

Despite the improvements developed in the last decades, file comparison tools still are

cumbersome to use, yielding sub-optimal results. Amongst the most common problems, we

may cite:

• Displaying both versions at the same time, side by side, represents a waste of screen real

estate and may lead to horizontal scrolling, even on large wide-screen displays. Differently

Introduction 3

Figure 1.1: Sample diff Output

from vertical scrolling, horizontal scrolling is very inefficient and unpleasant and, when

possible, should be avoided [42].

• Reading does not follow a single flow of text. Pieces of text may appear on one side of

the screen, the other, duplicated on both sides, or differently on both. A user has to keep

track of two reading points at the same time.

• With changes split throughout the sides of the screen, it is difficult to make direct com-

parisons since one’s eyes have to scroll back and forth across the interface, constantly

losing focus.

The system proposed in this thesis attempts to address those shortcomings, offering a more

intuitive, ease to learn, and effective user interface model.

Introduction 4

Figure 1.2: Eclipse Compare Editor: A typical file comparison tool.

1.2 Research Hypothesis and Proposed Interface

In this thesis we postulate that the two-pane interface is an inefficient and ineffective metaphor

to represent file differences (Section 3.1). Furthermore, a file comparison user interface model

which offers improved ease of use and efficiency is proposed and validated. The proposed

interface (Figure 1.3) is based on the following principles:

Single-pane Interface: Differences between files should be consolidated and displayed in a

single pane, facilitating reading and comprehension. By not displaying two pieces of text

side by side, screen real estate usage is maximized, reducing eye movement across the

screen and virtually eliminating horizontal scrolling.

Difference Classification: Individual differences should not only be highlighted but also

classified into additions, deletions, and modifications, providing a natural and intuitive

metaphor to interpret changes.

Special Interface Artifacts: Displaying modifications presents an interesting challenge: two

pieces of text, the original and the modification, have to be shown to represent a single

change, which is in evident contrast to the single text stream view. Special interface ele-

ments have to be employed to overcome this problem without breaking the first principle.

Introduction 5

Figure 1.3: Proposed Tool: A sample comparison displayed using the proposed tool.

Finer Granularity: Multiple changes in a single line can be difficult to understand. Com-

plexity can be reduced by breaking large differences into smaller, individual pieces.

1.3 Thesis Contributions

To validate the principles discussed in section 1.2, a fully functional, working prototype was

implemented.

Introduction 6

The most distinctive characteristic of the proposed tool is the use of a single-pane interface to

display differences in accordance with the single text view principle. Differences are computed

and displayed using token granularity. A single line of text may contain different changes, and

of different types. Additions, deletions, and modifications are highlighted using different colors.

Two complementary artifacts, tooltips and hot keys (not shown), were developed for displaying

modifications without duplicating text on the interface.

Tooltips allow the user to quickly glance at a particular modification by putting the mouse

pointer over it; a pop-up window then displays the original text. On the other hand, hot keys,

when pressed, switch between both versions of the text in place. In any case, the original text is

always displayed near the modified text, in evident contrast to the traditional interfaces where

both pieces of text are on different sides of the screen, far from each other.

A formal usability study conducted among sixteen participants using real-world code sam-

ples confirmed the effectiveness of the proposed interface, showing average speed improvements

of 60% while also increasing answer quality on our weighted scale by almost 80%.

1.4 Background Information

File comparison tools are pieces of software used to compute and display differences between

files. Although general enough to compare arbitrary pieces of text, those tools are mostly

used in association with Source Code Management systems to review source code changes and

resolve eventual conflicts.

Commonly, comparisons are performed against two files, traditionally called the left and

right sides. There is no implicit or explicit precedence relation between the files. In this work,

by convention, the left side is considered to be the modified version and the right side, the

original one.

Comparisons can also involve three files, usually to resolve conflicts caused by concurrent

development. In those cases, the third file is called the ancestor and is, by definition, the source

from which the other two were derived.

1.4.1 The Longest Common Subsequence

To determine the differences — or, ideally, the minimal set of differences — between files, file

comparison tools usually compute the Longest Common Subsequence (LCS) [1].

Introduction 7

A sequence Z = �z1, z2, . . . , zk� is said to be a subsequence of X = �x1, x2, . . . , xm� if

there exists a strictly increasing sequence I = �i1, i2, . . . , ik� of indexes of X such that for

all j = 1, 2, . . . , k, we have xij = zj . Z is said to be a common subsequence of X and Y

if Z is a subsequence of both X and Y . The longest-common-subsequence problem can be

stated as follows: given two sequences X = �x1, x2, . . . , xm� and Y = �y1, y2, . . . , yn�, find the

maximum-length common subsequence of X and Y [9].

Please note that the LCS is not unique. Given sequences X = �1, 2, 3� and Y = �2, 1, 3�,

both Z = �1, 3� and W = �2, 3� are longest common subsequences of X and Y . The LCS, per

se, does not compute the minimal set of differences2; those are presumed to be all elements not

in the LCS.

1.4.2 Files and Differences

To compute the longest common subsequence against source code files, the sequences can

be formed from the file lines, words or tokens, or even individual characters (Section 4.3.1).

Traditionally, most comparisons tools compare files line by line (Chapter 2). For brevity, we

refer to nodes in this text.

It is convenient to use a compact notation to represent files and differences. File content is

represented as a sequence of lower case letters — each letter representing a node — displayed

horizontally, as in abc. New nodes are represented with a previously unused letter, as in abcd.

Removed nodes are simply omitted: ab. Some nodes are neither removed nor inserted, but

have their content altered; those are represented by upper case letters: aBc.

We will frequently refer to differences in more specific terms, respectively additions, dele-

tions, and modifications (Section 3.3.2). Intuitively, for a file abc modified into aCd, b is a

deletion, the pair (c, C) is a modification, and d is an addition. Collectively, additions, dele-

tions, and modifications may be called changes, to distinguish them from plain differences.

1.4.3 Alternatives to the LCS

Although algorithms to compute the LCS, or some variation form, have been vastly employed

by most file comparison tools, some existing alternatives try to improve on the traditional line

matching algorithms by introducing features such as detecting moved lines, telling if lines were
2Since the LCS is not unique, it would be more appropriate to refer to “an LCS”, and “a minimal set of

differences.”

Introduction 8

modified or replaced by different lines, or using a programming language’s syntactical structure

to compute the differences.

A complete discussion of difference algorithms is beyond the scope of this work. For samples

of recent work on this area, please refer to [5, 32].

1.5 Related Work

Academic research and specific literature in the field of file comparison interfaces is, for the

most part, scarce. However, code comparisons are not limited to source text. Graphical models,

such as UML diagrams, and visual maps can also be used to represent changes to a code base.

Atkins [3] discusses ve, or Version Editor, a source code editing tool integrated with version

control systems. The tool interface, which can emulate both the vi and emacs editors, highlights

additions and deletions using, respectively, bold and underlines. The tool is capable of showing,

for each line, SCM metadata information such as author, rationale, and date of modification.

The author estimates that productivity gains due the tool represented savings of $270 million

over ten years.

Voinea et al. [52] introduces CVSscan, a code evolution visualization tool that arranges code

changes into a temporal map. Versions of a source file are represented in vertical columns, with

the horizontal dimension used to represent time. Lines of code are represented as single pixels

on the screen, using colors to mean unmodified (green), modified (yellow), deleted (red), and

inserted (blue). Actual source text comparisons can be made by “sweeping” the mouse across

the interface. Differences are displayed using a “two-layered code view” which closely resembles

a two-pane comparison interface (Section 2.1).

Seeman et al. [50] and Ohst et al. [47] describe tools that use UML diagrams to represent

changes in object-oriented software systems as graphical models. Both tools are limited to

comparing classes and members, providing no means to visualize changes to the code text.

Chawathe et al. [7] presents htmldiff [26], a tool to capture and display Web page updates.

Changes are represented by bullets of different colors and shapes meaning insertion, deletion,

update, move, and move+update.

On the topic of file comparison tools, Mens [36] provides an overview of merge techniques,

categorizing them into orthogonal dimensions: two- and three-way merging (Section 2.1); tex-

tual, syntactic, semantic, or structural (Section 7.3); state- and change-based; reuse and evo-

Introduction 9

lution. The author also discusses techniques for conflict detection and resolution, difference

algorithms, and granularity (Section 3.3.4).

1.6 Sample Test Case

To introduce participants to file comparison tools in the usability experiment (Chapter 5), a

sample, handwritten test case was created (Figures 1.4 and 1.5). The sample test case was used

to explain how comparisons were to be performed, presenting to the participants a sensible set

of additions, deletions, and modifications. No measurements were done using the sample test

case.

Figure 1.3 on page 5 shows this comparison as represented by the proposed interface. In

the next chapter, Comparison Tools Survey, all screenshots were taken using the sample test

case.

1.7 Thesis Outline

This thesis is organized into seven chapters — of which this was the first — plus ten appendices:

Chapter 2, Comparison Tools Survey, covers the features offered by some popular file com-

parison tools;

Chapter 3, Spotting the Difference, discusses some of the deficiencies perceived with current

file comparison offerings while proposing improvements;

Chapter 4, Architecture and Implementation, briefly reviews the prototype development;

Chapter 5, Usability Evaluation, details the usability experiment and analyzes its main re-

sults;

Chapter 6, Lessons from the Usability Study, examines the main insights acquired from the

usability experiment;

Chapter 7, Conclusion, summarizes thesis contributions and discusses future work;

Introduction 10

1 /**
2 * This class provides a method for primality testing.
3 */
4 public abstract class NaivePrime{
5
6 /**
7 * Returns <code>true</code> iff <code>n</code> is prime.
8 */
9 public static boolean isPrime(int n){
10
11 // By definition, integers less than 2 are not prime.
12 if (n < 2)
13 return false;
14
15 for (int i = 2; i < n; i++){
16
17 if (n % i == 0)
18 return false;
19 }
20
21 return true;
22 }
23
24 public static void main(String[] args){
25
26 for (int i = 1; i < 100; i++){
27
28 String message = " is composite.";
29
30 if (isPrime(i))
31 message = " is prime.";
32
33 System.out.println(i + message);
34 }
35 }
36 }

Figure 1.4: Test Case, Original

Introduction 11

1 /**
2 * This class provides a method for primality testing.
3 */
4 public class NaivePrime{
5
6 private NaivePrime(){}
7
8 /**
9 * Returns <code>true</code> iff <code>n</code> is prime.
10 */
11 public static boolean isPrime(long n){
12
13 // By definition, integers less than 2 are not prime.
14 if (n < 2)
15 return false;
16
17 if (n == 2)
18 return true;
19
20 if (n % 2 == 0)
21 return false;
22
23 long sqrt = (long)Math.sqrt(n);
24
25 for (long i = 3; i <= sqrt; i += 2){
26
27 if (n % i == 0)
28 return false;
29 }
30
31 return true;
32 }
33
34 public static void main(String[] args){
35
36 for (int i = 1; i < 100; i++){
37
38 if (isPrime(i))
39 System.out.println(i);
40 }
41 }
42 }

Figure 1.5: Test Case, Modified

Introduction 12

Appendix A, Test Cases, reproduces the source code files used in the usability experiment;

Appendix B, List of Differences, enumerates all differences participants were expected to

report in the usability experiment;

Appendix C, Experimental Data, lists, in tables, the raw data collected during the experi-

ment, including participants answers;

Appendix D, Statistical Information, provides basic statistical information about the data

gathered in the experiment;

Appendix E, Outlier Data, reproduces the main time charts including outlier data;

Appendix F, Experiment Script, is a transcription of the protocol followed during the exper-

iment;

Appendices G through J provide transcriptions of all forms and questionnaires used in the

experiment.

Chapter 2

Comparison Tools Survey

File comparison tools are popular tools available for a variety of systems and platforms and are

used by both developers and non-developers. They cover a broad range of functionalities, from

general text comparison to specialized code editing.

In this chapter, we examine the main features offered by a representative selection of file

comparison tools. Firstly, we discuss features expected to be offered by modern file comparison

tools.

2.1 File Comparison Features

The following features were observed when evaluating the selected comparison tools:

Interface Metaphor: How the tool displays the files for comparison on the screen. Most

tools use a two-pane interface with files displayed side by side, although some widely used

tools are still based on textual interfaces.

Vertical Alignment: Tools that display files side by side should, preferably, keep both sides

vertically aligned. While most tools employ sophisticated synchronized scrolling mecha-

nisms, some would simply pad the text with blank lines.

Highlighting Granularity: The granularity with which differences are highlighted. Common

options include whole lines, words or tokens, and individual characters. For tools that

provide the option, the finest level of granularity was considered.

Difference Navigation: Whether the tool provides a mechanism to navigate between differ-

ences. The most common options are previous and next buttons, or direct access, usually

13

Comparison Tools Survey 14

represented by a thumbnail view of the differences.

Syntax Highlighting: Indicates whether the tool supports some level of syntax highlighting,

preferably for the Java programming language.

Ignore White Space/Case: Indicates whether the tool ignores differences in white space

and case during comparisons. Usually, a user-selectable option.

Merge Support: Indicates whether the tool allows differences to be copied, or merged, from

one file to the other.

Three-way Comparisons: Indicates whether the tool supports comparing a pair of files si-

multaneously with a common ancestor.

2.2 Comparison Tools

Nine file comparison tools were selected for this survey. The sample was chosen amongst

popular IDEs and stand-alone tools, open-source and proprietary, covering the most significant

development platforms: Java, Apple Mac OS X, Unix, and Microsoft Windows.

While it is by no means an exhaustive list, we believe this to be a very representative set

of the features commonly found on most file comparison tools.

Comparison Tools Survey 15

Figure 2.1: GNU diffutils

2.2.1 diff

diff - compare files line by line

GNU diffutils man page

diff is one of the first file comparison tools. It was originally developed by Douglas McIlroy

for the Unix operating system in the early 1970s [27]. diff is an implementation of the Longest

Common Subsequence algorithm which takes two text files as input and compares them line

by line.

By default, diff’s output (Figure 2.1) represents the set of lines which do not belong to

the LCS. Lines are marked as “from FILE1” or “from FILE2” [19], which can be interpreted

as additions and deletions.

Although it might not be directly comparable to more advanced graphical tools, diff is

still widely used and was included for historical reasons. For this survey, the GNU diffutils

implementation [23] was used.

Comparison Tools Survey 16

Figure 2.2: Eclipse

2.2.2 Eclipse

Eclipse is a project and a development platform mostly known for its aptly named Eclipse IDE,

very popular amongst Java developers [18].

While reviewing the IDE and all its features is outside the scope of this survey, Eclipse’s

Compare Editor [12] is a modern, advanced graphical file comparison tool1, providing a two-

pane interface with support for merging, three-way comparisons, and syntax highlighting for

multiple programming languages (Figure 2.2).

Unique amongst comparison tools is its Structure Compare feature, which outlines differ-

ences using a tree of high level elements, such as classes, constructors, and methods. Although

most tools support file merging, Eclipse is one of the few tools to allow text to be edited directly

in the comparison, offering even advanced editing features such as code completion and access

to class documentation2.

1Strictly speaking, the Eclipse platform provides a comparison framework on top of which comparison tools

are implemented. The distinction between platform, framework and tools will not be made.
2Version 3.5, Galileo

Comparison Tools Survey 17

Figure 2.3: FileMerge

2.2.3 FileMerge

FileMerge [16] (Figure 2.3) is a stand-alone tool bundled with Apple’s Xcode Development

Tools, the only officially supported development environment for native applications on the

Mac OS X platform. FileMerge’s features are comparable to most other tools, offering a two-

pane interface with support for merging and three-way comparisons.

Contrary to Apple fashion, the interface presents some idiosyncrasies. Direct access to

differences is cumbersome, as it shares the same space with — and gets blocked by — the

vertical scrollbar. In addition, given the interface has no toolbar or buttons, next and previous

navigation is be done exclusively through keyboard shortcuts or via menu.

Unique to FileMerge is its ability to directly access classes and methods using a drop-

down menu. Although similar in nature, this feature is not as advanced as Eclipse’s Structure

Compare.

Comparison Tools Survey 18

Figure 2.4: IntelliJ IDEA

2.2.4 IntelliJ IDEA

IntelliJ IDEA [28] (Figure 2.4) is a commercial IDE oriented mostly towards Java development.

Its two-pane comparison interface compares favorably to most other tools, using colors to clas-

sify changes into “inserted”, “deleted”, and “changed”. The tool supports syntax highlighting,

merging, and three-way comparisons.

Comparison Tools Survey 19

Figure 2.5: Kompare

2.2.5 Kompare

Kompare [33] (Figure 2.5) is a graphical front-end for the diff utility, developed for Unix

systems running the K Desktop Environment (KDE). The two-pane interface uses colors to

represent “added”, “removed”, and “changed”.

The tool lacks features offered by most other tools, such as three-way comparisons and

syntax highlighting. The tool provides single character highlighting, although this feature

did not work properly on most of our evaluations. Therefore, it was considered to offer line

highlighting only.

Comparison Tools Survey 20

Figure 2.6: Meld

2.2.6 Meld

Meld [35] (Figure 2.6) is an open-source, stand-alone file comparison tool for Unix systems

using the GNOME environment. Although the tool presents a pleasant and feature-complete

interface, it does not support syntax highlighting and white space ignoring is limited to blank

lines.

Comparison Tools Survey 21

Figure 2.7: NetBeans

2.2.7 NetBeans

Sun Microsystems’ NetBeans [41] (Figure 2.7) is a popular, open-source IDE targeting mostly

Java development. Its two-pane comparison interface uses colors to classify differences and

provides most features offered by other tools.

Comparison Tools Survey 22

Figure 2.8: WinDiff

2.2.8 WinDiff

Microsoft’s WinDiff [37] (Figure 2.8) is the file comparison tool distributed with the Visual

Studio suite of software development tools for Windows. Even though the tool continues to be

included even in the latest version of Visual Studio (2008), it seems to not have been updated

in years, a reminiscent of Windows 3.1 days.

Its interface is unusual amongst the tools we analyzed, resembling more a textual than

a graphical interface. Differences are represented using background colors: red represents

differences from the left file, and yellow represents differences from the right file [38].

Given its lack of advanced features and awkward interface, the tool was included in this

comparison only for completeness.

Comparison Tools Survey 23

Figure 2.9: WinMerge

2.2.9 WinMerge

WinMerge [56] (Figure 2.9) is an open-source, stand-alone file comparison tool for the Windows

platform. The tool offers a complete and advanced set of features, and supports plugins for

extended functionality, such as ignoring code comments or extracting textual content from

binary files.

Unique to WinMerge is its quad-pane interface with two horizontal panes at the bottom

of the interface to display the current difference, corroborating our perception that two-pane

interfaces are inefficient in their use of screen real estate (Section 3.2).

Amongst two-pane tools, WinMerge was the only tool not to support synchronized scrolling,

resorting to blank line padding to keep both sides at the same height. The tool lacks a proper

token parser, and only words separated by space or punctuation can be highlighted. Neverthe-

less, it was the only tool to support highlighting with single character granularity.

Comparison Tools Survey 24

2.3 Feature Summary

Tables 2.1 and 2.2 summarize the features offered by the tools analyzed. Some features might

be offered only as a user-selectable option.

Tool Version Metaphor Alignment Granularity Navigation

diff 2.8.1 Textual N/A Line only N/A

Eclipse 3.4.2 Two-pane Sync Token Prev/Next, Direct

FileMerge 2.4 Two-pane Sync Token Prev/Next, Direct

IDEA 8.1 Two-pane Sync Token Prev/Next, Direct

Kompare 3.4 Two-pane Sync Line only Prev/Next

Meld 1.2.1 Two-pane Sync Token Prev/Next

NetBeans 6.5 Two-pane Sync Token Prev/Next, Direct

WinDiff 5.1 GUIfied N/A Line only Prev/Next, Direct

WinMerge 2.12.2 Quad-pane Blank lines Word, Character Prev/Next, Direct

Table 2.1: Comparison of File Comparison Tools

Tool Merge Three-way Syntax Highlight. Ignore Space Ignore Case

diff No No No Yes Yes

Eclipse Yes Yes Yes Yes Yes

FileMerge Yes Yes Yes Yes Yes

IDEA Yes Yes Yes Yes Yes

Kompare Yes No No Yes Yes

Meld Yes Yes No Blank lines No

NetBeans Yes Yes Yes Yes Yes

WinDiff No No No Yes Yes

WinMerge Yes No Yes Yes Yes

Table 2.2: Comparison of File Comparison Tools (continued)

Comparison Tools Survey 25

2.4 Chapter Summary

In this chapter we explored common features offered by notable file comparison tools. The

next chapter reconsiders those features and the negative impact they can have on the user

experience, building upon those limitations to introduce an improved file comparison interface

metaphor.

Chapter 3

Spotting the Difference

compare estimate, measure, or note the similarity or dissimilarity between.

New Oxford American Dictionary, 2nd Edition

The previous chapter showed that most file comparison tools have a consistent set of features

and similar user interfaces. With a few exceptions, it can be said that the typical file comparison

tool has a two-pane interface, with synchronized vertical scrolling and mechanisms to navigate

between differences; differences are highlighted at a line level, with fine-grained differences

within a line further emphasized.

In this chapter, we analyze in more depth the features offered by file comparison tools,

exploring their shortcomings and using this knowledge to design an improved file comparison

interface.

3.1 Research Hypothesis Restated

The main hypothesis investigated in this thesis is that the ubiquitous two-pane interface

metaphor is inefficient and ineffective to represent differences between files. Inefficient for

its waste of screen real estate, especially in the critical horizontal dimension [42]. Ineffective

for it makes reading and comparing changes difficult since text is duplicated and split across

the screen.

To address those design flaws, a new interface metaphor is proposed: differences between

files are consolidated and presented to the user into a single text view. We call it the single-pane

interface. In the next sections, it is discussed how our investigation led to this simplified, more

effective design.

26

Spotting the Difference 27

3.2 Display Design

According to Wickens et al. [54]:

“Displays are human-made artifacts designed to support the perception of relevant

system variables and facilitate the further processing of that information. The dis-

play acts as a medium between some aspects of the actual information in a system

and the operator’s perception and awareness of what the system is doing, what needs

to be done, and how the system functions.”

The authors describe thirteen principles of display design, of which we reproduce the fol-

lowing. It is easy to see how the file comparison tools analyzed in the previous chapter violate

most of these principles.

3.2.1 Principles of Display Design

Principle 1: Make Displays Legible

“Legibility is critical to the design of good displays. Legible displays are necessary,

although not sufficient, for creating usable displays.”

Most tools make heavy use of lines surrounding blocks of text, connecting differences across

the screen. Those lines can be confusing (Section 6.2.2), cluttering the interface and making it

difficult to read. The proposed interface completely dispenses the use of such artifacts.

Principle 5: Discriminability

“Similarity causes confusion, use discriminable elements. Similar appearing signals

are likely to be confused. The designer should delete unnecessary similar features

and highlight dissimilar ones.”

Some tools do not make the distinction between additions, deletions, and modifications,

classifying all changes as differences, and leaving to the user the burden of interpreting their

meaning. Classifying changes is one of the fundamental features of the proposed interface.

Spotting the Difference 28

Principle 6: Principle of Pictorial Realism

“A display should look like the variable that it represents. If the display contains

multiple elements, these can be configured in a manner that looks like how they are

configured in the environment that is represented.”

It is easy to argue that, for most people, a series of text changes do not look like two pieces

of text displayed side by side. The proposed interface shows all pieces of text in the place

they are most likely supposed to belong, highlighting which pieces were inserted, removed, or

altered.

Principle 8: Minimizing Information Access Cost

“There is typically a cost in time or effort to ‘move’ selective attention from one

display location to another to access information. Good designs are those that min-

imize the net cost by keeping frequently accessed sources in a location in which the

cost of travelling between them is small.”

Of all principles underlined here, this is probably the one that best describes the essence of

the proposed interface. Information which is supposed to be compared should be arranged as

close as possible. Two-pane interfaces completely break this principle, putting related informa-

tion on separated sides of the screen. A user is always forced to move attention from one side

to the other, constantly losing focus.

Principle 9: Proximity Compatibility Principle

“Sometimes, two or more sources of information are related to the same task and

must be mentally integrated to complete the task; that is, divided attention between

the two information sources for the one task is necessary. Good display design should

provide the two sources with close display proximity so that their information access

cost will be low.”

Since, by design, two-pane interfaces violate Principle 8, they struggle to maintain rea-

sonable levels of information proximity, “linking [information sources] together with lines or

configuring them in a pattern”, as described by the authors. Section 3.3.3 describes two mech-

anisms employed by the proposed interface to further reduce information access costs when it

is inevitable to display two information sources at the same time.

Spotting the Difference 29

Figure 3.1: Spot the Difference: Please, do not write on this page.

3.3 The Proposed Interface

Having seen the two-pane interface limitations, we can now suggest some interface advance-

ments.

3.3.1 Single-pane Interface

The single most distinctive feature of the proposed system is the use of a single-pane interface.

Files are not displayed side by side, but merged into a single view with differences highlighted.

We believe that using a single-pane interface improves usability by reducing interface clutter

(Principle 1), providing a more pictorial data representation (Principle 6), and minimizing

information access cost (Principle 8).

Interestingly, one of the main sources of inspiration came from a popular game for kids

known as Spot the Difference (Figure 3.1, reproduced here under fair dealing). In this game,

one has to find all differences between two slightly different versions of an image.

If one is willing to cheat, the game can be trivially solved with a simple trick: put one of

the images on top of the other and all differences pop before one’s eyes (Figure 3.2, on the next

page, not to spoil the answer).

To understand figure 3.2, suppose the left image is colored green, and the right image is

colored red. Superposing the images, features which are unique to the first image appear in

green; features present only on the second image are in red; and where the images overlap, it

is black.

If we assume the first image is the modified one and the second image is the original one,

it can be said the green features in figure 3.2 were drew over the original image (or added) and

Spotting the Difference 30

Figure 3.2: Cheating on a Kids Game: Colors Added for Clarity.

the red features were rubbed out from the original image (deleted). Extending the analogy,

where green and red blend (as in the very top flower on the branches, the girl’s shoes, or the

sword cover) the image was modified.

The concept behind the single-pane interface is very similar to the trick: by “superposing”

the files under comparison, parts that have not changed still look the same, while differences

emerge to be easily spotted.

Using a single-pane interface to compare files is, actually, not a new idea. In fact, WinDiff

(Section 2.2.8) uses a very primitive single-pane interface, intercalating files and highlighting

all but common lines.

More elaborate single-pane comparison interfaces can be found on word processors such

as Microsoft Word (Figure 3.3), Apple Pages (Figure 3.4), or OpenOffice Writer. Usually

called “Track Changes”, or similar, those features, when enabled, display all changes made to

a document, including even metadata changes such as font and page formatting. Some of those

tools are general enough to be used for source code comparisons and were an important source

of inspiration for our interface.

3.3.2 Difference Classification

While some comparison tools do classify changes to improve discriminability (Principle 5),

classifying changes into additions, deletions, and modifications is one of the core features of the

proposed interface, given it lacks the spatial information provided by two-pane interfaces.

Spotting the Difference 31

Figure 3.3: Microsoft Word’s Track Changes

Figure 3.4: Apple Pages’ Track Text Changes

Additions and Deletions

Additions and deletions are trivially understood. For the sake of the argument, assume nodes

are either entirely removed or entirely inserted. Inserted nodes appear only on the modified

version of a file and are called additions. Similarly, removed nodes are present only on the

original version of a file and are called deletions. So, for instance, if file abc is changed into

acd, we say node b is a deletion and node d is an addition.

The interface highlights additions in green and deletions in red, with strikeouts.

Spotting the Difference 32

Modifications

Modifications are an abstraction, a more intuitive way of representing consecutive pairs of

additions and deletions.

Suppose file abc is compared to file adc. Although it could be said that node b was removed

and node d was inserted1, usually it would be more intuitive to think about node b being altered

into node d2. The pair b,d is called a modification.

In the interface, modifications are highlighted in orange.

3.3.3 Displaying Modifications

Modifications are particularly challenging to represent, since there are two sources of informa-

tion, the original and the modified text, that need to be visualized at the same time (Principle 9).

To display modifications, two complementary interface mechanisms were implemented: tooltips

and hot keys.

By default, the interface always displays the modified version of the text, with one of the

mechanisms being used to displayed the original text. Both mechanisms have their advantages,

being more or less suitable for different scenarios. They were designed to complement, and not

replace, each other.

Tooltips

The first mechanism implemented to display modifications were the tooltips, a pop-up window

displayed when the mouse cursor hovers over a modification (Figure 3.5). The original text is

displayed in the small window, close to its modified version, allowing the user to easily compare

both versions without having to move the eyes across the screen.

While the tooltip mechanism does not eliminate information duplication, it limits dupli-

cation to a single change at a time, at most (Principle 1), while greatly reducing information

access cost (Principle 8).
1See, for instance, Figure 3.3
2d may, in fact, not be a modification of b. It might be that node b was deleted and a new, unrelated node d

was inserted, coincidently, between nodes a and c. We do not aspire to this level of enlightenment in this work.

Spotting the Difference 33

Figure 3.5: Tooltips

Figure 3.6: Hot Keys: pressed (left) and released (right).

Hot keys

Tooltips are very useful for visualizing a single modification, but they do not scale well when,

say, a line has many modifications. For displaying multiple modifications at once, a second

mechanism was implemented: hot keys (Figure 3.6).

By pressing and holding a pre-defined key, all modifications displayed on the screen are

replaced with their original text. The modified text reappears as soon as the user releases the

Spotting the Difference 34

key. Additions and deletions are not reversed in the process.

Hot keys have the added benefit of stimulating the motion detection capabilities of the

human brain.

3.3.4 Granularity

Most tools use two levels of highlighting — lines and tokens — which, in our opinion, increases

interface clutter and reduces legibility. Using only token granularity to display differences

improves readability.

Most importantly, token granularity is used to cleverly classify differences, leading to im-

proved understandability. Suppose a line abcd is modified into bCde. Most tools would display

the whole line as a modification, further highlighting tokens a and c on one side, and C and e

on the other.

Differently, the proposed interface classifies and displays a as a deletion, the pair c and C

as a modification, and e as an addition. Interpreting changes at this finer level of granularity

gives more intuitive results, and is a feature not usually found on most file comparison tools.

3.4 File Comparison Features Revisited

The proposed features can be summarized by revisiting the criteria outlined in Section 2.1:

Interface Metaphor: Two-pane interfaces can be inefficient and ineffective interface metaphors.

The proposed model adopts a single-pane interface to display differences.

Vertical Alignment: Since files are not displayed side by side, it is not necessary to maintain

vertical alignment.

Highlighting Granularity: Experimentation has showed that single character granularity

can be too fine-grained, producing a large number of differences. Line granularity, on the

other hand, is too coarse-grained, demanding the user to read two whole lines to identify

what was actually changed. Therefore, token granularity was chosen. Differently from

most other tools, whole lines are not highlighted, avoiding interface clutter and allowing

for fine-grained difference classification.

Difference Navigation: Initially, difference navigation was not implemented. For further

discussion, refer to Section 6.3.1.

Spotting the Difference 35

Syntax Highlighting: Although it was not strictly necessary for the study, syntax highlight-

ing was implemented to improve readability.

Ignore White Space/Case: During experimentation, white space handling showed itself to

be an essential feature. Section 4.3.4 provides a detailed discussion about challenges and

solutions. Although it would have been trivial, we did not see the need to implement case

ignoring.

Merge Support and Three-way Comparisons: These features were considered outside the

scope of this work.

3.5 Chapter Summary

In this chapter we showed how to improve file comparison usability and proposed new interface

metaphors: single-pane interface, finer level of difference highlighting and classification, and

special artifacts to display modifications.

The next chapter discusses the design and implementation of the prototype used in the

usability experiment.

Chapter 4

Architecture and Implementation

In this chapter we describe the architecture, design decisions, and implementation challenges

faced while developing the proposed tool.

We named the prototype “Vision”, a play with the word revision — which literally means

“see again”, a satirical reference to two-pane interfaces.

4.1 The Platform

One of our first design decisions in the early development stages was to implement the tool as

a plug-in for the Eclipse platform. We can name a few benefits that motivated this decision.

Firstly, the Eclipse platform provides a vast selection of services such as file comparison, lex-

ical analyzers, syntax highlighting, rich text widgets, text hovers, and integration with Source

Code Management systems. The availability of those services greatly simplified the implemen-

tation and reduced development time.

Secondly, implementing our prototype on top of the same technologies used by the reference

tool (Section 5.1) gave us a level playing field for comparing the tools. It would have been more

difficult to determine the effectiveness of the proposed interface if we could not otherwise isolate

external factors such as, for instance, the difference engine.

Finally, being a plug-in for a popular development environment should give the tool some

visibility and acceptance should it eventually be publicly released. It should also be mentioned

that most participants of the usability experiment were already acquainted with the Eclipse

IDE and, therefore, our tool presented them with a familiar interface look-and-feel.

36

Architecture and Implementation 37

4.2 Design and Architecture

The system design and architecture was inspired, and occasionally even restrained, by the plat-

form itself. Most of the initial code came from reverse engineering Eclipse’s own file compara-

tors, mainly org.eclipse.compare.contentmergeviewer.ContentMergeViewer. The system

design and architecture had to follow numerous conventions regarding interfaces to be imple-

mented and classes to be extended [8, 13, 14, 15, 20].

The system main classes are represented in the following UML diagram (Figure 4.1):

Figure 4.1: Vision UML Class Diagram: some classes omitted for clarity.

Architecture and Implementation 38

The starting point of the system is the VisionMergeViewerCreator class, required by

the platform to extend the org.eclipse.compare.IViewerCreator interface, and whose sole

purpose is to instantiate the VisionMergeViewer class.

VisionMergeViewer, the main system class, extends the abstract class org.eclipse.←�

jface.viewers.ContentViewer. It is responsible for initializing other system classes and

platform services. The main input to this class, the pair of files to be compared, is provided

by the platform. Since the tool integrates with the Team capabilities offered by the platform,

input may come from any of the following:

• Files from the file system;

• Versions from local history;

• Revisions from a supported Source Code Management repository.

After pre-processing the input, VisionMergeViewer creates an instance of the DiffDocument

class, passing the files to be compared as parameters to its constructor.

To compute the differences between the files, DiffDocument invokes a static method of the

abstract class Diff, which itself delegates to one of its concrete implementations: TokenDiff,

LineTokenDiff, or LineDiff. Diff then returns an iterator to a list of org.eclipse.←�

compare.rangedifferencer.RangeDifference objects computed by RangeDifferencer, from

the same package.

DiffDocument uses this set of raw differences to compute a pair of Documents. Each

Document is composed of a version of the merged text from the input files and a list of Changes

describing the differences between them. Section 4.3 discusses in more detail the process briefly

depicted in this paragraph and the previous one.

The pair of Documents is then used by VisionMergeViewer to render the user interface.

Text is actually displayed on the screen by org.eclipse.jface.text.source.SourceViewer,

configured by the org.eclipse.jdt.ui.text.JavaSourceViewerConfiguration class.

Difference highlighting is performed by one of the concrete Highlighter implementations.

Most are combinations of foreground or background highlighting colors, combined or not with

strikeouts and underscores. Available options can be selected at runtime. One particular im-

plementation, BWUnderscore (Figure 4.2), uses only underscores and strikeouts without colors

to represent the different types of changes. It was intended mainly at producing black and

Architecture and Implementation 39

Figure 4.2: BWUnderscore

white printings, but could also be useful for color-blind persons, although it was not possible

to evaluate it for this purpose.

4.3 Making a Difference

This section describe how the merged document, Document, and its set of Changes is computed

from the pair of files being compared.

4.3.1 Difference Computation

Actual file comparison is performed by RangeDifferencer, a utility class provided by the

framework implementing the file comparison algorithm described in [39]. RangeDifferencer

takes two org.eclipse.compare.contentmergeviewer.ITokenComparators as input and re-

turns the Longest Common Subsequence (LCS), represented by an array of RangeDifferences.

Different ITokenComparators can be used to manipulate the comparison strategy. Com-

parison strategies are encapsulated by the vision.diff.strategies package. Three strategies

were implemented, all specific to Java source code. Support for additional programming lan-

guages — or general text files — can be easily implemented by extending the Diff class.

The first strategy implemented, JavaDiff, compares the input token by token, as defined

by org.eclipse.jdt.internal.ui.compare.JavaTokenComparator1. This strategy deviates
1The platform discourages the use of internal packages in production systems. Notwithstanding, it was

considered harmless for a prototype while simplifying its development.

Architecture and Implementation 40

from conventional line-by-line comparisons, which are more efficient to compute. Nevertheless,

the strategy ended up being reasonably fast to compute, at least on modern personal computers.

The finer level of granularity provided the JavaDiff usually led to clearer, more comprehen-

sible results than the conventional line-by-line strategy. However, this strategy suffered some

severe complications when dealing with complex sets of changes, specially those described in

Section 6.3.5, Line Reordering.

Consequently, we decided to revert to a more traditional approach (Algorithm 4.1). Firstly,

differences are computed on a line-by-line basis (line 2). Then, for a range of consecutive

differing lines, differences were computed recursively using token granularity (line 9). This

strategy is implemented by LineTokenDiff.

A third strategy, LineDiff, which computes differences on a line basis only, was imple-

mented after the usability experiment to support the features described in Section 6.3.5.

Algorithm 4.1: DifferenceComputation
Input: A pair of files to be compared, left and right

Output: A list of difference ranges, differences

differences ← ∅1

aux ← computeLCS(left, right, LineStrategy)2

while range ← aux.next do3

if range.rightLength = 0 then4

// Empty right side: the entire line(s) was added

differences.add(range)5

else if range.leftLength = 0 then6

// Empty left side: the entire line(s) was deleted

differences.add(range)7

else8

// No empty sides: process recursively using token granularity

aux2 ← computeLCS(range.left, range.right, TokenStrategy)9

while subrange ← aux2.next do10

differences.add(subrange)11

return differences12

Architecture and Implementation 41

4.3.2 Difference Classification

The Longest Common Subsequence as computed by RangeDifferencer, independently of the

comparison strategy used, is not sufficient for the purposes of our interface. Differences have

to be filtered and interpreted before computing the Document pair and their Changes.

The main problem is how to infer, from a raw set of differences, additions, deletions, and

modifications. Take, for instance, a line of code a = b modified into a = c + d. It can be said

that:

1. b was modified into c + d;

2. b was modified into c and + d was added;

3. c + was added and b was modified into d;

4. b was modified into +, c and d were added;

5. b was deleted and c + d was added;

6. And similar permutations.

Given the problem does not tolerate a formal, unique solution, a set of heuristics was

developed to approximate an answer (Algorithm 4.2).

Differences are initially separated into three groups for classification. First, differences

which appear only in the modified version of the file are classified as additions (lines 3–4).

Analogously, differences which appear only in the original version are classified as deletions

(lines 5–6).

The third group is composed of the differences which appear on both sides. Unfortunately,

it would not be adequate to trivially classify those differences as modifications : the ranges may

have an uneven number of differences coming from each side and experimentation has shown

that, usually, one token or line of code is not modified into two tokens or lines of code.

The LineTokenDiff difference computation strategy described in the last section handles

such cases with appreciable elegance, refining a block of differing lines into a new set of finer

grained differences. Those differences are then recursively classified as additions, deletions, and

modifications.

Architecture and Implementation 42

Algorithm 4.2: DifferenceClassification
Input: A list of difference ranges, differences

Output: A list of classified changes, changes

changes ← ∅1

while range ← differences.next do2

if range.rightLength = 0 then3

// Empty right side: the content on the left was added

changeType ← Addition4

else if range.leftLength = 0 then5

// Empty left side: the content on the right was deleted

changeType ← Deletion6

else7

// No empty sides: the content on both sides was modified

changeType ← Modification8

i ← 09

while difference ← range.next do10

i ← i + 111

if changeType = Modification then12

if i > range.rightLength then13

/* No more differences on the right side: remaining

differences on the left are considered additions */

changeType ← Addition14

else if i > range.leftLength then15

/* No more differences on the left side: remaining

differences on the right are considered deletions */

changeType ← Deletion16

changes.add(new Change(difference, changeType))17

return changes18

Architecture and Implementation 43

For the remaining cases with uneven numbers of differences from each side, differences are

matched to one another, in order, and classified as modifications. Exceeding differences, to one

side or the other, are classified as additions or deletions, respectively (lines 13–16).

This arrangement produced overall good results, while still being simple to implement and

understand.

4.3.3 Merged Document

The merged document, used by the user interface to display differences on the screen, is com-

puted directly from the files being compared and their differences.

All text belonging to the Longest Common Subsequence is copied verbatim into the merged

document, as well as all differences classified as additions or deletions (Section 4.3.2). For

modifications, only the modified text is copied into the merged document, while the original

text is saved in an auxiliary data structure used to display the tooltips.

To implement the hot-key feature efficiently, a mirror copy of the merged document is

produced by reversing modification order: the original text is copied into the document, while

the modified version is saved in parallel. Additions and deletions are not reversed in the mirror

document.

4.3.4 White Space Handling

For comparison purposes, the interface always ignores differences in white space. However,

while white space could easily be ignored when computing differences, highlighting white space

showed itself to be a more challenging problem.

Highlighting all white space differences (Figure 4.3, taken from an earlier prototype) pro-

duced cumbersome, not to say meaningless, results.

On the other hand, ignoring all white space (Figure 4.4) leads to many small differences

separated by a few spaces. A balanced solution had to be reached.

Many strategies were tried, like ignoring all white space at the beginning and end of lines,

ignoring all unaccompanied white space, or ignoring only consecutive white space. Through

experimentation, the strategy that yield the best results was to ignore line and difference

leading and trailing white space, while highlighting inter-token white space within differences;

the results can be appreciated in all screenshots throughout this thesis.

Architecture and Implementation 44

Figure 4.3: Highlighting All White Space Differences

Figure 4.4: Ignoring White Space Differences

4.4 Chapter Summary

This chapter gave an overview of the system design and architecture, showing how it integrates

and makes use of the services offered by the platform. Implementation challenges and heuristics

to compute and classify differences and the merged document were discussed.

In the next chapter we show how the prototype behaved during the usability experiment,

compared to the reference tool.

Chapter 5

Usability Evaluation

To validate the proposed interface model, we conducted a usability study with sixteen partic-

ipants1 using six real-world test cases. In this chapter, we describe the usability experiment

and discuss its main results.

The experiment described here together with the documents reproduced in Appendices G,

H, I, and J were reviewed and approved by University of Ottawa Health Sciences and Science

Research Ethics Board, certificate H 07-08-02.

5.1 Methodology

The main experiment consisted in performing six comparison tasks against the selected test

cases using two tools: the proposed tool, as described in Chapter 3, and a reference tool.

For the reference tool, the Eclipse IDE was selected because of its popularity amongst Java

developers [18], advanced set of features (Section 2.2.2), and similarity to the proposed tool,

given both tools are implemented on top of the same framework (Section 4.1). It is our belief

that any other comparison tool with a similar set of features would deliver equivalent results

in this experiment.

All participants used both tools to perform the experiment, half the comparisons each,

alternating between the tools at each comparison. The first participant started the experiment

using the reference tool, the second using the proposed tool, and so forth. Test cases were

presented always in the same order (Section 5.1.1), regardless of which tool was used first.
1When referring to a participant in singular, the pronoun she will always be used, regardless of participant

gender.

45

Usability Evaluation 46

Therefore, each test case was compared using each tool half the time.

Initially, the participants were introduced to both tools using a sample test case (Section 1.6)

to demonstrate how comparisons are made, how features are used, and how the output is to

be interpreted. Then, participants were asked to perform one of the comparison tasks and, in

a second step, explain the differences between the files. The first step was timed, while the

second was not. Participant answers were recorded on a spreadsheet. No feedback was given

to participants during the experiment.

For the complete experiment script, please refer to Appendix F.

5.1.1 Test Cases

Six test cases were selected among popular open-source Java projects, which gave us a diversified

spectrum of coding styles and changes:

1. Google Collections Library [24];

2. Project GlassFish [22];

3. The Eclipse Project [11];

4. The Jython Project [31];

5. Spring Framework [51];

6. JUnit Testing Framework [30].

The test cases were selected in a roughly arbitrary manner, to help prevent bias. First, the

source code repository of a project was randomly browsed, looking for files having approximately

between 100 and 200 lines of code. When a suitable candidate was found, we descended its

revision history till there were about seven to 30 individual changes. Those parameters were

selected to give us a good balance of code size and complexity while avoiding extensively lengthy

and difficult comparisons.

The test cases were then subjectively ordered by complexity and length, ranging from

small and simple to large and complex, and numbered from 1 to 6. Presenting the test cases

in increasing order of complexity — rather than in random order — allowed participants to

address any learning curve they might have.

Participants were not told about the nature of the test cases.

Usability Evaluation 47

Appendix A reproduces the complete source listing of all test cases. Appendix B lists all

differences participants were supposed to report.

5.1.2 Answer Grading

Participant answers usually do not fall into just two categories, right or wrong. Subtleties

have to be considered when judging participant answers. During the experiment, the following

criteria were adopted:

Right: The participant described the difference with reasonable accuracy;

Partial: The participant partially described the difference;

Omission: The participant failed to notice the difference;

Error: The participant described the difference incorrectly, or described something that was

not considered to be a difference.

When evaluating participant or tool performance, it is useful to have a single unit of mea-

surement. For this purpose, we suggest using a weighted score scale, defined as2:

WeightedScore = (0×Right) + (0.5× Partial) + (1×Omission) + (2× Error)

5.1.3 Environment Configuration

For the experiment, we used the “Eclipse IDE for Java Developers” distribution, version 3.4.1

Ganymede [12], on an Apple Macintosh computer running Mac OS X 10.5.5 Leopard connected

to a standard 17-inch LCD display, native resolution of 1280×1024 pixels, 75Hz vertical refresh

rate, and a stock two-button mouse with a vertical scrolling-wheel.

The Eclipse IDE was running with default settings, except for the following: On Prefer-

ences, General, Compare/Patch, General the Open structure compare automatically option was

deselected, while the Ignore white space option was selected. The first option was deselected

to reduce interface clutter, while the second was selected to reduce the number of spurious

changes reported by the reference tool, bringing its output closer to the output of the proposed

tool.
2Although this particular choice of relative weights is somewhat arbitrary, no reasonable choice of positive

factors would reverse the results discussed in section 5.4.

Usability Evaluation 48

The Java perspective was used with all of its views closed, except for the Package Explorer

view, which was minimized. The workbench window was maximized, and the Hide Toolbar

option was selected. The Mac OS X Dock had the hiding option turned on. All those measures

were taken to avoid distractions and maximize the screen area allocated to the editor window

used for file comparisons.

5.2 Participants

For this study, we were able to recruit sixteen participants with various levels of experience with

the Java programming language and file comparison tools (Section 5.2.1). While most partic-

ipants were graduate students, some of them were professional software developers working in

the industry.

5.2.1 Self Assessment Form

Below we reproduce participant’s answers to the Self Assessment Form (Appendix I).

The first two questions asked the participants about their experience with the Java pro-

gramming language and the Eclipse development environment (Figure 5.1).

Figure 5.1: Participant Experience

For this experiment, we wanted participants with a broad variety of skills, ranging from

inexperienced users to experts. All participants claimed to have at least beginner-level knowl-

edge of the Java programming language, meeting the experiment’s only prerequisite. Most

participants considered themselves to be intermediate users of both Java and Eclipse, with a

Usability Evaluation 49

Figure 5.2: Task Frequency

smaller but significant number of beginners and experts. Only one participant said to have no

experience using Eclipse, which was acceptable for this study.

The next two questions asked participants about the frequency they perform file comparison

tasks and how often do they use a specialized file comparison tool (Figure 5.2). Half the

participants claimed to compare files at least once a week, whereas most others would do it

only occasionally. File comparison tools are used roughly most of the time, even though three

participants claimed never to use them.

5.3 Experimental Results

5.3.1 Participant Performance

In this section we analyze the individual performance of participants, without regard to the

tools used. Looking at participants individually, we can see there was a significant variance

among them regarding time spent to perform tasks and number of mistakes made.

To perform all comparison tasks, participants were as fast as 3 minutes and 27 seconds or

as slow as 22 minutes and 51 seconds, a span of over 660% (Figure 5.3). Looking at Figure 5.3,

though, reveals that participants were evenly distributed over the range from about 200 to 650

seconds, with only one participant clearly outside this range, Participant 16.

Since Participant 16 was more than twice as slow as the second slowest participant, we

decided to remove the respective data from our performance analyses. Otherwise, it would

unbalance all comparisons, distorting the experiment results against one tool or the other

Usability Evaluation 50

Figure 5.3: Participant Time: Ordered by time. Participant numbers anonymized.

Figure 5.4: Weighted Score: Ordered by score. Participant numbers not shown.

at each comparison3. For reference, Appendix E reproduces the main time charts including

Participant 16 data.

Individual participant performance was even more divergent when comparing the number

of mistakes done during the experiment (Figure 5.4). Weighted scores ranged from 2 to 29.5, a

span of almost 15 times. Despite the variance, the distribution was smooth, with no outliers.

All data was therefore considered, including Participant 16.

In Figure 5.5 we plot a scatter diagram combining both metrics, time and score (Partici-

pant 16 not represented). Linear regression analysis4 shows that there is no clear correlation

between time and score, with a coefficient of determination R2 = 0.010.
3As a matter of fact, keeping the data would, overall, favor the proposed tool.
4y = −0.0065x + 15.89

Usability Evaluation 51

Figure 5.5: Time × Weighted Score

Finally, it is important to assess how evenly participant performance was distributed among

those who started the experiment using the reference tool (Group 1) and those who started

using the proposed tool (Group 2). Given participants were randomly assigned to groups —

by order of arrival — ideally we should have similar levels of performance for both groups.

Unfortunately, participants in Group 1 performed notably better than participants in Group 2,

with an average total time to perform the experiment of 362 seconds, versus 487 seconds for

Group 2. Furthermore, Group 1 committed less mistakes with an average weighted score of

11.0, versus 15.4 for Group 2.

5.3.2 Task Performance

In this section we show the time each participant took to perform the comparison tasks, grouped

by comparison tool and, for better visualization, ordered by participant time (Figures 5.6–5.11).

Since comparisons 1 and 2 were the first participant contact with the tools, they were

expected to take relatively more time on average, even though those were the simplest test

cases. Comparisons 3 to 6 were performed roughly in increasingly average time, as expected.

Statistical hypothesis testing using the one-tailed Welch’s t test [53] — two samples of

different sizes, unequal variances, and null hypothesis that one mean is greater than or equal

to the other — showed that test cases 4 and 6 achieved 99.9% confidence level, while test cases

2 and 1 had, respectively, 95% and 90% confidence levels (Table D.1). Test case 5, the only

the proposed tool was slightly slower than the reference tool, was not statistically significant.

Combining the significance tests using Fisher’s method [17] resulted in a p-value of 3× 10−6.

Usability Evaluation 52

Figure 5.6: Time to Perform 1st Comparison Task

Figure 5.7: Time to Perform 2nd Comparison Task

Usability Evaluation 53

Figure 5.8: Time to Perform 3rd Comparison Task

Figure 5.9: Time to Perform 4th Comparison Task

Usability Evaluation 54

Figure 5.10: Time to Perform 5th Comparison Task

Figure 5.11: Time to Perform 6th Comparison Task

Usability Evaluation 55

5.3.3 Participant Answers

Figures 5.12 to 5.16 show the total number of mistakes made by all participants for each

comparison task, grouped by comparison tool.

Again, comparisons 1 and 2 performed relatively worse than what would be expected given

their complexity level. Comparisons 3 to 6 had strictly increasing average weighted scores, in

agreement with our estimations.

Statistical significance — again using the one-tailed Welch’s t test — regarding the total

number of incorrect answers was obtained only for test case 4, at the 95% confidence level

(Table D.3). The combined statistical significance of all experiments according to Fisher’s

method was p = 4.3%.

Figure 5.12: Partial Answers

Usability Evaluation 56

Figure 5.13: Omissions

Figure 5.14: Errors

Usability Evaluation 57

Figure 5.15: Total Incorrect Answers

Figure 5.16: Weighted Score

Usability Evaluation 58

5.4 Experiment Summary

Figure 5.17 consolidates all time measurements on a single chart where we can see that the

proposed tool performed better than the reference tool for most tasks, with an average speed-up

of 60% (Figure 5.18).

Figure 5.17: Mean Time to Perform Tasks

The unbalance between Groups 1 and 2 can be easily seen in comparisons 3 (Figure 5.8)

and 5 (Figure 5.10), where the fastest group using the reference tool performed almost as fast

or slightly better than the slowest group using the proposed tool.

Figure 5.18: Speed-up

Usability Evaluation 59

Figure 5.19: Incorrect Answers: As a percentage of all answers.

Figure 5.19 shows that, generally, the proposed tool also performed better than the reference

tool regarding number of incorrect answers, with an average weighted score improvement5 of

almost 80% (Figure 5.20).

Figure 5.20: Answer Improvement

At first it may seem, though, that the proposed tool had worse partial answer results than

the reference tool. According to figure 5.12, this is observed mainly in comparisons 3 and

6. However, looking at the charts in figures 5.13 and 5.14 we can clearly see that, for those

same comparisons, the increase in number of partial answers is accompanied by a significant

decrease in the number of omissions and errors. In other words, some incorrect answers might

have migrated to more trivial levels which, in itself, is a satisfactory improvement.
5Defined as: Eclipse/V ision− 100%

Usability Evaluation 60

5.5 Preference Questionnaire

Finally, we look at the subjective experimental results and analyze the participants answers to

the preference questionnaire (Appendix J).

First we asked participants which of the tools was easier to learn, easier to use, more efficient,

and more intuitive (Figure 5.21)6. Most participants considered the proposed tool more or much

more easy to learn, easy to use, efficient, and intuitive, while just a few participants said both

tools were about equally easy to learn and intuitive.

Figure 5.21: Usability Criteria: Is the proposed tool better regarding . . . ?

It is interesting to observe that the most noticeable tendency towards the proposed tool can

be observed in the efficiency criterion, corroborating our empirical observations.

The second set of questions (Figure 5.22) asked participants how well they liked the pro-

posed features: single-pane interface, highlighting granularity, difference classification, and

modification-displaying artifacts. Again, most participants believed the proposed features rep-

resent a significant improvement over conventional file comparison tools. Difference classifica-

tion was, undoubtedly, the feature that gathered the most positive remarks.

The next question (Q.9) asked which of the artifacts, tooltips and hot keys, if any, was

the most useful. As can be seen in Figure 5.23, there was no clear preference towards any

alternative, with most participants preferring to use both. This is a fairly reasonable result:

the artifacts were designed to be complementary rather than mutually exclusive.

Finally, the last question (Q.11)7 asked participants which tool they would choose if given
6Q.x refers to the question number in Appendix J.
7Q.10 was annulled.

Usability Evaluation 61

Figure 5.22: Proposed Features: Is the . . . feature an improvement?

Figure 5.23: Modification Visualization Preference

the option. 63% of the participants said they would use the proposed tool mostly, while 38%

answered they would use the proposed tool only.

The null hypothesis that participants did not favor one tool or artifact over the other

was rejected at the 99.9% confidence level for all questions in the preference questionnaire,

except Q.9 (Table D.4) — confirming both conclusions that the proposed tool was preferred to

the reference tool and that participants would rather use both artifacts concurrently.

5.6 Chapter Summary

In this chapter we described the usability experiment methodology and setup, and reviewed

the data collected through observation and questionnaires. Generally, the proposed tool per-

formed better than the reference tool, improving both performance and answer quality. The

Usability Evaluation 62

experimental evidence is strongly supported by participant impressions after the experiment,

and hypothesis testing showed most results to be statistically significant.

In the next chapter we continue our analysis, looking at the most common problems observed

during the experiment.

Chapter 6

Lessons from the Usability Study

During the usability study, we were able to obtain more detailed information than just time

measurements or subjective answers. In this chapter we closely investigate those observations

which could not be recorded on spreadsheets or questionnaires, looking at general usability

problems related to both tools.

6.1 General Remarks

The usability experiment contained, in total, 82 differences participants were supposed to report

(Appendix B). Of those, 31 were correctly described by all participants (Appendix C) and,

together with the set of 17 differences that had at most one incorrect answer, can be considered

trivial. The number of incorrect answers, 226, represents 17% of the total number of answers.

Considered in isolation, the proposed tool had 18 additional trivial questions and a total of

93 (14%) incorrect answers, while the reference tool had 5 additional trivial questions and 133

(20%) incorrect answers (Figure 5.19, on page 59).

In the following sections, we discuss the most commonly observed problems that were re-

sponsible for the majority of the incorrect answers.

6.2 The Reference Tool

Even though it may not have been the concern of this study, we would like to start discussing

some usability problems found on the reference tool. This section, by its very nature, is going

to be brief.

63

Lessons from the Usability Study 64

6.2.1 Automatic Scroll to First Difference

Paradoxically, the first usability problem we could observed is actually a feature aimed at

improving usability: The reference tool, when opening a new comparison, automatically scrolls

to the first difference on a file.

Although at first very convenient, in practice this feature seems to confuse the participants

more than it can help them. This was clearly evident in Test Case 2 (Sections A.3 and A.4),

where the first difference does not occur before lines 61–62. As far as we could observe, most,

if not all, participants scrolled the screen back to the first line before proceeding.

6.2.2 Pair Matching

One of the challenges of implementing a two-pane file comparison interface is the creation of a

visual connection between the documents to represent the conceptual relationship of a change.

The reference tool goes to great lengths to maintain the link between visual and conceptual

models, drawing lines and boxes around the text (Section 3.2, Principle 9). What we could

observe during the experiment, though, was that this approach did not scale well for small,

close changes, particularly those involving line deletions.

See, for instance, Figure 6.1 below, taken from Test Case 1 (Sections A.1 and A.2), dif-

ferences 5–6 (Appendix B, page 123). It can be difficult to establish what the first line is

connecting to. A few participants got confused with the number of lines crossing the screen,

associating the large block on the right — which was deleted — with the second line of text on

the left — which, actually, was not even changed.

Figure 6.1: Pair Matching

Lessons from the Usability Study 65

6.2.3 Differences on the Far Right

As predicted, the two-pane interface would inevitably lead to horizontal scrolling. Surprisingly,

though, the problem we observed most frequently was not horizontal scrolling itself; ironically,

it was not scrolling horizontally. Some participants would not scroll the screen horizontally even

when a line visibly continued off of the limits of the screen, inexcusably missing an otherwise

fairly trivial difference.

Consider, for instance, Test Case 5 (Sections A.9 and A.10), difference 15 (page 126), which

had one of the worst scores of all differences, second only to reordered lines (section 6.3.5). Of

eight participants, only two were able to spot this change using the reference tool. In contrast,

everyone using the proposed tool was able to correctly identify that difference.

6.2.4 Vertical Alignment

For most cases, the reference tool does a good job of keeping both sides of the screen vertically

synchronized. However, as can be easily observed in Figure 6.1, it is not possible to maintain

vertical alignment across the whole screen.

The problem is more evident with large blocks of line insertions or deletions. Usually,

only the very top differences will be aligned; the bottom of the screen often gets itself badly

misaligned. The reference tool will usually correct the alignment as the user scrolls down the

screen, but only if she does it line by line. Users who prefer to scroll the screen a page at a

time would still frequently experience this problem.

6.2.5 Vertical Scrolling

Since, on the reference tool, there are two independent vertical scroll bars, it is not unusual for

one of the bars to reach the end of its course before the other. The mouse wheel would, then,

have not effect on the second side, causing some confusion amongst participants. This was a

minor issue, though, and had no observable negative impact on the answers.

6.2.6 Dangling Text and Line Reordering

Dangling text and line reordering were problems that affected both tools equally bad. To avoid

unnecessary repetition, we postpone the discussion to sections 6.3.2 and 6.3.5.

Lessons from the Usability Study 66

6.3 The Proposed Tool

During the usability study, despite the performance and accuracy improvements demonstrated

by the experimental results, we could observe some areas where the proposed tool showed a

few limitations. In this section we discuss the usability problems we could observe, while also

proposing refinements and eventual solutions.

6.3.1 Short Differences

The proposed tool, by design, highlights differences using token granularity, in contrast to

whole lines or blocks. While this design decision helped reduce interface clutter, leading to

improved clarity and readability, it also introduced a minor problem: short differences, usually

single-character tokens, can be difficult to spot. This behavior was observed both during the

comparisons and spontaneously reported by participants at the end of the experiment, yet no

participant failed to report such differences.

Proposed Solution

Fortunately, this problem is easily solved. The difference navigation feature described in Sec-

tion 2.1 provides a simple, yet elegant, solution. For inspiration, the reference tool offers us

two complimentary mechanisms (Figure 6.2).

The first, represented by the buttons on the top right corner, are next and previous buttons

to easily navigate amongst differences. The second, represented by the white squares on the

far right, is a vertical ruler with marks for changes, a snapshot representation of differences

Figure 6.2: Short Differences

Lessons from the Usability Study 67

throughout the entire file. Clicking on a square scrolls directly to that particular difference.

Systematically using any or both of those navigational aids prevents even the smallest

changes from getting missed.

6.3.2 Dangling Text

The dangling text problem is an ambiguous, yet strictly correct, arrangement which affected

both the proposed and the reference tools.

Figure 6.3: Dangling Text

Take, for instance, Figure 6.3 from Test Case 6 (Sections A.11 and A.12), differences 12 and

13 (page 127). When asked, many participants said the third @Override annotation was added

to the computeTestMethods method. A more careful inspection, though, reveals the method

was already annotated: notice the first @Override annotation is not highlighted. The actual

insertions were the validateZeroArgConstructor and validateTestMethods methods, both

with their respective @Override annotations.

Proposed Solution

Dangling text is a non-deterministic problem. Given the original file ab and its modification

acab, two sets of changes are possible: ACab and aCAb. Without additional clues, both are

equally probable and correct, despite one being more intuitive than the other. Section 7.3,

Future Work, discusses a possible strategy to mitigate this kind of problem.

Lessons from the Usability Study 68

6.3.3 Token Granularity

Even though it can be said both tools were affected by the token granularity problem, this

problem only had a negative impact on participants using the proposed tool and, even then,

under a single particular circumstance.

Figure 6.4: Token Granularity

Take, for instance, Test Case 3 (Sections A.5 and A.6), difference 9 (page 124). As can be

seen in Figure 6.4, the number “2” is highlighted in orange, while the tooltip shows “1”. Some

participants using the proposed tool with tooltips answered the number “1” was changed to

“-2”, despite the “−” sign not being highlighted.

What surprised us, though, was that participants using the hot keys — or the reference

tool, for that matter — were not affected by the glitch. All participants instinctively gave the

correct answer, since the number “1” would always follow the “−” sign on the screen. For those

who opted for the tooltips, though, the number “1” was displayed isolated from its context,

and not all were able to identify the correct answer.

Proposed Solution

For the particular example discussed here, the lexical analyzer used by both tools complies

literally with the Java language specification [25], which states that a decimal numeral — or

integer literal — always represents a positive integer; the minus sign is the arithmetic negation

unary operator [2], and is not part of the integer literal.

For our purposes, strict compliance with the language specification is not a requirement,

and a more “humane” parser could have been used.

6.3.4 Difference Classification Heuristics

One of the main problems faced while implementing the proposed tool was to deduce from two

pieces of text a set of changes, extrapolating from the differences a semantic meaning.

Lessons from the Usability Study 69

The heuristics we implemented (Section 4.3.2) is simple and easy to understand, yet gener-

ally yield satisfactory results. However, during the usability experiment we could observe that

some participants were inclined to interpret the tool output much too literally, even when it

represents unreasonable results.

Figure 6.5: Difference Classification Heuristics

Figure 6.6: Difference Classification Heuristics: Hot key pressed.

Take, for instance, Figures 6.5 and 6.6, from Test Case 3, difference 4 (page 124): a one-line

ordinary comment was changed to a two-line (not counting the blank line) Javadoc comment.

While it would be more appropriate to highlight the entire block as modified, the tool inter-

preted the first line as modified and the second line as added. Although strictly correct, this

interpretation is mostly non-intuitive, and generated some confusion amongst participants.

6.3.5 Line Reordering

The last problem we analyze, line reordering, was the one which had the worse rate of errors,

affecting both tools and all participants.

Line reordering happens when a entire line changes its relative position in the text, accom-

panied or not by modifications. For the tests cases used, this was most evident in the import

statements in Test Case 5, difference 3 (page 125), and Test Case 6, differences 2–6 (page 126).

None of the tools offers any special provisions to handle such situations. In the best case,

a moved line (changed or not) will be represented as pairs of lines additions and deletions. In

the worst case, changes get mixed up, a scenario which can be very demanding to understand.

Lessons from the Usability Study 70

Even though both tools were greatly affected by this problem, it can be said, through

observation, that the proposed tool performed worse than the reference tool.

Take for instance Comparison 6, differences 2–6. The proposed tool had, for these five

differences, a weighted score of 14.5, while the reference tool scored 15.5. Despite the numbers,

which may suggest the proposed tool performed slightly better, truth is that four of the six

participants with the lowest overall scores used the proposed tool to perform this comparison.

Those who managed to give the few correct answers using the proposed tool went to great

strengths to understand the differences, consuming large amounts of time and effort. The only

person to get all answers in this comparison right was using the reference tool, as were the

three persons to correctly answer Test Case 5, difference 3.

Proposed Solution

Line reordering is a very challenging problem. Firstly, moved lines need to be detected, a

non-trivial problem since the lines could also have been modified while moved. Secondly, an

interface metaphor has to be envisaged to represent this kind of change.

Looking closely at the reference tool, though, we see that it is no better than the proposed

tool for handling moved lines. The only reason it performed better in the usability experiment

was that the two-pane interface provides a kind of fall-back mechanism. When changes cannot

be easily interpreted using the tool aids, users can revert to a manual approach, reading each

version of the text and deducing the changes by themselves. In this case, the reference tool is no

better than, say, opening two text editors and aligning them side by side. Using the proposed

tool it is much more difficult to mentally reconstruct the two versions of the text because they

were merged into a single view.

The solution we propose, represented in Figure 6.7, is a second, line-oriented visualization

mode which allows the user to revert the text back to its original representation, without

departing from the single-pane metaphor, and while still providing some visual aids to help

users understand the differences.

In this special mode, only one of the versions of the text is presented on the screen at a

time; the hot key can still be pressed to switch between the original and the modified version.

Differences are computed and highlighted using line granularity. When displaying the modified

version only added and modified lines are shown. Conversely, the original version shows only

deleted and modified lines. Blank lines are inserted for vertical alignment. Tooltips are disabled

Lessons from the Usability Study 71

Figure 6.7: Line Reordering

in this mode since, by assumption, lines do not match one another.

This solution was implemented in our prototype after the usability study, therefore its

effectiveness could not be attested. Nevertheless, we believe this approach should at least

match the reference tool when dealing with moved lines. While it may not be a complete,

definitive solution to the problem, we consider it to be a good compromise given the current

constraints.

6.4 Miscellaneous Observations

This section briefly discusses some minor issues observed during the usability experiment which

are not subject of further consideration.

Original and Modified Order

At least three people using the reference tool got confused about which side on the screen

represented which of the file versions, reversing their answers. To avoid getting all subsequent

answers wrong, therefore invalidating the whole test case, participants were reminded after the

second such mistake.

Conversely, a single participant had a similar problem with the proposed tool when using

the tooltip for the first time, but she soon realized her own mistake and was able to correct

herself.

Color Highlighting

By design, it was decided to make use of the platform syntax coloring facilities in addition

to our own difference highlighting. At first, this would pose no problems since there was no

apparent conflict.

Lessons from the Usability Study 72

Nevertheless, at least two people mistook the foreground green comment syntax highlight-

ing for the background green addition difference highlighting. This only happened on the very

first comparison using the proposed tool which, in both cases, was Test Case 2.

Java 5 Features

Even though not a usability problem per se, we could observe a certain level of confusion

amongst participants regarding features introduced in version 5 of the Java language [2]. This

was most evident in Test Case 4 (Sections A.7 and A.8), where most changes involved updating

the code to use generics, enhanced for loops, and annotations, but it could also be observed in

Test Case 5 and, to a lesser extent, Test Case 6.

In some cases, participants were not able to correctly describe, using Java terms, a change;

most would point to the screen and say “This was changed to that”, which was considered a

valid answer as long as the intent were correct.

Enhanced for loops showed themselves to be more challenging: some participants tried to

match tokens (i.e, “int i = 0 was changed to Class<?>”), not realizing the missing semicolons.

Those were considered only as partial answers.

6.5 Chapter Summary

Most differences in the usability experiment — 80% for the proposed tool, 65% for the reference

tool — had at most one incorrect answer, and could, therefore, be considered trivial.

In this chapter we discussed the general usability problems that affected most of the incorrect

answers given by participants. While some problems demand improvements in the underlying

technologies used to implement the tools and others are topics of further research, practical

solutions were proposed or implemented.

In the next chapter, we conclude this work, summarizing our contributions and suggesting

directions for future work.

Chapter 7

Conclusion

7.1 Main Contributions

Be it at quantitative, objective measurements or at qualitative, subjective preference answers,

the proposed interface developed in this work showed itself to be a more adequate metaphor to

performing file comparison tasks than the traditional, two-pane interface implemented by the

reference tool (Sections 5.4 and 5.5).

Implementing a single-pane interface satisfactorily is not a trivial venture. Take, for in-

stance, WinDiff (Section 2.2.8). Microsoft’s file comparison tool closely resembles a one-pane

interface, yet it was arguably one of the least powerful and user-friendly tools analyzed. Even

looking at the more advanced “Track Changes” feature offered by most word processors, it is

easy to see they lack most refinements offered by the proposed tool.

Classifying differences as additions, deletions, and modifications (Sections 3.3.2 and 4.3.2),

one of the critical elements of the interface, was the most well-received feature, with the

strongest shift on participant preference according to the questionnaires. Interpreting consec-

utive pairs of additions–deletions as modifications is an enhancement not usually explored by

most file comparison tools. Although most tools highlight tokens inside a block of changed lines,

we introduced the idea of using finer levels of granularity to classify changes (Section 3.3.4).

Displaying modifications was particularly challenging, for this clearly conflicts with the

essence of using a single stream of text. To overcome the problem, two independent, com-

plementary mechanisms, tooltips and hot keys, were developed (Section 3.3.3). Participants

showed no particular preference for one artifact over the other; most of them would rather use

both in conjunction.

73

Conclusion 74

Legibility was also carefully considered and, after numerous iterations, we came with what

we believe is the best approach to handle white space, minimizing interface clutter and improv-

ing readability.

7.2 Threats to Validity

During all phases of experiment planning and execution, great care was taken to ensure fairness

and minimize bias. When choices could be made, decisions tended to favor the reference tool,

as in excluding Participant 16’s time data (Section 5.3.1) or increasing the comparison area to

its maximum (Section 5.1.3).

By the very nature of the experiment, test cases had to have reasonable length and levels

of complexity. Otherwise, participants would quickly get tired or bored, leading to answer

degradation and compromising the experiment outcome.

There are no reasons to believe the tool would underperform under lengthy comparisons

— arguably, it probably would outperform most other comparison tools. However, output

quality may degrade with some complex sets of changes, specially those involving line reordering

(Section 6.3.5). Although there was a test case (Sections A.11 and A.12) which predominantly

exemplified this issue, participant perception could have been shifted had we used more and

most extensive such samples.

Most participants had previous experience with the reference tool, and may already be weary

of some of its shortcomings. The proposed tool, on the other hand, had the novelty factor in

its favor, and its colorful interface is sure to cause a favorable first impression. A study with

participants new to both tools could probably have had a different outcome. However, given

the reference tool’s popularity amongst Java developers, it would have been difficult to recruit

such individuals, who probably would have been familiar with other, similar tools, anyway.

As a direct consequence, participants were aware of the proposed tool — a blind experiment

was not attainable. Together with the fact the experiment was performed by the research

himself, this might have had some influence on the preference questionnaire answers, despite it

being anonymous.

Although all comparisons were performed using each tool the same number of times, and

all participants used each tool for half their comparisons, no single participant was able to see

the same comparison on both tools. Arguably, this could be the best way to compare the tools:

Conclusion 75

a participant would look at both outputs and decide which one gave the best results. However,

there is no practical way of performing such experiment without spoiling answers and time

measurements; experiment results would be limited to subjective answers, only.

Some problems were identified on the usability experiment itself. Answer classification (Sec-

tion 5.1.2) is an inherently subjective matter, reliant on examiner discernment. Nevertheless,

the proposed tool had a significantly lower total number of incorrect answers than the reference

tool, regardless of classification.

While planning the usability experiment, it was thought that measuring only the time

participants spent understanding the changes would give a more accurate measurement than

asking them to concurrently explain the changes, therefore the two-step procedure described

in Section 5.1. However, during the experiment, it was observed that participants would spend

more time trying to explain the changes than understanding them in the first place.

Moreover, participants using the proposed tool would normally spend much less time ex-

plaining changes than those using the reference tool, increasing even more the performance gap

between the tools. There was an effort to try to recover the data from screen recordings, but

unfortunately this method showed itself to be too inaccurate to be useful. Sadly, this valuable

source of information was lost.

Finally, when pooling such a relatively large group, randomly partitioned into two sub-

groups, it would be expected to have an even distribution of skills. Unfortunately, one group

performed the experiment 35% faster and with 40% better answer quality than the second one.

This favored the proposed tool in comparisons 2, 4, and 6, although also favoring the reference

tool in comparisons 1, 3, and 5. The pattern can be clearly observed on the charts starting at

page 51.

7.3 Future Work

Below we list some areas where the interface could be improved through further research:

Accessibility Issues: Given the interface’s reliance on colors, experiments have to be per-

formed to attest color blindness accessibility. One special highlighting strategy (Fig-

ure 4.2, on page 39) was implemented using only underlines and strikeouts, and no color.

However, it was meant mainly for black and white printing, and no evaluations with color

blind people were performed.

Conclusion 76

Figure 7.1: Merging Mock-up

Syntax Awareness: The interface computes differences first line by line and then, for lines

that differ, using a lexical parser to extract tokens. The lexical parser does not need to

comply with the Java Language Specification [25], and could be tuned for more intelligible

results (Section 6.3.3).

However, results could be greatly improved if this two-step parsing process was replaced

by a full syntactic parser. Differences could be computed using higher-level language

constructs, such as class members, blocks, and statements. This could solve — or, at

least, minimize — the problems discussed in Section 6.3.2.

Merging: One missing feature of the proposed tool is the ability to perform merging. Merging

could be easily added to the interface using a simple abstraction: consider each change

to be an edit made to the file. Hovering the mouse over a change — or selecting multiple

changes at once — would show a pop-up window with buttons to accept or reject the

edit. Accepting would just confirm the change, with no practical effect, while rejecting

would revert the change back to its original text. A mock-up of such interface is depicted

in Figure 7.1.

Three-way Merging: The other important missing feature is the ability to perform three-

way merges. This advanced feature is used mostly to solve conflicts caused by concurrent

source code modifications.

Conclusion 77

Three-way merging constitute a more intricate problem. Considering there can be addi-

tions, deletions, and modifications from two different sources, a total of 15 combinations,

plus no change, is possible and may have to be represented. Some combinations can be

particularly awkward to detect and represent, and the techniques to classify and display

changes described in this work would have to be revised.

Reordered Lines: Reordered lines was responsible for most incorrect answers on the usability

experiment. Further research on how to detect and effectively represent those modifica-

tions is needed. The feature developed in Section 6.3.5 should alleviate the problem, but

its effectiveness could not be attested on the usability experiment.

Improved Heuristics: The tool could benefit from further research on difference classification

heuristics (Section 6.3.4).

Miscellaneous Improvements: For the prototype to be released as a production-quality

tool, some miscellaneous improvements — mostly regarding implementation issues —

have to be addressed. Those include: support for difference navigation mechanisms (Sec-

tion 6.3.1), improved lexical parser (Section 6.3.3), user configurable preferences (for in-

stance, choosing the highlighting colors), and removing the dependencies on the platform

internal packages.

7.4 Final Remarks

File comparison tools are ubiquitous tools, present in most IDEs and available as stand-alone

tools for most platforms. They are a perfect complement to Source Code Management systems,

themselves a fundamental piece in any software development project.

Our survey, with some of the most popular tools on the market, showed that comparison

tools lack feature diversity, for the most part sharing the same set of interface concepts and

metaphors. Academic research and innovation in this field has been mostly sparse.

File comparison is less about seeing which lines differ between two files than it is about

understanding changes made to a file. The interface proposed is based on simple, intuitive

principles, borrowing ideas from features found on tools like word processors.

The proposed interface excelled on most tests and in every usability criteria. Time mea-

surements and answer quality were both greatly improved, numbers which were confirmed by

Conclusion 78

participant impressions as stated on preference questionnaires and by statistical hypothesis

testing. We are confident the interface represents a significant improvement over the typical

file comparison tool.

Hopefully, no one will have the impression of playing Spot the Difference the next time they

compare files.

References

[1] Alfred Aho, John Hopcroft, and Jeffrey Ullman. Data Structures and Algorithms. Addison-

Wesley Publishing, 1982.

[2] Ken Arnold, James Gosling, and David Holmes. The Java Programming Language. The

Java Series. Addison-Wesley Professional, 4th edition, 2005.

[3] David Atkins. Version sensitive editing: Change history as a programming tool. System

Configuration Management, pages 146–157, 1998.

[4] Joshua Bloch. Effective Java. The Java Series. Addison-Wesley Professional, 2nd edition,

2008.

[5] Gerardo Canfora, Luigi Cerulo, and Massimiliano Di Penta. Ldiff: An enhanced line

differencing tool. IEEE 31st International Conference on Software Engineering, pages

595–598, 2009.

[6] Stuart Card, Allen Newell, and Thomas Moran. The Psychology of Human-Computer

Interaction. L. Erlbaum Associates Inc., 1983.

[7] Sudarshan Chawathe, Serge Abiteboul, and Jennifer Widom. Representing and querying

changes in semistructured data. Proceedings of the Fourteenth International Conference

on Data Engineering, pages 4–13, 1998.

[8] Eric Clayberg and Dan Rubel. Eclipse: Building Commercial-Quality Plug-ins. Addison-

Wesley Professional, 2nd edition, 2006.

[9] Thomas Cormen, Charles Leiserson, and Ronald Rivest. Introduction to Algorithms. MIT

Press, 1990.

79

References 80

[10] Alan Dix, Janet Finley, Gregory Abowd, and Russell Beale. Human-Computer Interaction.

Prentice-Hall, Inc., 2nd edition, 1998.

[11] The Eclipse Project. DefaultTextHover.java. http://dev.eclipse.org/viewcvs/index.

cgi/org.eclipse.jface.text/src/org/eclipse/jface/text/. Revisions 1.1 and 1.10.

[12] The Eclipse Project. Eclipse IDE for Java Developers. http://eclipse.org/downloads/.

Versions 3.4.1 and 3.4.2. Retrieved on 2009-04-25.

[13] The Eclipse Project. Eclipse Java Development Tools Plug-in Developer Guide. http:

//help.eclipse.org/. Retrieved on 2009-04-12.

[14] The Eclipse Project. Eclipse Platform Plug-in Developer Guide. http://help.eclipse.

org/. Retrieved on 2009-04-12.

[15] The Eclipse Project. Eclipse Plug-in Development Environment Guide. http://help.

eclipse.org/. Retrieved on 2009-04-12.

[16] FileMerge. http://developer.apple.com/tools/xcode/. Version 2.4. Retrieved on

2009-04-25.

[17] Fisher’s method. http://en.wikipedia.org/wiki/Fisher%27s_method. Retrieved on

2009-06-11.

[18] Forrester Research, Inc. IDE usage trends, 2008.

[19] Free Software Foundation. Diffutils man page, 2002.

[20] Erich Gamma and Kent Beck. Contributing to Eclipse: Principles, Patterns, and Plugins.

Addison Wesley Longman Publishing Co., Inc., 2003.

[21] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: El-

ements of Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co.,

Inc., 1995.

[22] Project GlassFish. sendfile.java. https://glassfish.dev.java.net/source/browse/

glassfish/mail/src/java/demo/. Revisions 1.1 and 1.3.

[23] GNU diffutils. http://gnu.org/software/diffutils/. Version 2.8.1. Retrieved on 2009-

04-25.

http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.jface.text/src/org/eclipse/jface/text/
http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.jface.text/src/org/eclipse/jface/text/
http://eclipse.org/downloads/
http://help.eclipse.org/
http://help.eclipse.org/
http://help.eclipse.org/
http://help.eclipse.org/
http://help.eclipse.org/
http://help.eclipse.org/
http://developer.apple.com/tools/xcode/
http://en.wikipedia.org/wiki/Fisher%27s_method
https://glassfish.dev.java.net/source/browse/glassfish/mail/src/java/demo/
https://glassfish.dev.java.net/source/browse/glassfish/mail/src/java/demo/
http://gnu.org/software/diffutils/

References 81

[24] Google Collections Library. HashBiMap.java. http://google-collections.

googlecode.com/svn/trunk/src/com/google/common/collect/. Revisions 16 and 57.

[25] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification.

The Java Series. Addison-Wesley Professional, 3rd edition, 2005.

[26] HTML Diff. http://infolab.stanford.edu/c3/demos/htmldiff/. Retrieved on 2009-

04-08.

[27] James Hunt and Malcolm McIlroy. An algorithm for differential file comparison. Computing

Science Technical Report, (41), July 1976.

[28] IntelliJ IDEA. http://jetbrains.com/idea/. Version 8.1. Retrieved on 2009-04-25.

[29] Juliele Jacko. Human-Computer Interaction Handbook: Fundamentals, Evolving Technolo-

gies, and Emerging Applications. L. Erlbaum Associates Inc., 2002.

[30] JUnit Testing Framework. Theories.java. http://junit.cvs.sourceforge.net/viewvc/

junit/junit/src/main/java/org/junit/experimental/theories/. Revisions 1.8 and

1.25.

[31] The Jython Project. BytecodeLoader.java. https://jython.svn.sourceforge.net/

svnroot/jython/trunk/jython/src/org/python/core/. Revisions 4055 and 5479.

[32] Miryung Kim and David Notkin. Discovering and representing systematic code changes.

IEEE 31st International Conference on Software Engineering, pages 309–319, 2009.

[33] Kompare. http://caffeinated.me.uk/kompare/. Version 3.4. Retrieved on 2009-04-25.

[34] Meir Lehman. Programs, life cycles, and laws of software evolution. Proceedings of the

IEEE, 68(9):1060–1076, September 1980.

[35] Meld. http://meld.sourceforge.net/. Version 1.2.1. Retrieved on 2009-04-25.

[36] Tom Mens. A state-of-the-art survey on software merging. IEEE Transactions on Software

Engineering, 28(5):449–462, 2002.

[37] Microsoft Corporation. Overview: WinDiff. http://msdn.microsoft.com/en-us/

library/aa242739(VS.60).aspx. Version 5.1. Retrieved on 2008-08-04.

http://google-collections.googlecode.com/svn/trunk/src/com/google/common/collect/
http://google-collections.googlecode.com/svn/trunk/src/com/google/common/collect/
http://infolab.stanford.edu/c3/demos/htmldiff/
http://jetbrains.com/idea/
http://junit.cvs.sourceforge.net/viewvc/junit/junit/src/main/java/org/junit/experimental/theories/
http://junit.cvs.sourceforge.net/viewvc/junit/junit/src/main/java/org/junit/experimental/theories/
https://jython.svn.sourceforge.net/svnroot/jython/trunk/jython/src/org/python/core/
https://jython.svn.sourceforge.net/svnroot/jython/trunk/jython/src/org/python/core/
http://caffeinated.me.uk/kompare/
http://meld.sourceforge.net/
http://msdn.microsoft.com/en-us/library/aa242739(VS.60).aspx
http://msdn.microsoft.com/en-us/library/aa242739(VS.60).aspx

References 82

[38] Microsoft Corporation. Windiff colors. http://msdn.microsoft.com/en-us/library/

aa266120(VS.60).aspx. Retrieved on 2008-08-04.

[39] Webb Miller and Eugene Myers. A file comparison program. Software Practice and Expe-

rience, 15(11):1025–1040, 1985.

[40] Eugene Myers. An O(ND) difference algorithm and its variations. Algorithmica, 1(2):251–

266, 1986.

[41] NetBeans. http://netbeans.org/. Version 6.5. Retrieved on 2009-04-25.

[42] Jakob Nielsen. Scrolling and scrollbars. http://useit.com/alertbox/20050711.html.

Retrieved on 2008-07-09.

[43] Jakob Nielsen. Usability Engineering. Academic Press Professional, 1993.

[44] Donald Norman. The Invisible Computer. MIT Press, 1998.

[45] Donald Norman. The Design of Everyday Things. Basic Books, 2002. Previously published

as The Psychology of Everyday Things.

[46] Donald Norman. Emotional Design. Basic Books, 2005.

[47] Dirk Ohst, Michael Welle, and Udo Kelter. Difference tools for analysis and design docu-

ments. 19th International Conference on Software Maintenance, pages 13–22, 2003.

[48] Andy Oram and Greg Wilson, editors. Beautiful Code. O’Reilly and Associates, 2007.

[49] Robert Sedgewick and Michael Schidlowsky. Algorithms in Java, Parts 1–4: Fundamentals,

Data Structures, Sorting, Searching. Addison-Wesley Longman Publishing Co., Inc., 3rd

edition, 1998.

[50] Jochen Seemann and Jürgen von Gudenberg. Visualization of differences between versions

of object-oriented software. 2nd Euromicro Conference on Software Maintenance and

Reengineering, pages 201–204, 1998.

[51] Spring Framework. DefaultImageDatabase.java. http://springframework.cvs.

sourceforge.net/viewvc/springframework/spring/samples/imagedb/src/org/

springframework/samples/imagedb/. Revisions 1.11 and 1.16.

http://msdn.microsoft.com/en-us/library/aa266120(VS.60).aspx
http://msdn.microsoft.com/en-us/library/aa266120(VS.60).aspx
http://netbeans.org/
http://useit.com/alertbox/20050711.html
http://springframework.cvs.sourceforge.net/viewvc/springframework/spring/samples/imagedb/src/org/springframework/samples/imagedb/
http://springframework.cvs.sourceforge.net/viewvc/springframework/spring/samples/imagedb/src/org/springframework/samples/imagedb/
http://springframework.cvs.sourceforge.net/viewvc/springframework/spring/samples/imagedb/src/org/springframework/samples/imagedb/

References 83

[52] Lucian Voinea, Alexandru Telea, and Jarke van Wijk. CVSscan: visualization of code

evolution. Proceedings of the ACM 2005 Symposium on Software Visualization, pages

47–56, 2005.

[53] Welch’s t test. http://en.wikipedia.org/wiki/Welch%27s_t_test. Retrieved on 2009-

06-11.

[54] Christopher Wickens, John Lee, Yili Liu, and Sallie Gordon Becker. An Introduction to

Human Factors Engineering. Pearson Prentice Hall, 2nd edition, 2004.

[55] Laura Wingerd and Christopher Seiwald. Beautiful Code, chapter 32: Code in Motion. In

Oram and Wilson [48], 2007.

[56] WinMerge. http://winmerge.org/. Version 2.12.2. Retrieved on 2009-04-25.

http://en.wikipedia.org/wiki/Welch%27s_t_test
http://winmerge.org/

Appendices

Appendix A

Test Cases

In this chapter we reproduce the source files used as test cases in the usability experiment. The

files come from many established, well-known open-source projects, giving us a broad variety

of coding styles and changes:

• Test case 1 (Sections A.1 and A.2) comes from the Google Collections Library [24];

• Test case 2 (Sections A.3 and A.4) is from Sun’s GlassFish Application Server [22]. For

brevity’s sake, the license header was removed.

• Test case 3 (Sections A.5 and A.6) comes from the Eclipse project [11];

• Test case 4 (Sections A.7 and A.8) is from Jython [31], a Java compiler and interpreter

for the Python programming language;

• Test case 5 (Sections A.9 and A.10) comes from the Spring Framework [51];

• Test case 6 (Sections A.11 and A.12) is from JUnit [30], the testing framework.

The files were selected roughly at random to avoid bias. First, we looked for files from about

100 to 200 lines, then we went back into the file revision history until there were about seven

to 30 individual changes, with varying degrees of complexity. While browsing the file history

for changes, we used the reference tool only.

For the complete source listing, please refer to the electronic version, on-line at:

http://www.site.uottawa.ca/~damyot/students/lanna/

85

http://www.site.uottawa.ca/~damyot/students/lanna/

Test Cases 86

A.1 1.old.java

1 /*
2 * Copyright (C) 2007 Google Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or ←�

implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 package com.google.common.collect;
18
19 import com.google.common.base.Nullable;
20
21 import java.util.HashMap;
22 import java.util.Map;
23
24 /**
25 * A {@link BiMap} backed by two {@link HashMap} instances. This ←�

implementation
26 * allows null keys and values.
27 *
28 * @author Mike Bostock
29 */
30 public final class HashBiMap<K, V> extends StandardBiMap<K, V> {
31 /**
32 * Constructs a new empty bimap with the default initial capacity (16) ←�

and the
33 * default load factor (0.75).
34 */
35 public HashBiMap() {
36 super(new HashMap<K, V>(), new HashMap<V, K>());
37 }
38
39 /**
40 * Constructs a new empty bimap with the specified expected size and the
41 * default load factor (0.75).
42 *
43 * @param expectedSize the expected number of entries

Test Cases 87

44 * @throws IllegalArgumentException if the specified expected size is
45 * negative
46 */
47 public HashBiMap(int expectedSize) {
48 super(new HashMap<K, V>(Maps.capacity(expectedSize)),
49 new HashMap<V, K>(Maps.capacity(expectedSize)));
50 }
51
52 /**
53 * Constructs a new empty bimap with the specified initial capacity ←�

and load
54 * factor.
55 *
56 * @param initialCapacity the initial capacity
57 * @param loadFactor the load factor
58 * @throws IllegalArgumentException if the initial capacity is ←�

negative or the
59 * load factor is nonpositive
60 */
61 public HashBiMap(int initialCapacity, float loadFactor) {
62 super(new HashMap<K, V>(initialCapacity, loadFactor),
63 new HashMap<V, K>(initialCapacity, loadFactor));
64 }
65
66 /**
67 * Constructs a new bimap containing initial values from {@code map}. The
68 * bimap is created with the default load factor (0.75) and an initial
69 * capacity sufficient to hold the mappings in the specified map.
70 */
71 public HashBiMap(Map<? extends K, ? extends V> map) {
72 this(map.size());
73 putAll(map); // careful if we make this class non-final
74 }
75
76 // Override these two methods to show that keys and values may be null
77
78 @Override public V put(@Nullable K key, @Nullable V value) {
79 return super.put(key, value);
80 }
81
82 @Override public V forcePut(@Nullable K key, @Nullable V value) {
83 return super.forcePut(key, value);
84 }
85 }

Test Cases 88

A.2 1.new.java

1 /*
2 * Copyright (C) 2007 Google Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or ←�

implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 package com.google.common.collect;
18
19 import com.google.common.base.Nullable;
20
21 import java.io.IOException;
22 import java.io.ObjectInputStream;
23 import java.io.ObjectOutputStream;
24 import java.util.HashMap;
25 import java.util.Map;
26
27 /**
28 * A {@link BiMap} backed by two {@link HashMap} instances. This ←�

implementation
29 * allows null keys and values. A {@code HashBiMap} and its inverse are ←�

both
30 * serializable.
31 *
32 * @author Mike Bostock
33 */
34 public final class HashBiMap<K, V> extends StandardBiMap<K, V> {
35 /**
36 * Constructs a new empty bimap with the default initial capacity (16).
37 */
38 public HashBiMap() {
39 super(new HashMap<K, V>(), new HashMap<V, K>());
40 }
41
42 /**
43 * Constructs a new empty bimap with the specified expected size.

Test Cases 89

44 *
45 * @param expectedSize the expected number of entries
46 * @throws IllegalArgumentException if the specified expected size is
47 * negative
48 */
49 public HashBiMap(int expectedSize) {
50 super(new HashMap<K, V>(Maps.capacity(expectedSize)),
51 new HashMap<V, K>(Maps.capacity(expectedSize)));
52 }
53
54 /**
55 * Constructs a new bimap containing initial values from {@code map}. The
56 * bimap is created with an initial capacity sufficient to hold the ←�

mappings
57 * in the specified map.
58 */
59 public HashBiMap(Map<? extends K, ? extends V> map) {
60 this(map.size());
61 putAll(map); // careful if we make this class non-final
62 }
63
64 // Override these two methods to show that keys and values may be null
65
66 @Override public V put(@Nullable K key, @Nullable V value) {
67 return super.put(key, value);
68 }
69
70 @Override public V forcePut(@Nullable K key, @Nullable V value) {
71 return super.forcePut(key, value);
72 }
73
74 /**
75 * @serialData the number of entries, first key, first value, second key,
76 * second value, and so on.
77 */
78 private void writeObject(ObjectOutputStream stream) throws IOException {
79 stream.defaultWriteObject();
80 Serialization.writeMap(this, stream);
81 }
83 private void readObject(ObjectInputStream stream)
84 throws IOException, ClassNotFoundException {
85 stream.defaultReadObject();
86 setDelegates(new HashMap<K, V>(), new HashMap<V, K>());
87 Serialization.populateMap(this, stream);
88 }
90 private static final long serialVersionUID = 0;
91 }

Test Cases 90

A.3 2.old.java

1 import java.util.*;
2 import java.io.*;
3 import javax.mail.*;
4 import javax.mail.internet.*;
5 import javax.activation.*;
6
7 /**
8 * sendfile will create a multipart message with the second
9 * block of the message being the given file.<p>
10 *
11 * This demonstrates how to use the FileDataSource to send
12 * a file via mail.<p>
13 *
14 * usage: <code>java sendfile <i>to from smtp file true|false</i></code>
15 * where <i>to</i> and <i>from</i> are the destination and
16 * origin email addresses, respectively, and <i>smtp</i>
17 * is the hostname of the machine that has smtp server
18 * running. <i>file</i> is the file to send. The next parameter
19 * either turns on or turns off debugging during sending.
20 *
21 * @author Christopher Cotton
22 */
23 public class sendfile {
24
25 public static void main(String[] args) {
26 if (args.length != 5) {
27 System.out.println("usage: java sendfile <to> <from> <smtp> ←�

<file> true|false");
28 System.exit(1);
29 }
30
31 String to = args[0];
32 String from = args[1];
33 String host = args[2];
34 String filename = args[3];
35 boolean debug = Boolean.valueOf(args[4]).booleanValue();
36 String msgText1 = "Sending a file.\n";
37 String subject = "Sending a file";
38
39 // create some properties and get the default Session
40 Properties props = System.getProperties();
41 props.put("mail.smtp.host", host);
42
43 Session session = Session.getInstance(props, null);
44 session.setDebug(debug);
45

Test Cases 91

46 try {
47 // create a message
48 MimeMessage msg = new MimeMessage(session);
49 msg.setFrom(new InternetAddress(from));
50 InternetAddress[] address = {new InternetAddress(to)};
51 msg.setRecipients(Message.RecipientType.TO, address);
52 msg.setSubject(subject);
53
54 // create and fill the first message part
55 MimeBodyPart mbp1 = new MimeBodyPart();
56 mbp1.setText(msgText1);
57
58 // create the second message part
59 MimeBodyPart mbp2 = new MimeBodyPart();
60
61 // attach the file to the message
62 FileDataSource fds = new FileDataSource(filename);
63 mbp2.setDataHandler(new DataHandler(fds));
64 mbp2.setFileName(fds.getName());
65
66 // create the Multipart and add its parts to it
67 Multipart mp = new MimeMultipart();
68 mp.addBodyPart(mbp1);
69 mp.addBodyPart(mbp2);
70
71 // add the Multipart to the message
72 msg.setContent(mp);
73
74 // set the Date: header
75 msg.setSentDate(new Date());
76
77 // send the message
78 Transport.send(msg);
79
80 } catch (MessagingException mex) {
81 mex.printStackTrace();
82 Exception ex = null;
83 if ((ex = mex.getNextException()) != null) {
84 ex.printStackTrace();
85 }
86 }
87 }
88 }

Test Cases 92

A.4 2.new.java

1 import java.util.*;
2 import java.io.*;
3 import javax.mail.*;
4 import javax.mail.internet.*;
5 import javax.activation.*;
6
7 /**
8 * sendfile will create a multipart message with the second
9 * block of the message being the given file.<p>
10 *
11 * This demonstrates how to use the FileDataSource to send
12 * a file via mail.<p>
13 *
14 * usage: <code>java sendfile <i>to from smtp file true|false</i></code>
15 * where <i>to</i> and <i>from</i> are the destination and
16 * origin email addresses, respectively, and <i>smtp</i>
17 * is the hostname of the machine that has smtp server
18 * running. <i>file</i> is the file to send. The next parameter
19 * either turns on or turns off debugging during sending.
20 *
21 * @author Christopher Cotton
22 */
23 public class sendfile {
24
25 public static void main(String[] args) {
26 if (args.length != 5) {
27 System.out.println("usage: java sendfile <to> <from> <smtp> ←�

<file> true|false");
28 System.exit(1);
29 }
30
31 String to = args[0];
32 String from = args[1];
33 String host = args[2];
34 String filename = args[3];
35 boolean debug = Boolean.valueOf(args[4]).booleanValue();
36 String msgText1 = "Sending a file.\n";
37 String subject = "Sending a file";
38
39 // create some properties and get the default Session
40 Properties props = System.getProperties();
41 props.put("mail.smtp.host", host);
42
43 Session session = Session.getInstance(props, null);
44 session.setDebug(debug);
45

Test Cases 93

46 try {
47 // create a message
48 MimeMessage msg = new MimeMessage(session);
49 msg.setFrom(new InternetAddress(from));
50 InternetAddress[] address = {new InternetAddress(to)};
51 msg.setRecipients(Message.RecipientType.TO, address);
52 msg.setSubject(subject);
53
54 // create and fill the first message part
55 MimeBodyPart mbp1 = new MimeBodyPart();
56 mbp1.setText(msgText1);
57
58 // create the second message part
59 MimeBodyPart mbp2 = new MimeBodyPart();
60
61 // attach the file to the message
62 mbp2.attachFile(filename);
63
64 /*
65 * Use the following approach instead of the above line if
66 * you want to control the MIME type of the attached file.
67 * Normally you should never need to do this.
68 *
69 FileDataSource fds = new FileDataSource(filename) {
70 public String getContentType() {
71 return "application/octet-stream";
72 }
73 };
74 mbp2.setDataHandler(new DataHandler(fds));
75 mbp2.setFileName(fds.getName());
76 */
77
78 // create the Multipart and add its parts to it
79 Multipart mp = new MimeMultipart();
80 mp.addBodyPart(mbp1);
81 mp.addBodyPart(mbp2);
82
83 // add the Multipart to the message
84 msg.setContent(mp);
85
86 // set the Date: header
87 msg.setSentDate(new Date());
88
89 /*
90 * If you want to control the Content-Transfer-Encoding
91 * of the attached file, do the following. Normally you
92 * should never need to do this.
93 *

Test Cases 94

94 msg.saveChanges();
95 mbp2.setHeader("Content-Transfer-Encoding", "base64");
96 */
97
98 // send the message
99 Transport.send(msg);
100
101 } catch (MessagingException mex) {
102 mex.printStackTrace();
103 Exception ex = null;
104 if ((ex = mex.getNextException()) != null) {
105 ex.printStackTrace();
106 }
107 } catch (IOException ioex) {
108 ioex.printStackTrace();
109 }
110 }
111 }

Test Cases 95

A.5 3.old.java

1 /***←�

2 * Copyright (c) 2000, 2005 IBM Corporation and others.
3 * All rights reserved. This program and the accompanying materials
4 * are made available under the terms of the Eclipse Public License v1.0
5 * which accompanies this distribution, and is available at
6 * http://www.eclipse.org/legal/epl-v10.html
7 *
8 * Contributors:
9 * IBM Corporation - initial API and implementation
10 ***←�

********/
11 package org.eclipse.jface.text;
12
13 import java.util.Iterator;
14
15 import org.eclipse.jface.text.source.Annotation;
16 import org.eclipse.jface.text.source.ISourceViewer;
17
18 /**
19 * Standard implementation of {@link org.eclipse.jface.text.ITextHover}.
20 * <p>
21 * XXX: This is work in progress and can change anytime until API for ←�

3.2 is frozen.
22 * </p>
23 *
24 * @since 3.2
25 */
26 public class DefaultTextHover implements ITextHover {
27
28 /** This hover’s source viewer */
29 private ISourceViewer fSourceViewer;
30
31 /**
32 * Creates a new annotation hover.
33 *
34 * @param sourceViewer this hover’s annotation model
35 */
36 public DefaultTextHover(ISourceViewer sourceViewer) {
37 Assert.isNotNull(sourceViewer);
38 fSourceViewer= sourceViewer;
39 }
40
41 /*
42 * @see org.eclipse.jface.text.ITextHover#getHoverInfo(org.eclipse.←�

jface.text.ITextViewer, org.eclipse.jface.text.IRegion)

Test Cases 96

43 */
44 public String getHoverInfo(ITextViewer textViewer, IRegion ←�

hoverRegion) {
45
46 Iterator e= fSourceViewer.getAnnotationModel().←�

getAnnotationIterator();
47 while (e.hasNext()) {
48 Annotation a= (Annotation) e.next();
49 if (isIncluded(a)) {
50 Position p= fSourceViewer.getAnnotationModel().getPosition(a);
51 if (p != null && p.overlapsWith(hoverRegion.getOffset(), ←�

hoverRegion.getLength())) {
52 String msg= a.getText();
53 if (msg != null && msg.trim().length() > 0)
54 return msg;
55 }
56 }
57 }
58
59 return null;
60 }
61
62 /*
63 * @see org.eclipse.jface.text.ITextHover#getHoverRegion(org.eclipse.←�

jface.text.ITextViewer, int)
64 */
65 public IRegion getHoverRegion(ITextViewer textViewer, int offset) {
66 return findWord(textViewer.getDocument(), offset);
67 }
68
69 /**
70 * Tells whether the annotation should be included in
71 * the computation.
72 *
73 * @param annotation the annotation to test
74 * @return <code>true</code> if the annotation is included in the ←�

computation
75 */
76 protected boolean isIncluded(Annotation annotation) {
77 return true;
78 }
79
80 private IRegion findWord(IDocument document, int offset) {
81 int start= -1;
82 int end= -1;
83
84 try {
85

Test Cases 97

86 int pos= offset;
87 char c;
88
89 while (pos >= 0) {
90 c= document.getChar(pos);
91 if (!Character.isUnicodeIdentifierPart(c))
92 break;
93 --pos;
94 }
95
96 start= pos;
97
98 pos= offset;
99 int length= document.getLength();
100
101 while (pos < length) {
102 c= document.getChar(pos);
103 if (!Character.isUnicodeIdentifierPart(c))
104 break;
105 ++pos;
106 }
107
108 end= pos;
109
110 } catch (BadLocationException x) {
111 }
112
113 if (start > -1 && end > -1) {
114 if (start == offset && end == offset)
115 return new Region(offset, 0);
116 else if (start == offset)
117 return new Region(start, end - start);
118 else
119 return new Region(start + 1, end - start - 1);
120 }
121
122 return null;
123 }
124 }

Test Cases 98

A.6 3.new.java

1 /***←�

2 * Copyright (c) 2005, 2008 IBM Corporation and others.
3 * All rights reserved. This program and the accompanying materials
4 * are made available under the terms of the Eclipse Public License v1.0
5 * which accompanies this distribution, and is available at
6 * http://www.eclipse.org/legal/epl-v10.html
7 *
8 * Contributors:
9 * IBM Corporation - initial API and implementation
10 ***←�

********/
11 package org.eclipse.jface.text;
12
13 import java.util.Iterator;
14
15 import org.eclipse.core.runtime.Assert;
16
17 import org.eclipse.jface.text.source.Annotation;
18 import org.eclipse.jface.text.source.IAnnotationModel;
19 import org.eclipse.jface.text.source.ISourceViewer;
20 import org.eclipse.jface.text.source.ISourceViewerExtension2;
21
22 /**
23 * Standard implementation of {@link org.eclipse.jface.text.ITextHover}.
24 *
25 * @since 3.2
26 */
27 public class DefaultTextHover implements ITextHover {
28
29 /** This hover’s source viewer */
30 private ISourceViewer fSourceViewer;
31
32 /**
33 * Creates a new annotation hover.
34 *
35 * @param sourceViewer this hover’s annotation model
36 */
37 public DefaultTextHover(ISourceViewer sourceViewer) {
38 Assert.isNotNull(sourceViewer);
39 fSourceViewer= sourceViewer;
40 }
41
42 /**
43 * {@inheritDoc}
44 *

Test Cases 99

45 * @deprecated As of 3.4, replaced by {@link ITextHoverExtension2#←�

getHoverInfo2(ITextViewer, IRegion)}
46 */
47 public String getHoverInfo(ITextViewer textViewer, IRegion ←�

hoverRegion) {
48 IAnnotationModel model= getAnnotationModel(fSourceViewer);
49 if (model == null)
50 return null;
51
52 Iterator e= model.getAnnotationIterator();
53 while (e.hasNext()) {
54 Annotation a= (Annotation) e.next();
55 if (isIncluded(a)) {
56 Position p= model.getPosition(a);
57 if (p != null && p.overlapsWith(hoverRegion.getOffset(), ←�

hoverRegion.getLength())) {
58 String msg= a.getText();
59 if (msg != null && msg.trim().length() > 0)
60 return msg;
61 }
62 }
63 }
64
65 return null;
66 }
67
68 /*
69 * @see org.eclipse.jface.text.ITextHover#getHoverRegion(org.eclipse.←�

jface.text.ITextViewer, int)
70 */
71 public IRegion getHoverRegion(ITextViewer textViewer, int offset) {
72 return findWord(textViewer.getDocument(), offset);
73 }
74
75 /**
76 * Tells whether the annotation should be included in
77 * the computation.
78 *
79 * @param annotation the annotation to test
80 * @return <code>true</code> if the annotation is included in the ←�

computation
81 */
82 protected boolean isIncluded(Annotation annotation) {
83 return true;
84 }
85
86 private IAnnotationModel getAnnotationModel(ISourceViewer viewer) {
87 if (viewer instanceof ISourceViewerExtension2) {

Test Cases 100

88 ISourceViewerExtension2 extension= (ISourceViewerExtension2) ←�

viewer;
89 return extension.getVisualAnnotationModel();
90 }
91 return viewer.getAnnotationModel();
92 }
93
94 private IRegion findWord(IDocument document, int offset) {
95 int start= -2;
96 int end= -1;
97
98 try {
99
100 int pos= offset;
101 char c;
102
103 while (pos >= 0) {
104 c= document.getChar(pos);
105 if (!Character.isUnicodeIdentifierPart(c))
106 break;
107 --pos;
108 }
109
110 start= pos;
111
112 pos= offset;
113 int length= document.getLength();
114
115 while (pos < length) {
116 c= document.getChar(pos);
117 if (!Character.isUnicodeIdentifierPart(c))
118 break;
119 ++pos;
120 }
121
122 end= pos;
123
124 } catch (BadLocationException x) {
125 }
126
127 if (start >= -1 && end > -1) {
128 if (start == offset && end == offset)
129 return new Region(offset, 0);
130 else if (start == offset)
131 return new Region(start, end - start);
132 else
133 return new Region(start + 1, end - start - 1);
134 }

Test Cases 101

135
136 return null;
137 }
138 }

Test Cases 102

A.7 4.old.java

1 // Copyright (c) Corporation for National Research Initiatives
2 package org.python.core;
3
4 import java.security.SecureClassLoader;
5 import java.util.ArrayList;
6 import java.util.List;
7 import java.util.Vector;
8
9 /**
10 * Utility class for loading of compiled python modules and java ←�

classes defined in python modules.
11 */
12 public class BytecodeLoader {
13
14 /**
15 * Turn the java byte code in data into a java class.
16 *
17 * @param name
18 * the name of the class
19 * @param data
20 * the java byte code.
21 * @param referents
22 * superclasses and interfaces that the new class will ←�

reference.
23 */
24 public static Class makeClass(String name, byte[] data, Class... ←�

referents) {
25 Loader loader = new Loader();
26 for (int i = 0; i < referents.length; i++) {
27 try {
28 ClassLoader cur = referents[i].getClassLoader();
29 if (cur != null) {
30 loader.addParent(cur);
31 }
32 } catch (SecurityException e) {}
33 }
34 return loader.loadClassFromBytes(name, data);
35 }
36
37 /**
38 * Turn the java byte code in data into a java class.
39 *
40 * @param name
41 * the name of the class
42 * @param referents
43 * superclasses and interfaces that the new class will ←�

Test Cases 103

reference.
44 * @param data
45 * the java byte code.
46 */
47 public static Class makeClass(String name, Vector<Class> referents, ←�

byte[] data) {
48 if (referents != null) {
49 return makeClass(name, data, referents.toArray(new Class[0]));
50 }
51 return makeClass(name, data);
52 }
53
54 /**
55 * Turn the java byte code for a compiled python module into a java ←�

class.
56 *
57 * @param name
58 * the name of the class
59 * @param data
60 * the java byte code.
61 */
62 public static PyCode makeCode(String name, byte[] data, String ←�

filename) {
63 try {
64 Class c = makeClass(name, data);
65 @SuppressWarnings("unchecked")
66 Object o = c.getConstructor(new Class[] {String.class})
67 .newInstance(new Object[] {filename});
68 return ((PyRunnable)o).getMain();
69 } catch (Exception e) {
70 throw Py.JavaError(e);
71 }
72 }
73
74 public static class Loader extends SecureClassLoader {
75
76 private List<ClassLoader> parents = new ArrayList<ClassLoader>();
77
78 public Loader() {
79 parents.add(imp.getSyspathJavaLoader());
80 }
81
82 public void addParent(ClassLoader referent) {
83 if (!parents.contains(referent)) {
84 parents.add(0, referent);
85 }
86 }
87

Test Cases 104

88 protected Class<?> loadClass(String name, boolean resolve) ←�

throws ClassNotFoundException {
89 Class c = findLoadedClass(name);
90 if (c != null) {
91 return c;
92 }
93 for (ClassLoader loader : parents) {
94 try {
95 return loader.loadClass(name);
96 } catch (ClassNotFoundException cnfe) {}
97 }
98 // couldn’t find the .class file on sys.path
99 throw new ClassNotFoundException(name);
100 }
101
102 public Class loadClassFromBytes(String name, byte[] data) {
103 Class c = defineClass(name, data, 0, data.length, ←�

getClass().getProtectionDomain());
104 resolveClass(c);
105 Compiler.compileClass(c);
106 return c;
107 }
108 }
109 }

Test Cases 105

A.8 4.new.java

1 // Copyright (c) Corporation for National Research Initiatives
2 package org.python.core;
3
4 import java.security.SecureClassLoader;
5 import java.util.List;
6
7 import org.python.objectweb.asm.ClassReader;
8 import org.python.util.Generic;
9
10 /**
11 * Utility class for loading of compiled python modules and java ←�

classes defined in python modules.
12 */
13 public class BytecodeLoader {
14
15 /**
16 * Turn the java byte code in data into a java class.
17 *
18 * @param name
19 * the name of the class
20 * @param data
21 * the java byte code.
22 * @param referents
23 * superclasses and interfaces that the new class will ←�

reference.
24 */
25 public static Class<?> makeClass(String name, byte[] data, ←�

Class<?>... referents) {
26 Loader loader = new Loader();
27 for (Class<?> referent : referents) {
28 try {
29 ClassLoader cur = referent.getClassLoader();
30 if (cur != null) {
31 loader.addParent(cur);
32 }
33 } catch (SecurityException e) {}
34 }
35 return loader.loadClassFromBytes(name, data);
36 }
37
38 /**
39 * Turn the java byte code in data into a java class.
40 *
41 * @param name
42 * the name of the class
43 * @param referents

Test Cases 106

44 * superclasses and interfaces that the new class will ←�

reference.
45 * @param data
46 * the java byte code.
47 */
48 public static Class<?> makeClass(String name, List<Class<?>> ←�

referents, byte[] data) {
49 if (referents != null) {
50 return makeClass(name, data, referents.toArray(new ←�

Class[referents.size()]));
51 }
52 return makeClass(name, data);
53 }
54
55 /**
56 * Turn the java byte code for a compiled python module into a java ←�

class.
57 *
58 * @param name
59 * the name of the class
60 * @param data
61 * the java byte code.
62 */
63 public static PyCode makeCode(String name, byte[] data, String ←�

filename) {
64 try {
65 Class<?> c = makeClass(name, data);
66 Object o = c.getConstructor(new Class[] {String.class})
67 .newInstance(new Object[] {filename});
68 return ((PyRunnable)o).getMain();
69 } catch (Exception e) {
70 throw Py.JavaError(e);
71 }
72 }
73
74 public static class Loader extends SecureClassLoader {
75
76 private List<ClassLoader> parents = Generic.list();
77
78 public Loader() {
79 parents.add(imp.getSyspathJavaLoader());
80 }
81
82 public void addParent(ClassLoader referent) {
83 if (!parents.contains(referent)) {
84 parents.add(0, referent);
85 }
86 }

Test Cases 107

87
88 @Override
89 protected Class<?> loadClass(String name, boolean resolve) ←�

throws ClassNotFoundException {
90 Class<?> c = findLoadedClass(name);
91 if (c != null) {
92 return c;
93 }
94 for (ClassLoader loader : parents) {
95 try {
96 return loader.loadClass(name);
97 } catch (ClassNotFoundException cnfe) {}
98 }
99 // couldn’t find the .class file on sys.path
100 throw new ClassNotFoundException(name);
101 }
102
103 public Class<?> loadClassFromBytes(String name, byte[] data) {
104 if (name.endsWith("$py")) {
105 try {
106 // Get the real class name: we might request a ’bar’
107 // Jython module that was compiled as ’foo.bar’, or
108 // even ’baz.__init__’ which is compiled as just ’baz’
109 ClassReader cr = new ClassReader(data);
110 name = cr.getClassName().replace(’/’, ’.’);
111 } catch (RuntimeException re) {
112 // Probably an invalid .class, fallback to the
113 // specified name
114 }
115 }
116 Class<?> c = defineClass(name, data, 0, data.length, ←�

getClass().getProtectionDomain());
117 resolveClass(c);
118 Compiler.compileClass(c);
119 return c;
120 }
121 }
122 }

Test Cases 108

A.9 5.old.java

1 package org.springframework.samples.imagedb;
2
3 import java.io.IOException;
4 import java.io.InputStream;
5 import java.io.OutputStream;
6 import java.sql.PreparedStatement;
7 import java.sql.ResultSet;
8 import java.sql.SQLException;
9 import java.util.List;
10
11 import org.springframework.dao.DataAccessException;
12 import org.springframework.dao.IncorrectResultSizeDataAccessException;
13 import org.springframework.jdbc.LobRetrievalFailureException;
14 import org.springframework.jdbc.core.RowMapper;
15 import org.springframework.jdbc.core.support.←�

AbstractLobCreatingPreparedStatementCallback;
16 import org.springframework.jdbc.core.support.←�

AbstractLobStreamingResultSetExtractor;
17 import org.springframework.jdbc.core.support.JdbcDaoSupport;
18 import org.springframework.jdbc.support.lob.LobCreator;
19 import org.springframework.jdbc.support.lob.LobHandler;
20 import org.springframework.util.FileCopyUtils;
21
22 /**
23 * Default implementation of the central image database business ←�

interface.
24 *
25 * <p>Uses JDBC with a LobHandler to retrieve and store image data.
26 * Illustrates direct use of the jdbc.core package, i.e. JdbcTemplate,
27 * rather than operation objects from the jdbc.object package.
28 *
29 * @author Juergen Hoeller
30 * @since 07.01.2004
31 * @see org.springframework.jdbc.core.JdbcTemplate
32 * @see org.springframework.jdbc.support.lob.LobHandler
33 */
34 public class DefaultImageDatabase extends JdbcDaoSupport implements ←�

ImageDatabase {
35
36 private LobHandler lobHandler;
37
38 /**
39 * Set the LobHandler to use for BLOB/CLOB access.
40 * Could use a DefaultLobHandler instance as default,
41 * but relies on a specified LobHandler here.
42 * @see org.springframework.jdbc.support.lob.DefaultLobHandler

Test Cases 109

43 */
44 public void setLobHandler(LobHandler lobHandler) {
45 this.lobHandler = lobHandler;
46 }
47
48 public List getImages() throws DataAccessException {
49 return getJdbcTemplate().query(
50 "SELECT image_name, description FROM imagedb",
51 new RowMapper() {
52 public Object mapRow(ResultSet rs, int rowNum) throws ←�

SQLException {
53 String name = rs.getString(1);
54 String description = lobHandler.getClobAsString(rs, 2);
55 return new ImageDescriptor(name, description);
56 }
57 });
58 }
59
60 public void streamImage(final String name, final OutputStream ←�

contentStream) throws DataAccessException {
61 getJdbcTemplate().query(
62 "SELECT content FROM imagedb WHERE image_name=?", new ←�

Object[] {name},
63 new AbstractLobStreamingResultSetExtractor() {
64 protected void handleNoRowFound() throws ←�

LobRetrievalFailureException {
65 throw new IncorrectResultSizeDataAccessException(
66 "Image with name ’" + name + "’ not found in ←�

database", 1, 0);
67 }
68 public void streamData(ResultSet rs) throws ←�

SQLException, IOException {
69 InputStream is = lobHandler.getBlobAsBinaryStream(rs, ←�

1);
70 if (is != null) {
71 FileCopyUtils.copy(is, contentStream);
72 }
73 }
74 }
75);
76 }
77
78 public void storeImage(
79 final String name, final InputStream contentStream, final int ←�

contentLength, final String description)
80 throws DataAccessException {
81 getJdbcTemplate().execute(
82 "INSERT INTO imagedb (image_name, content, description) ←�

Test Cases 110

VALUES (?, ?, ?)",
83 new AbstractLobCreatingPreparedStatementCallback(this.←�

lobHandler) {
84 protected void setValues(PreparedStatement ps, ←�

LobCreator lobCreator) throws SQLException {
85 ps.setString(1, name);
86 lobCreator.setBlobAsBinaryStream(ps, 2, ←�

contentStream, contentLength);
87 lobCreator.setClobAsString(ps, 3, description);
88 }
89 }
90);
91 }
92
93 public void checkImages() {
94 // could implement consistency check here
95 logger.info("Checking images: not implemented but invoked by ←�

scheduling");
96 }
97
98 public void clearDatabase() throws DataAccessException {
99 getJdbcTemplate().update("DELETE FROM imagedb");
100 }
101
102 }

Test Cases 111

A.10 5.new.java

1 package org.springframework.samples.imagedb;
2
3 import java.io.IOException;
4 import java.io.InputStream;
5 import java.io.OutputStream;
6 import java.sql.PreparedStatement;
7 import java.sql.ResultSet;
8 import java.sql.SQLException;
9 import java.util.List;
10
11 import org.springframework.dao.DataAccessException;
12 import org.springframework.dao.EmptyResultDataAccessException;
13 import org.springframework.jdbc.LobRetrievalFailureException;
14 import org.springframework.jdbc.core.simple.ParameterizedRowMapper;
15 import org.springframework.jdbc.core.simple.SimpleJdbcDaoSupport;
16 import org.springframework.jdbc.core.support.←�

AbstractLobCreatingPreparedStatementCallback;
17 import org.springframework.jdbc.core.support.←�

AbstractLobStreamingResultSetExtractor;
18 import org.springframework.jdbc.support.lob.LobCreator;
19 import org.springframework.jdbc.support.lob.LobHandler;
20 import org.springframework.transaction.annotation.Transactional;
21 import org.springframework.util.FileCopyUtils;
22
23 /**
24 * Default implementation of the central image database business ←�

interface.
25 *
26 * <p>Uses JDBC with a LobHandler to retrieve and store image data.
27 * Illustrates direct use of the <code>jdbc.core</code> package,
28 * i.e. JdbcTemplate, rather than operation objects from the
29 * <code>jdbc.object</code> package.
30 *
31 * @author Juergen Hoeller
32 * @since 07.01.2004
33 * @see org.springframework.jdbc.core.JdbcTemplate
34 * @see org.springframework.jdbc.support.lob.LobHandler
35 */
36 public class DefaultImageDatabase extends SimpleJdbcDaoSupport ←�

implements ImageDatabase {
37
38 private LobHandler lobHandler;
39
40 /**
41 * Set the LobHandler to use for BLOB/CLOB access.
42 * Could use a DefaultLobHandler instance as default,

Test Cases 112

43 * but relies on a specified LobHandler here.
44 * @see org.springframework.jdbc.support.lob.DefaultLobHandler
45 */
46 public void setLobHandler(LobHandler lobHandler) {
47 this.lobHandler = lobHandler;
48 }
49
50 @Transactional(readOnly=true)
51 public List<ImageDescriptor> getImages() throws DataAccessException {
52 return getSimpleJdbcTemplate().query(
53 "SELECT image_name, description FROM imagedb",
54 new ParameterizedRowMapper<ImageDescriptor>() {
55 public ImageDescriptor mapRow(ResultSet rs, int rowNum) ←�

throws SQLException {
56 String name = rs.getString(1);
57 String description = lobHandler.getClobAsString(rs, 2);
58 return new ImageDescriptor(name, description);
59 }
60 });
61 }
62
63 @Transactional(readOnly=true)
64 public void streamImage(final String name, final OutputStream ←�

contentStream) throws DataAccessException {
65 getJdbcTemplate().query(
66 "SELECT content FROM imagedb WHERE image_name=?", new ←�

Object[] {name},
67 new AbstractLobStreamingResultSetExtractor() {
68 protected void handleNoRowFound() throws ←�

LobRetrievalFailureException {
69 throw new EmptyResultDataAccessException(
70 "Image with name ’" + name + "’ not found in ←�

database", 1);
71 }
72 public void streamData(ResultSet rs) throws ←�

SQLException, IOException {
73 InputStream is = lobHandler.getBlobAsBinaryStream(rs, ←�

1);
74 if (is != null) {
75 FileCopyUtils.copy(is, contentStream);
76 }
77 }
78 }
79);
80 }
81
82 @Transactional
83 public void storeImage(

Test Cases 113

84 final String name, final InputStream contentStream, final int ←�

contentLength, final String description)
85 throws DataAccessException {
86
87 getJdbcTemplate().execute(
88 "INSERT INTO imagedb (image_name, content, description) ←�

VALUES (?, ?, ?)",
89 new AbstractLobCreatingPreparedStatementCallback(this.←�

lobHandler) {
90 protected void setValues(PreparedStatement ps, ←�

LobCreator lobCreator) throws SQLException {
91 ps.setString(1, name);
92 lobCreator.setBlobAsBinaryStream(ps, 2, ←�

contentStream, contentLength);
93 lobCreator.setClobAsString(ps, 3, description);
94 }
95 }
96);
97 }
98
99 public void checkImages() {
100 // Could implement consistency check here...
101 logger.info("Checking images: not implemented but invoked by ←�

scheduling");
102 }
103
104 @Transactional
105 public void clearDatabase() throws DataAccessException {
106 getJdbcTemplate().update("DELETE FROM imagedb");
107 }
108
109 }

Test Cases 114

A.11 6.old.java

1 /**
2 *
3 */
4 package org.junit.experimental.theories;
5
6 import java.lang.reflect.Field;
7 import java.lang.reflect.InvocationTargetException;
8 import java.lang.reflect.Modifier;
9 import java.util.ArrayList;
10 import java.util.List;
11
12 import org.junit.Assume;
13 import org.junit.Assume.AssumptionViolatedException;
14 import org.junit.experimental.theories.PotentialAssignment.←�

CouldNotGenerateValueException;
15 import org.junit.experimental.theories.internal.Assignments;
16 import org.junit.experimental.theories.internal.←�

ParameterizedAssertionError;
17 import org.junit.internal.runners.InitializationError;
18 import org.junit.internal.runners.JUnit4ClassRunner;
19 import org.junit.internal.runners.links.Statement;
20 import org.junit.internal.runners.model.FrameworkMethod;
21
22 @SuppressWarnings("restriction")
23 public class Theories extends JUnit4ClassRunner {
24 public Theories(Class<?> klass) throws InitializationError {
25 super(klass);
26 }
27
28 @Override
29 protected void collectInitializationErrors(List<Throwable> errors) {
30 Field[] fields= getTestClass().getJavaClass().getDeclaredFields();
31
32 for (Field each : fields)
33 if (each.getAnnotation(DataPoint.class) != null && !Modifier.←�

isStatic(each.getModifiers()))
34 errors.add(new Error("DataPoint field " + each.getName() + ←�

" must be static"));
35 }
36
37 @Override
38 protected List<FrameworkMethod> computeTestMethods() {
39 List<FrameworkMethod> testMethods= super.computeTestMethods();
40 List<FrameworkMethod> theoryMethods= getTestClass().←�

getAnnotatedMethods(Theory.class);
41 testMethods.removeAll(theoryMethods);

Test Cases 115

42 testMethods.addAll(theoryMethods);
43 return testMethods;
44 }
45
46 @Override
47 public Statement childBlock(final FrameworkMethod method) {
48 return new TheoryAnchor(method);
49 }
50
51 public class TheoryAnchor extends Statement {
52 private int successes= 0;
53
54 private FrameworkMethod fTestMethod;
55
56 private List<AssumptionViolatedException> fInvalidParameters= new ←�

ArrayList<AssumptionViolatedException>();
57
58 public TheoryAnchor(FrameworkMethod method) {
59 fTestMethod= method;
60 }
61
62 @Override
63 public void evaluate() throws Throwable {
64 runWithAssignment(Assignments.allUnassigned(
65 fTestMethod.getMethod(), getTestClass().getJavaClass()));
66
67 if (successes == 0)
68 Assume
69 .fail("Never found parameters that satisfied method. ←�

Violated assumptions: "
70 + fInvalidParameters);
71 }
72
73 protected void runWithAssignment(Assignments parameterAssignment)
74 throws Throwable {
75 if (!parameterAssignment.isComplete()) {
76 runWithIncompleteAssignment(parameterAssignment);
77 } else {
78 runWithCompleteAssignment(parameterAssignment);
79 }
80 }
81
82 protected void runWithIncompleteAssignment(Assignments incomplete)
83 throws InstantiationException, IllegalAccessException,
84 Throwable {
85 for (PotentialAssignment source : incomplete
86 .potentialsForNextUnassigned()) {
87 runWithAssignment(incomplete.assignNext(source));

Test Cases 116

88 }
89 }
90
91 protected void runWithCompleteAssignment(final Assignments complete)
92 throws InstantiationException, IllegalAccessException,
93 InvocationTargetException, NoSuchMethodException, Throwable {
94 new JUnit4ClassRunner(getTestClass().getJavaClass()) {
95 @Override
96 protected void collectInitializationErrors(
97 List<Throwable> errors) {
98 // do nothing
99 }
100
101 @Override
102 public Statement childBlock(FrameworkMethod method) {
103 final Statement statement= super.childBlock(method);
104 return new Statement() {
105 @Override
106 public void evaluate() throws Throwable {
107 try {
108 statement.evaluate();
109 handleDataPointSuccess();
110 } catch (AssumptionViolatedException e) {
111 handleAssumptionViolation(e);
112 } catch (Throwable e) {
113 reportParameterizedError(e, complete
114 .getAllArguments(nullsOk()));
115 }
116 }
117
118 };
119 }
120
121 @Override
122 protected Statement invoke(FrameworkMethod method, Object ←�

test) {
123 return methodCompletesWithParameters(method, complete, ←�

test);
124 }
125
126 @Override
127 public Object createTest() throws Exception {
128 return getTestClass().getConstructor().newInstance(
129 complete.getConstructorArguments(nullsOk()));
130 }
131 }.childBlock(fTestMethod).evaluate();
132 }
133

Test Cases 117

134 private Statement methodCompletesWithParameters(
135 final FrameworkMethod method, final Assignments complete, ←�

final Object freshInstance) {
136 return new Statement() {
137 @Override
138 public void evaluate() throws Throwable {
139 try {
140 final Object[] values= complete.getMethodArguments(
141 nullsOk());
142 method.invokeExplosively(freshInstance, values);
143 } catch (CouldNotGenerateValueException e) {
144 // ignore
145 }
146 }
147 };
148 }
149
150 protected void handleAssumptionViolation(←�

AssumptionViolatedException e) {
151 fInvalidParameters.add(e);
152 }
153
154 protected void reportParameterizedError(Throwable e, Object... ←�

params)
155 throws Throwable {
156 if (params.length == 0)
157 throw e;
158 throw new ParameterizedAssertionError(e, fTestMethod.getName(),
159 params);
160 }
161
162 private boolean nullsOk() {
163 Theory annotation= fTestMethod.getMethod().getAnnotation(
164 Theory.class);
165 if (annotation == null)
166 return false;
167 return annotation.nullsAccepted();
168 }
169
170 protected void handleDataPointSuccess() {
171 successes++;
172 }
173 }
174 }

Test Cases 118

A.12 6.new.java

1 /**
2 *
3 */
4 package org.junit.experimental.theories;
5
6 import java.lang.reflect.Field;
7 import java.lang.reflect.InvocationTargetException;
8 import java.lang.reflect.Modifier;
9 import java.util.ArrayList;
10 import java.util.List;
11
12 import org.junit.Assert;
13 import org.junit.experimental.theories.PotentialAssignment.←�

CouldNotGenerateValueException;
14 import org.junit.experimental.theories.internal.Assignments;
15 import org.junit.experimental.theories.internal.←�

ParameterizedAssertionError;
16 import org.junit.internal.AssumptionViolatedException;
17 import org.junit.runners.BlockJUnit4ClassRunner;
18 import org.junit.runners.model.FrameworkMethod;
19 import org.junit.runners.model.InitializationError;
20 import org.junit.runners.model.Statement;
21
22 public class Theories extends BlockJUnit4ClassRunner {
23 public Theories(Class<?> klass) throws InitializationError {
24 super(klass);
25 }
26
27 @Override
28 protected void collectInitializationErrors(List<Throwable> errors) {
29 super.collectInitializationErrors(errors);
30 validateDataPointFields(errors);
31 }
32
33 private void validateDataPointFields(List<Throwable> errors) {
34 Field[] fields= getTestClass().getJavaClass().getDeclaredFields();
35
36 for (Field each : fields)
37 if (each.getAnnotation(DataPoint.class) != null && !Modifier.←�

isStatic(each.getModifiers()))
38 errors.add(new Error("DataPoint field " + each.getName() + ←�

" must be static"));
39 }
40
41 @Override
42 protected void validateZeroArgConstructor(List<Throwable> errors) {

Test Cases 119

43 // constructor can have args
44 }
45
46 @Override
47 protected void validateTestMethods(List<Throwable> errors) {
48 for (FrameworkMethod each : computeTestMethods())
49 each.validatePublicVoid(false, errors);
50 }
51
52 @Override
53 protected List<FrameworkMethod> computeTestMethods() {
54 List<FrameworkMethod> testMethods= super.computeTestMethods();
55 List<FrameworkMethod> theoryMethods= getTestClass().←�

getAnnotatedMethods(Theory.class);
56 testMethods.removeAll(theoryMethods);
57 testMethods.addAll(theoryMethods);
58 return testMethods;
59 }
60
61 @Override
62 public Statement methodBlock(final FrameworkMethod method) {
63 return new TheoryAnchor(method);
64 }
65
66 public class TheoryAnchor extends Statement {
67 private int successes= 0;
68
69 private FrameworkMethod fTestMethod;
70
71 private List<AssumptionViolatedException> fInvalidParameters= new ←�

ArrayList<AssumptionViolatedException>();
72
73 public TheoryAnchor(FrameworkMethod method) {
74 fTestMethod= method;
75 }
76
77 @Override
78 public void evaluate() throws Throwable {
79 runWithAssignment(Assignments.allUnassigned(
80 fTestMethod.getMethod(), getTestClass()));
81
82 if (successes == 0)
83 Assert
84 .fail("Never found parameters that satisfied method ←�

assumptions. Violated assumptions: "
85 + fInvalidParameters);
86 }
87

Test Cases 120

88 protected void runWithAssignment(Assignments parameterAssignment)
89 throws Throwable {
90 if (!parameterAssignment.isComplete()) {
91 runWithIncompleteAssignment(parameterAssignment);
92 } else {
93 runWithCompleteAssignment(parameterAssignment);
94 }
95 }
96
97 protected void runWithIncompleteAssignment(Assignments incomplete)
98 throws InstantiationException, IllegalAccessException,
99 Throwable {
100 for (PotentialAssignment source : incomplete
101 .potentialsForNextUnassigned()) {
102 runWithAssignment(incomplete.assignNext(source));
103 }
104 }
105
106 protected void runWithCompleteAssignment(final Assignments complete)
107 throws InstantiationException, IllegalAccessException,
108 InvocationTargetException, NoSuchMethodException, Throwable {
109 new BlockJUnit4ClassRunner(getTestClass().getJavaClass()) {
110 @Override
111 protected void collectInitializationErrors(
112 List<Throwable> errors) {
113 // do nothing
114 }
115
116 @Override
117 public Statement methodBlock(FrameworkMethod method) {
118 final Statement statement= super.methodBlock(method);
119 return new Statement() {
120 @Override
121 public void evaluate() throws Throwable {
122 try {
123 statement.evaluate();
124 handleDataPointSuccess();
125 } catch (AssumptionViolatedException e) {
126 handleAssumptionViolation(e);
127 } catch (Throwable e) {
128 reportParameterizedError(e, complete
129 .getArgumentStrings(nullsOk()));
130 }
131 }
132
133 };
134 }
135

Test Cases 121

136 @Override
137 protected Statement methodInvoker(FrameworkMethod method, ←�

Object test) {
138 return methodCompletesWithParameters(method, complete, ←�

test);
139 }
140
141 @Override
142 public Object createTest() throws Exception {
143 return getTestClass().getOnlyConstructor().newInstance(
144 complete.getConstructorArguments(nullsOk()));
145 }
146 }.methodBlock(fTestMethod).evaluate();
147 }
148
149 private Statement methodCompletesWithParameters(
150 final FrameworkMethod method, final Assignments complete, ←�

final Object freshInstance) {
151 return new Statement() {
152 @Override
153 public void evaluate() throws Throwable {
154 try {
155 final Object[] values= complete.getMethodArguments(
156 nullsOk());
157 method.invokeExplosively(freshInstance, values);
158 } catch (CouldNotGenerateValueException e) {
159 // ignore
160 }
161 }
162 };
163 }
164
165 protected void handleAssumptionViolation(←�

AssumptionViolatedException e) {
166 fInvalidParameters.add(e);
167 }
168
169 protected void reportParameterizedError(Throwable e, Object... ←�

params)
170 throws Throwable {
171 if (params.length == 0)
172 throw e;
173 throw new ParameterizedAssertionError(e, fTestMethod.getName(),
174 params);
175 }
176
177 private boolean nullsOk() {
178 Theory annotation= fTestMethod.getMethod().getAnnotation(

Test Cases 122

179 Theory.class);
180 if (annotation == null)
181 return false;
182 return annotation.nullsAccepted();
183 }
184
185 protected void handleDataPointSuccess() {
186 successes++;
187 }
188 }
189 }

Appendix B

List of Differences

Below we list all differences participants were expected to report for each comparison task.

Line numbers refer to the new version of a file, while line numbers in parentheses refer to the

old version. Please note that this list is slightly subjective and susceptible to the examiner’s

interpretation.

B.1 Test Case 1

1. Lines 21–23 (20–21): Added three import statements: java.io.IOException,

ObjectInputStream, and ObjectOutputStream;

2. Lines 29–30 (26): Added “A {@code HashBiMap} and its inverse are both serializable.”

to comment;

3. Lines 36 (32–33): Deleted “and the default load factor (0.75)” from comment;

4. Lines 43 (40–41): Deleted “and the default load factor (0.75)” from comment;

5. Lines 54–55 (53–66): Deleted the HashBiMap(int initialCapacity, float

loadFactor) method and its comment;

6. Lines 56–57 (68–69): Deleted “the default load factor (0.75) and” from comment;

7. Lines 74–88 (84–85): Added the writeObject(ObjectOutputStream stream) and

readObject(ObjectInputStream stream) methods;

8. Lines 90 (84–85): Added the serialVersionUID field.

123

List of Differences 124

B.2 Test Case 2

1. Lines 62 (61–62): Added mbp2.attachFile(filename);

2. Lines 64–68 (61–62): Added multi-line comment;

3. Lines 69–73 (62): Added an anonymous inner class extending FileDataSource;

4. Lines 69, 74–76 (62–64): Commented three lines out of the code;

5. Lines 89–96 (76–77): Added multi-line comment;

6. Lines 107–108 (85–86): Added catch (IOException ioex).

B.3 Test Case 3

1. Line 2 (2): Modified copyright years;

2. Lines 15–20 (14–17): Added three import statements: Assert, IAnnotationModel,

and ISourceViewerExtension2;

3. Lines 23–24 (20–22): Deleted multi-line comment;

4. Lines 42–45 (41–42): Modified multi-line comment;

5. Lines 48–50 (44–45): Added three lines;

6. Lines 52 (46): Replaced fSourceViewer.getAnnotationModel() for model;

7. Lines 56 (50): Replaced fSourceViewer.getAnnotationModel() for model;

8. Lines 86–92 (79–80): Added method getAnnotationModel(ISourceViewer viewer);

9. Lines 95 (81): Changed −1 to −2;

10. Lines 127 (113): Changed > to >=.

B.4 Test Case 4

1. Lines 4–6 (5–7): Deleted two import statements: java.util.ArrayList and java.util.Vector;

2. Lines 7–8 (8–9): Added two import statements: ClassReader and Generic;

List of Differences 125

3. Lines 25 (24): Added an unbounded wildcard type to Class (twice);

4. Lines 27 (26): Changed the for loop for its enhanced-syntax version;

5. Lines 29 (28): Replaced referents[i] with referent;

6. Lines 48 (47): Added an unbounded wildcard type to Class;

7. Lines 48 (47): Replaced Vector<Class> with List<Class<?>>;

8. Lines 50 (49): Replaced 0 with referents.size;

9. Lines 65 (64): Added an unbounded wildcard type to Class;

10. Lines 65–66 (65): Deleted the @SuppressWarnings annotation;

11. Line 76 (76): Changed new ArrayList<ClassLoader>() to Generic.list();

12. Lines 88 (87–88): Added the @Override annotation;

13. Lines 90 (89): Added an unbounded wildcard type to Class;

14. Lines 103 (102): Added an unbounded wildcard type to Class;

15. Lines 104–115 (102–103): Added an if block;

16. Lines 116 (103): Added an unbounded wildcard type to Class.

B.5 Test Case 5

1. Line 12 (12): Changed IncorrectResultSizeDataAccessException import statement

to EmptyResultDataAccessException;

2. Lines 14 (14): Changed RowMapper import statement to

simple.ParameterizedRowMapper;

3. Lines 15 (17): Changed support.JdbcDaoSupport import statement to

simple.SimpleJdbcDaoSupport;

4. Lines 20 (19): Added Transactional import statement;

5. Lines 27–29 (26–27): Added the <code> tag to jdbc.core and jdbc.object;

List of Differences 126

6. Lines 36 (34): Replaced JdbcDaoSupport with SimpleJdbcDaoSupport;

7. Lines 50 (47–48): Added the @Transactional annotation;

8. Lines 51 (48): Added <imageDescriptor> to List;

9. Lines 52 (49): Replaced getJdbcTemplate() with getSimpleJdbcTemplate();

10. Lines 54 (51): Replaced RowMapper() with

ParameterizedRowMapper();

11. Lines 54 (51): Added <imageDescriptor>;

12. Lines 55 (52): Replaced Object with ImageDescriptor;

13. Lines 63 (59–60): Added the @Transactional annotation;

14. Lines 69 (65): Changed IncorrectResultSizeDataAccessException to

EmptyResultDataAccessException;

15. Lines 70 (66): Deleted last parameter (, 0);

16. Lines 82 (77–78): Added the @Transactional annotation;

17. Lines 100 (94): Modified comment: “could” to “Could”, and added “...” at the end;

18. Lines 104 (97–98): Added the @Transactional annotation.

B.6 Test Case 6

1. Line 12 (12): Changed Assume import statement to Assert;

2. Lines 16 (13): Changed Assume.AssumptionViolatedException import statement to

internal.AssumptionViolatedException;

3. Lines 19 (17): Changed internal.runners.InitializationError import statement

to runners.model.InitializationError;

4. Lines 17 (18): Changed internal.runners.JUnit4ClassRunner import statement to

runners.BlockJUnit4ClassRunner;

List of Differences 127

5. Lines 20 (19): Changed internal.runners.links.Statement import statement to

runners.model.Statement;

6. Lines 18 (20): Changed internal.runners.model.FrameworkMethod import state-

ment to runners.model.FrameworkMethod;

7. Lines 21–22 (22): Deleted annotation @SuppressWarnings;

8. Lines 22 (23): Changed JUnit4ClassRunner to BlockJUnit4ClassRunner;

9. Lines 29 (29–30): Added call to super.collectInitializationErrors(errors);

10. Lines 34–38 (30–34): Refactored the body of the collectInitializationErrors into

the validateDataPointFields method;

11. Lines 30 (29–30): Added call to validateDataPointFields(errors);

12. Lines 41–44 (36–37): Created method validateZeroArgConstructor(List<Throwable>

errors);

13. Lines 46–50 (36–37): Created method validateTestMethods(List<Throwable> errors);

14. Lines 62 (47): Changed childBlock to methodBlock;

15. Lines 80 (65): Deleted .getJavaClass();

16. Lines 83 (68): Changed Assume to Assert;

17. Lines 84 (69): Added “assumptions” to comment;

18. Lines 109 (94): Changed JUnit4ClassRunner to BlockJUnit4ClassRunner;

19. Lines 117 (102): Changed childBlock to methodBlock;

20. Lines 118 (103): Changed childBlock to methodBlock;

21. Lines 129 (114): Changed getAllArguments to getArgumentStrings;

22. Lines 137 (122): Changed invoke to methodInvoker;

23. Lines 143 (128): Changed getConstructor to getOnlyConstructor;

24. Lines 146 (131): Changed childBlock to methodBlock.

Appendix C

Experimental Data

The raw data obtained from the usability experiment is reproduced below.

To preserve participant’s privacy, the numbers listed below have no relationship with the or-

der used during the experiment. And although a number always represents the same participant

in all tables, they do not correspond to the numbers used in the charts in Chapter 5.

Tables C.1 and C.2 represent Self Assessment Form (Appendix I) and Preference Question-

naire (Appendix J) answers, respectively.

Tables C.3 through C.8 reproduce the measurements made during the comparisons. They

represent Test Case 1 through 6 (Appendix A), respectively.

For tables C.3 through C.8 the legend is as follow:

R Right answer

P Partial answer

O Omission

X Error

E The reference tool

V The proposed tool

128

Experimental Data 129

Participant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Question 1 c c c c c c d c c b d d c c b b

Question 2 c c c b c b c d c b d d d b c a

Question 3 b c e b b b d e d b d e e b c d

Question 4 a c e b a b d e d c d e a b c b

Table C.1: Self Assessment Form

Participant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Question 1 b b a b b a a c c a c a a c b a

Question 2 a b b b b b a b b a b a a a b a

Question 3 a b a a b b a b b a a a b a a a

Question 4 b b a b b a a c a a a b b c b a

Question 5 a a b c b c a b b a a b b b b c

Question 6 c a a c c b a a b a a a b c c a

Question 7 b a b b a a a b a a a a a b a a

Question 8 b a a b b b a a c a a a a b d a

Question 9 c b d c c d e d a c c c b a b d

Question 10 b a b b b c b b b b b b b b b b

Question 11 e d d d d d e d e e e d d d d e

Table C.2: Preference Questionnaire

Experimental Data 130

Participant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tool V V V V V V V V E E E E E E E E

Time (s) 39 33 47 48 46 60 75 89 21 65 55 87 80 111 165 309

Difference 1 R R R R R R R R R R R R R R R R

Difference 2 R R R R R R R R R R R R R R R R

Difference 3 R R R R R R R R R R R R X X R R

Difference 4 R R R R R R R R R R R R R X R R

Difference 5 R R R R R R R R R O R R R R R X

Difference 6 R R R R R R R R R R O R R O R X

Difference 7 R R R R R R R R R O R R R R R R

Difference 8 O R R R R R R R R O O R R O R R

Errors 1 2 1 2 2 2

Table C.3: Test Case 1

Participant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tool E E E E E E E E V V V V V V V V

Time (s) 59 62 65 75 76 78 80 60 9 24 36 43 41 114 54 150

Difference 1 P P R P P X P R P P P P P P P P

Difference 2 R R R R R R R R R R R R R R R R

Difference 3 O R R O O O R R R O O R R R R O

Difference 4 X O R P R P R P O O P R R R R R

Difference 5 R R R R R R R R R R R R R R R R

Difference 6 R R R R R R R R R R R R R R R R

Errors 1

Table C.4: Test Case 2

Experimental Data 131

Participant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tool V V V V V V V V E E E E E E E E

Time (s) 35 37 56 66 55 70 57 63 41 53 44 80 71 68 87 296

Difference 1 R O R R R O R R R R R R R R R P

Difference 2 R R R R R R R R R O R R R R R R

Difference 3 R R R R R R R R R R R R R R R R

Difference 4 P P R R P P R R R R R R R R R R

Difference 5 P P R R O R R R R O R R R R R X

Difference 6 R R R R R R R R R R R R R R R P

Difference 7 R R R R R R R R R R R R R R R R

Difference 8 R R R R R R R R R O R R R R R R

Difference 9 P P R R P R R R R R R X R R R R

Difference 10 R R R R R R R R R R R R R R R R

Errors 1

Table C.5: Test Case 3

Experimental Data 132

Participant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tool E E E E E E E E V V V V V V V V

Time (s) 69 74 86 89 159 129 114 165 17 14 50 61 52 41 60 163

Difference 1 R R R P O X X R R R R R R R R R

Difference 2 R R R O O R X R R R R R R R R R

Difference 3 R R R O R P P R R R R P R R R R

Difference 4 P R R R R P R R P R R R P R P R

Difference 5 R R R R R P P R O R R R R R R R

Difference 6 R R R O R R R R R R R R P R R R

Difference 7 X R R R R R R R R R R R R R R R

Difference 8 R R R R R R R R R R R R R R R R

Difference 9 R R R O R R R R R R R R R R R R

Difference 10 R R R P R R R R R R R R R R R R

Difference 11 R R R R R R R R R R R R R R R R

Difference 12 R R R O R R R R R R R R R R R R

Difference 13 R R R O R R R R R R R R R R R R

Difference 14 R R R O R O R R R R O R R R R R

Difference 15 R R R P X R R R R R R R R R R R

Difference 16 R R R R R O R R R R R R R R R R

Errors 1

Table C.6: Test Case 4

Experimental Data 133

Participant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tool V V V V V V V V E E E E E E E E

Time (s) 32 47 48 77 71 97 92 93 61 39 78 67 62 59 96 323

Difference 1 R R R R R R R R R R R R R R R R

Difference 2 R R R R R R R R P R P R R P R R

Difference 3 P P P P P P P P P P R P P R P R

Difference 4 R R R R O R R R R R R R R R R R

Difference 5 R R R R R R R R R R R R R R R R

Difference 6 R R R R R R R R R R R R R R R R

Difference 7 R R R R R R R R R R R R R R R R

Difference 8 O R R R R R R R R O R R R R R R

Difference 9 R R R R R R R R R R R R R R R R

Difference 10 O R R R R R R R R R R R R R R R

Difference 11 O R R R O O R R R O R R O R R R

Difference 12 R R R R R R R R R R R R R R R R

Difference 13 R R R R R R R R R O R R R R R R

Difference 14 R R R R R R R R R R R R R R R R

Difference 15 R R R R R R R R O O R O O O O R

Difference 16 R R R R R R R R R O R R R R R R

Difference 17 R R R R R R R R R P R P R R R R

Difference 18 R R R R R R R R R O R R R O R R

Errors 1 1 1 2

Table C.7: Test Case 5

Experimental Data 134

Participant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tool E E E E E E E E V V V V V V V V

Time (s) 68 104 126 136 91 143 182 175 58 16 94 39 82 53 83 130

Difference 1 R R R R R R R R R R R R R R R R

Difference 2 X P R R R R P R P P R P R P P R

Difference 3 P P P R R P P O R P P P P P R P

Difference 4 P P R P R P P R P P R P P P R P

Difference 5 P P P P R P P R R P P P P P P P

Difference 6 P P P O R P P R R P R P P P R P

Difference 7 R R R R R R R R R R R R R R R R

Difference 8 R R R R R R R R R R R R R R R R

Difference 9 R R R O R R O R R R R R R R R R

Difference 10 O O R O R O R R R P R R O R O R

Difference 11 R R R R R R R R R R R R R R R R

Difference 12 R R R O R R R R R R R R R R R R

Difference 13 R R R O R R R R R R R R R R R R

Difference 14 R R R R R R R R R R R R R R R R

Difference 15 R R R R R R R R R R R R R R R R

Difference 16 R R R R R R R R R R R R R R R R

Difference 17 R R R P O O X R R R R R R R R R

Difference 18 R R R R R R R R R R R R R R R R

Difference 19 R R R R R R R R R R R R R R R R

Difference 20 R R R R R R R R R R R R R R R R

Difference 21 R R R R R R R R R R R R R R R R

Difference 22 R R R R R R R R R R R R R R R R

Difference 23 R R R R R R R R R R R R R R R R

Difference 24 R R R R R R R R R R R R R R R R

Errors 1 1 2 1 1 1 1

Table C.8: Test Case 6

Appendix D

Statistical Information

Test Case 1 2 3 4 5 6

Tool V E V E V E V E V E V E

Maximum 89 165 114 80 70 87 61 165 97 96 94 182

Minimum 33 21 9 59 35 41 14 69 32 39 16 68

Median 47.5 80.0 41.0 70.0 56.5 68.0 50.0 101.5 74.0 62.0 58.0 131.0

Average 54.6 83.4 45.9 69.4 54.9 63.4 42.1 110.6 69.6 66.0 60.7 128.1

Std. Dev. 17.7 42.2 30.9 8.2 11.9 16.5 18.0 35.0 23.0 16.3 25.6 37.0

p-value (%) 6.8 4.9 14.2 <0.1 36.5 0.1

Table D.1: Time to Perform the Experiment: Outlier data excluded.

Test Case 1 2 3 4 5 6

Tool V E V E V E V E V E V E

Maximum 89 309 150 80 70 296 163 165 97 323 130 182

Minimum 33 21 9 59 35 41 14 69 32 39 16 68

Median 47.5 83.5 42.0 70.0 56.5 69.5 51.0 101.5 74.0 64.5 70.0 131.0

Average 54.6 111.6 58.9 69.4 54.9 92.5 57.3 110.6 69.6 98.1 69.4 128.1

Std. Dev. 17.7 84.4 45.0 8.2 11.9 78.4 43.4 35.0 23.0 86.4 33.2 37.0

p-value (%) 5.2 26.8 11.1 0.9 19.9 0.3

Table D.2: Time to Perform the Experiment: Outlier data included.

135

Statistical Information 136

Test Case 1 2 3 4 5 6

Tool V E V E V E V E V E V E

Maximum 2 4 3 4 4 4 2 10 5 10 7 10

Minimum 0 0 1 0 0 0 0 0 1 0 2 1

Median 1.0 1.5 1.5 2.0 1.0 0.0 1.0 2.5 2.0 3.0 4.5 7.0

Average 1.13 1.75 1.75 2.00 1.50 1.00 0.88 3.25 2.13 3.13 4.25 5.50

Std. Dev. 0.78 1.64 0.83 1.22 1.58 1.50 0.78 3.34 1.27 2.80 1.71 2.92

p-value (%) 17.9 32.0 26.4 4.6 19.1 15.9

Table D.3: Total Number of Incorrect Answers

Question 1 2 3 4 5 6 7 8 9 10 11

Maximum 5 5 5 5 5 5 5 5 5 3 5

Minimum 3 4 4 3 3 3 4 2 1 1 4

Median 4.0 4.0 5.0 4.0 4.0 4.5 5.0 5.0 3.0 2.0 4.0

Average 4.19 4.44 4.63 4.31 4.13 4.19 4.69 4.38 2.94 2.00 4.38

Std. Dev. 0.81 0.50 0.48 0.68 0.70 0.88 0.46 0.86 1.09 0.35 0.48

p-value (%) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 41.4 — <0.1

Table D.4: Preference Questionnaire: Regarding Table C.2.

Appendix E

Outlier Data

In this section we reproduce the main time charts including the outlier data removed from the

initial analysis. Overall, the removal benefited the reference tool more than the proposed tool.

Please note that only time-related data was removed from the analysis. The outlier answers to

the comparison tasks and preference questionnaire were still considered.

Figure E.1: Mean Time to Perform Tasks: Outlier data included.

137

Outlier Data 138

Figure E.2: Speed-up: Outlier data included.

Appendix F

Experiment Script

Below we reproduce the protocol which was followed for each participant before the experiments.

1. Briefly explain the experiment and its purpose;

2. Ask participant to read and sign both copies of Consent Form;

3. Fill participant number in Self Assessment Form, Preference Questionnaire, and spread-

sheet;

4. Ask participant to answer Self Assessment Form. Make sure participant has at least basic

knowledge of Java;

5. Explain the proposed tool is a non feature-complete prototype. Only discussed features

are the subject of evaluation; judgement shall not be based on expected features (merging,

three-way compare, etc.);

6. Explain the tool, not the participant, is being measured. Participant should perform

experiment at her own pace, no need to rush;

7. Explain that the participant has to tell what have changed, not what is highlighted.

Tools are error-prone and shall not be blindly trusted. Not everything which is high-

lighted may actually be a change; not all changes are highlighted; a single change may be

misrepresented as a set of changes.

(a) Participant does not need to understand the code nor the purpose of the changes,

only what have changed;

139

Experiment Script 140

(b) Participant does not need to explain every single detail of a change, but has to be

specific: “method X was added” is OK; “this line has changed” is not;

(c) Participant does not need to report changes in white space, line breaks, or empty

lines.

8. Open sample comparison using the reference tool;

9. Explain and show how to use the reference tool: Show which side is the new version

and which is the old one; show how changes are highlighted and how a set of changes in

one side is connected to the other side; explain how to report additions, deletions, and

modifications;

10. Open the same sample comparison using the proposed tool;

11. Explain and show how to use the proposed tool: Explain all changes are displayed merged

into a single view; show how changes are highlighted and how colors should be interpreted;

show how to view modifications using tooltips and hot keys; explain how to report addi-

tions, deletions, and modifications;

12. Show how to change the highlighting schema. Explain this is not a feature subject to

evaluation, just a preference question for feedback on the alternatives;

13. Record in the spreadsheet which tool is to be used first:

(a) Participant alternates between the tools at each comparison, using each tool for half

the comparisons;

(b) The first participant start with the reference tool, the second participant with the

proposed tool, and so forth;

(c) Comparison tasks are always performed in the same order, therefore each comparison

is performed half the time with the reference tool, half with the proposed tool.

14. Explain no feedback will be given by the examiner during the experiment;

15. Ask participant if she has any questions and if we can proceed with the experiment;

16. Start screen recording tool;

17. Ask participant to compare first pair of files using the assigned tool;

Experiment Script 141

18. For each comparison, record in the spreadsheet time spent understanding the changes;

19. After each comparison, ask participant to explain the changes. Participant can refer to

the code to answer questions. Take note of right answers, wrong answers, incomplete

answers, and omissions;

20. Ask participant to answer Preference Questionnaire.

Appendix G

Recruitment Letter

The following text was sent via e-mail to potential participants.

Hi,

My name is Marconi Lanna and I am a graduate student at the University of Ottawa under

the supervision of Prof. Daniel Amyot. I am looking for volunteers to participate in a research

project.

I need some people to perform an experiment in which one would compare pairs of files

(Java source code) using two different tools and then try to answer a few questions about the

comparisons. This would be done using the Eclipse IDE and a specially developed plug-in.

Basic knowledge of the Java programming language is required, to the level of understanding

the source code of simple, small classes. A brief explanation of the environment and the

tools will be given. Therefore, no experience with the Eclipse IDE or file comparison tools is

necessary.

The purpose of the experiment is to evaluate the features offered by the reference and the

proposed tools. The outcome of the experiment will be used anonymously in my research.

The experiment should take about 50 minutes and can be scheduled at a time convenient

for you.

Participation is strictly voluntary. If you are a student, whether or not you participate in

the study will have no effect on your grades or other academic evaluation. Professor Amyot, the

thesis supervisor, will have no access to the list of participants nor will know who participates

and who does not. All data he will have access to will be anonymous.

If you are willing to participate, please simply reply to this e-mail.

Thanks,

142

Appendix H

Consent Form

This Consent Form was given to participants before the experiments. Participants were required

to read and sign it before performing any tasks.

Consent Form

Invitation to Participate

I am invited to participate in a University of Ottawa research study entitled “ Spotting

the Difference: A Source Code Comparison Tool” conducted by graduate student Mar-

coni Lanna under the supervision of Prof. Daniel Amyot, both from the School of Information

Technology and Engineering.

Purpose of the Study

The purpose of the study is to help improve certain features of file comparison tools. Specifically,

a single-pane source code comparison tool is proposed as an interface metaphor for reviewing

modified versions of a Java source file and understanding the differences between them.

Participation

My participation will consist of comparing eight pairs of files (Java source code) using two

different software tools, the Eclipse IDE and a special plug-in, four pairs each, and then explain

what I have learned about the comparisons. The researcher will explain how the tools are to

be used in the context of the experiment. After the experiment, I will answer an anonymous

143

Consent Form 144

questionnaire with general questions about my impressions regarding the experiment.

The time taken to perform the tasks will be measured. However, I understand that the

subject of the evaluation is the performance of the software tools, not mine. A

special software will record the contents of the computer screen during the experiment, but

NO video or audio recordings of me will be made.

My participation should be done in a single 50-minute session.

Risks

I have received assurance from the researcher that there are no known risks associated with

this experiment greater than those I might encounter in everyday life.

Benefits

My participation in this study will provide the research with experimental data to evaluate and

propose improvements to file comparison tools.

Confidentiality and Anonymity

I have received assurance from the researcher that all information produced during the

session will remain strictly confidential.

I understand that the outcome of the experiment will be used only to evaluate

the performance of the software tools.

Anonymity will be protected because neither my name nor any identifiable information will

ever be recorded. If needed, data might be tagged with non-traceable numeric IDs.

Conservation of Data

All data produced during the experiment will be kept anonymously, and will be accessed

only by the researchers. The raw data will be kept by the supervisor for a period of 5 years

in case of an audit.

Voluntary Participation

I understand that my participation is strictly voluntary and if I choose to participate, I

can withdraw from the study at any time and/or refuse to answer any questions, without

suffering any negative consequences.

Consent Form 145

If I am a student, whether or not I participate in the study will have no effect on my grades

or other academic evaluation. Professor Amyot, the thesis supervisor, will have no access to

the list of participants nor will know who participates and who does not. All data he will have

access to will be anonymous.

If I choose to withdraw, no data gathered until the time of my withdrawal will be

used.

Acceptance

I, participant name, agree to participate in the above research study conducted by Marconi

Lanna, under the supervision of Prof. Daniel Amyot, both from the School of Information

Technology and Engineering.

If I have any questions about the study, I may contact the researcher by e-mail,

mgarc021@uottawa.ca, or his supervisor by phone, (613) 562-5800 ext. 6947, or e-mail,

damyot@site.uottawa.ca.

If I have any questions regarding the ethical conduct of this study, I may contact the

Protocol Officer for Ethics in Research, University of Ottawa, Tabaret Hall, 550 Cumberland

Street, Room 159, Ottawa, ON K1N 6N5, phone (613) 562-5841, e-mail ethics@uottawa.ca

There are two copies of the consent form, one of which is mine to keep.

Appendix I

Self Assessment Form

Participants were asked to answer this self assessment form before performing the experiment.

Participants were not questioned about their answers, but only participants which claimed at

least a beginner-level knowledge of the Java programming language were invited to continue.

Self Assessment Form

Your answers to this self assessment form will be recorded anonymously. Please, do NOT

write in your name, but DO write your participant number.

All questions below should be answered based on your own judgement about yourself and

your knowledge of these technologies. You will NOT be questioned about your answers. These

answers are for reference purposes only and will NOT affect the outcome of the experiment.

For each of the questions below, circle the answer that best matches your opinion.

Question 1

How would you classify your own knowledge of the Java programming language?

No knowledge Beginner Intermediate Expert

Question 2

How would you classify your own experience working with the Eclipse development environ-

ment?

No experience Beginner Intermediate Expert

146

Self Assessment Form 147

Question 3

How often do you review changes made by you or by others to source code files?

Never Occasionally Every month Every week Every day

Question 4

How often do you use comparison tools to perform the tasks mentioned on Question 3?

Never Occasionally Every month Every week Every day

Appendix J

Preference Questionnaire

Participants were asked to answer this preference questionnaire after the experiment. Question

10, although still reproduced here for completeness, was annulled.

Preference Questionnaire

This questionnaire is to be answered anonymously. Please, do NOT write in your name, but

DO write your participant number.

All questions bellow should be answered based on the features that were discussed and/or

showed during the experiment. Please, do NOT base your answers on previous knowledge or

expected features.

For each of the questions below, circle the answer that best matches your opinion.

Question 1

Learnability is a measure of how easy it is to learn to use a software product. As an analogy,

it is arguably easier for a baby to learn to crawl than it is to learn to walk.

Given this definition, would you say the proposed tool is easier to learn than the

reference tool?

Strongly Agree Agree Neutral Disagree Strongly Disagree

Question 2

Ease of use is a measure of how easy it is to use a software product after its use has been

learned. Keeping with our analogy, after learned, walking is typically easier than crawling since

148

Preference Questionnaire 149

it requires less limbs and is done on a more comfortable position.

Given this definition, would you say the proposed tool is easier to use than the reference

tool?

Strongly Agree Agree Neutral Disagree Strongly Disagree

Question 3

Efficiency is a measure of how quickly tasks can be performed with a software product after

its use has been mastered. Again, walking is usually faster than crawling.

Given this definition, would you say the proposed tool allows you to perform tasks more

efficiently than the reference tool?

Strongly Agree Agree Neutral Disagree Strongly Disagree

Question 4

Intuitiveness is a measure of how easy it is to understand the output or the interface of a

software product.

Given this definition, would you say the proposed tool is more intuitive than the refer-

ence tool?

Strongly Agree Agree Neutral Disagree Strongly Disagree

Questions 5 to 10 below concern the proposed tool and its features.

Question 5

The use of a single-pane interface made it easier to understand the differences and perform

the comparison tasks.

Strongly Agree Agree Neutral Disagree Strongly Disagree

Question 6

The highlighting granularity of the proposed tool (i.e, single-tokens instead of whole-lines)

is appropriate to perform the comparison tasks.

Strongly Agree Agree Neutral Disagree Strongly Disagree

Preference Questionnaire 150

Question 7

The classification of differences (additions, deletions, and modifications) along with the use

of colors made it easier to understand the differences and perform the comparison tasks.

Strongly Agree Agree Neutral Disagree Strongly Disagree

Question 8

PREMISE : Unlike additions or deletions, modifications require both the original and the

changed text to be displayed.

The use of artifacts such as tooltips and/or hot keys is a convenient way to display

modifications.

Strongly Agree Agree Neutral Disagree Strongly Disagree

Question 9

For visualizing modifications, which artifact would you prefer using:

Tooltips only Tooltips mostly Both

Hot keys mostly Hot keys only Neither

Question 10

Which of the highlighting schemas do you think was the most pleasant and practical to use:

Background only Background with strikeouts Strikeouts and underlines

No preference

Question 11

If both tools were available in your work environment, which tool would you prefer using

if you had to perform a comparison task?

The reference tool only The reference tool mostly Both tools similarly

The proposed tool mostly The proposed tool only

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction
	Motivation
	Research Hypothesis and Proposed Interface
	Thesis Contributions
	Background Information
	The Longest Common Subsequence
	Files and Differences
	Alternatives to the LCS

	Related Work
	Sample Test Case
	Thesis Outline

	Comparison Tools Survey
	File Comparison Features
	Comparison Tools
	diff
	Eclipse
	FileMerge
	IntelliJ IDEA
	Kompare
	Meld
	NetBeans
	WinDiff
	WinMerge

	Feature Summary
	Chapter Summary

	Spotting the Difference
	Research Hypothesis Restated
	Display Design
	Principles of Display Design

	The Proposed Interface
	Single-pane Interface
	Difference Classification
	Displaying Modifications
	Granularity

	File Comparison Features Revisited
	Chapter Summary

	Architecture and Implementation
	The Platform
	Design and Architecture
	Making a Difference
	Difference Computation
	Difference Classification
	Merged Document
	White Space Handling

	Chapter Summary

	Usability Evaluation
	Methodology
	Test Cases
	Answer Grading
	Environment Configuration

	Participants
	Self Assessment Form

	Experimental Results
	Participant Performance
	Task Performance
	Participant Answers

	Experiment Summary
	Preference Questionnaire
	Chapter Summary

	Lessons from the Usability Study
	General Remarks
	The Reference Tool
	Automatic Scroll to First Difference
	Pair Matching
	Differences on the Far Right
	Vertical Alignment
	Vertical Scrolling
	Dangling Text and Line Reordering

	The Proposed Tool
	Short Differences
	Dangling Text
	Token Granularity
	Difference Classification Heuristics
	Line Reordering

	Miscellaneous Observations
	Chapter Summary

	Conclusion
	Main Contributions
	Threats to Validity
	Future Work
	Final Remarks

	References
	Test Cases
	1.old.java
	1.new.java
	2.old.java
	2.new.java
	3.old.java
	3.new.java
	4.old.java
	4.new.java
	5.old.java
	5.new.java
	6.old.java
	6.new.java

	List of Differences
	Test Case 1
	Test Case 2
	Test Case 3
	Test Case 4
	Test Case 5
	Test Case 6

	Experimental Data
	Statistical Information
	Outlier Data
	Experiment Script
	Recruitment Letter
	Consent Form
	Self Assessment Form
	Preference Questionnaire

