
1

Co-operative Education
Work Term Report

Path Traversal and Scenario Generation
from Use Case Map

Name: XiangYang He
Student Number: 2417281
Employer: University of Ottawa
Supervisor: Dr. Daniel Amyot
Date Due: September 13, 2002

2

Table of Contents

Contents Page #

Abstract --- -

Introduction -- 1

UCM and UCM Navigator

UCM Notation Elements --- 1

UCM Navigator --- 2

Body

Software Tools --- 3

Task 1: Modify Path Traversal Algorithm ------------------------- 4

Task 2: Define Neutral Scenario Definition ----------------------- 8

Task 3: Generate Scenario from UCM ----------------------------- 9

Discussion on Future Design

Reset of Synchronization Point ------------------------------------- 15

Traversal on Plug-in Map --- 16

Conclusion --- 17

References --- 19

Appendix

Appendix 1: Scenario Data Type Definition --------------------- 20

Appendix 2: Example Scenario Output 1 ------------------------- 21

Appendix 3: Example Scenario Output 2 ------------------------- 22

3

Abstract

Use Case Map (UCM) is used in software engineering for describing functional
requirements and high-level designs. The current software tool used in UCM is called
UCM Navigator, it can be used to create and edit use case maps. My major work in this
work term was to improve UCMNav to implement a new path traversal algorithm and to
generate scenarios in XML format.

First, the background information about use case map is presented. Then, I analyze the
problems existing in the original programs, propose a new algorithm, and discuss how the
algorithm is implemented in scenario highlighting. Secondly, the neutral scenario
definition is briefly discussed. Based on the new path traversal mechanism and scenario
definition, I begin to work on scenario generation. The scenario generation algorithm is
studied in depth, from algorithm analysis, class design to implementation details. Finally,
some thought on future improvement regarding traversal on plug-in map and
synchronization is presented.

4

Introduction
During this work term, I worked as a junior software developer for Professor Daniel
Amyot at SITE, University of Ottawa. Professor Daniel Amyot is currently in charge of
the standardization of User Requirement Notation (URN) at the International
Telecommunication Union (ITU). The Use Case Maps (UCM) notation, as part of the
URN is also being standardized by ITU.

UCM is used in software engineering for describing functional requirements and high-
level designs, especially in the areas of telecommunications systems. UCM employs
scenario paths to illustrate causal relationships among responsibilities. It provides an
integrated view of behavior and structure by allowing the superimposition of scenario
paths on a structure of abstract components. The combination of behaviour and structure
enables architectural reasoning after which UCM specifications may be refined into more
detailed models such as MSCs and UML interaction diagrams. [1]

The current software tool used in UCM is UCM Navigator, which was mainly developed
by Andrew Miga at Carleton University. UCM Navigator is a fairly powerful tool, it can
create and edit use case maps that are syntactically correct, perform path transformation
and path connections based on the internal hyperedge representation, and provide support
for scenario definitions.

However there are some problems with the tool: it can not traverse the maps completely,
and sometime it may even crushes the program. Besides the algorithm it uses to output
individual scenario definition is not the one suggested for standardization. My major task
in this work term is to modify the UCM Navigator. It consists of three parts:

1) fix the bugs in the source code of UCM Navigator so that it can traverse
scenario correctly

2) define a neutral representation of individual scenario in XML
3) modify the UCM Navigator to implement the new traversal algorithm and

generate scenarios in the format defined in 2)

Considering the fact that the original tool has more than 80 thousand lines of source code,
and it has been weakly documented, modification of existing program is not an easy task.
I had to carefully read the code to try to understand the structure and algorithm the author
used. Only based on the understanding of the program, can I find the problem it has and
try to find ways to solve the problem. Furthermore it also requires me to grasp some basic
concepts of Use Case Maps.

UCM and UCM Navigator
UCM Notation Elements
Use Case Maps notation was developed by Dr. R.J.A. Buhr at Carlton University. The
notation is intended to be useful for requirement specification, design, testing,
maintenance, adaptation, and evolution. It aims to bridge a modeling gap between
requirement and design [2]. UCM paths are first-class entities that describe casual
relationships between responsibilities, which are bound to underlying organizational

5

structures of abstract components. These paths represent scenarios that intend to bridge
the gap between requirements and detailed design. [3]

The UCM notation is mainly composed of path elements, and components. The basic
path notation addresses simple operators for casually linking responsibilities in
sequences, as alternatives, or in parallel. Components can be of different nature, allowing
for a better and more appropriate description of some entities in a system [3]. The basic
path elements are:

• Start points: a scenario should have at least one starting points
• Responsibility: represents actions, functions to be performed
• End points: represents post-conditions and resulting effects.

Besides there are elements representing the relationship between paths, such as or-fork,
and-fork, or-join, and-join, etc.

Figure 2 – 1 shows an example use case map where a user (Alice) attempts to call another
user (Bob) through some network of agents [3]. In this map, req is the start point, ring
and msg are the end points, vrfy, upd, and mb are responsibilities. Alice, Bob are
components.

Alice AgentA AgentB Bob

req
ring

[busy]
msg

vrfy
upd[idle]

mb

Figure 2 - 1

UCM Navigator
UCM Navigator (UCMNav) can support both UCM notation and XML format. Although
it is a still a prototype tool, it is already robust enough for the creation and maintenance
of UCMs. The path and component notation are fully supported. UCMNav ensures the
syntactical correctness of UCMs manipulated, generate XML descriptions, export UCMs
in Encapsulated or MIF format. Figure 2 – 1 displays a typical UCMNav interface.

The UCMNav has two main functions: managing all the logical objects that make up a
UCM model and providing a visual interface that display the model and makes it possible
to edit it. As such, the UCMNav classes can be divided into two major categories: logical
classes and display classes. The logical classes store all the data associated with the
model, while the display classes provide the user interface to access this data. [4]

6

Figure 2 – 1

There are two main kinds of logical entities that we are concerned with in order to
generate scenarios : path elements and components. UCMNav uses a hypergraph to
represent the connections between UCM path elements in a path. A hypergraph is a graph
whose hyperedges connect two or more vertices. It is composed of edges, called
hyperedges, and vertices, or nodes. A hyperedge connects a set of multiple source nodes
with a set of multiple target nodes. A node has a single hyperedge leading into it and a
single target hyperedge leading from it. [4]

In the tool, the base hypergraph class is Hyperedge. It is a virtual class that defines all the
methods and data that are common to every hyperedge. Every class with a single input
and output is a direct child of Hyperedge. The MultipathEdge virtual class refines
Hyperedge with methods to manage a variable number of multiple input or output paths.
The OrFork, OrJoin, and synchronization classes are derived from Multipathedge.

Body
Software Tools
Through this work term I got acquainted with the some software tools. They greatly
facilitated my job progress.

7

1. Source-Navigator
It is a source code analyzing tool. With it, programmer can edit source code, display
relationships between class, functions, and members, and display call trees. It can also
build projects with the authors own makefile, or by using Source-Navigator’s build
system to automatically generate a makefile [5]. It is especially useful for reverse
engineering, since a lot of information, such as class hierarchy, function call relationship,
can be extracted from it.

2. GNU debugger
The development platform of UCM Navigator is mainly in Linux. It provides the xxgdb
symbolic debugger to enable programmers to analyze the execution of a program in terms
of C++ language statements. gdb allows programmer to step through a program on a line-
by-line basis while he/she examine the state of the execution environment. It also allows
you to examine core files when a serious problem occurs. From the core file you can
identify the line in the program while the failure occurred.

3. LiveDTD
LiveDTD is a program which scans through an XML Document Type Definition (DTD)
to locate element and parameter entity definitions. Then it constructs an HTML version
of the DTD with hot links from element references to element declarations, and from
entity references to entity declarations. These links let users navigate through the DTD
with ease. [6]

Task 1: Modify Path Traversal Algorithm
1. Application of Path Traversal Mechanism
A typical use case map may contain multiple scenario groups; each scenario group can
also contain multiple scenarios. Thus it would be difficult to analyze one particular
scenario in a complex map. UCMNav has a functionality calledscenario highlighting. If
user choose one particular scenario and press the “highlighting” button, the actual path
traversal of this scenario will be shown in red or orange colors. The red color means that
the path elements are traversed only once, while the orange represents that they are
traversed multiple times.

If the scenario has no start points, or the variable for some branch condition is not
initialized, or one of the Synchronization points, Timer, or Wait is not synchronized, the
path traversal will fail and UCMNav will issue a warning message. So scenario
highlighting can be used to analyze the scenario definition, check its syntactical
correctness and completeness.

However the current UCMNav has some serious problems with regard to scenario
highlight. It cannot produce the correct highlighting result when traversing some complex
or unwell-nested maps, sometimes it highlights only one branch of the a and-Fork, and
sometimes it may even crash the program.

Path traversal is the foundation for more advanced functionality of UCMNav, it has the
application in the following areas: scenario highlighting, animation, MSC generation,

8

LQN generation, and test case generation [7]. Thus my first task will be to design an
implement a new path traversal algorithm to highlight scenario.

2. Analysis of Existing Algorithm
The first step is to carefully examine the original source code, try to find the problem of
the original design. Then I can design a new algorithm. The original algorithm is as
follows:

1. Get the start point of the scenario
2. Process this hyperedge
3. Get the next hyperedge following it
4. check if the hyperedge is NULL, if Yes go to step (1); if No go to step (2)

until the last of the scenario start point is reached

At a first glance, this algorithm seems have no problem. It just iteratively get the next
available hyperedge, process it, and then look for the next following it.

Figure 3 – 1

Source number > 1 ?

Get current parallel branch and
branch count from fork stack

current branch index < branch count ?

Increment branch index

Return next edge in
current branch

Remove the fork from
stack

Return the first output branch of the
synchronization

Add Synchronization on
fork stack

End

No
Yes

Yes No

9

The method to process the hyperedge is called ScanScenarios, which is a virtual method,
each subclass of hyperedge has its own implementation of the method. Through carefully
trace some example UCM maps, I found that the problem resulted from the
implementation of method ScanScenarios in class Synchronization, Wait, Timer, and
Stub. Take the synchronization’s ScanScenarios method as an example, the algorithm is
shown in figure 3 -1.

When current branch index equals to branch count, the algorithm would assume that the
all branches of the synchronization point have been visited, and quietly return the next
hyperedge following the synchronization. For well-nested map , this is the case, but when
map is unwell-nested, then there is a problem. Let us exam the map below and take a
closer look at how the algorithm works.

s1

end
r1

r4

r6B

r2

r3
s2

A

Figure 3 - 2

The above map have 2 start points S1, S2, 1 end point, and 2 synchronization points,
synchronization A has 2 output branches, synchronization B has 3 input branches. If the
scenario starts from S1, it will traverse in the procedures below:

1. process s1, go to next hyperedge r1
2. process r1, go to next hyperedge A
3. put A on fork stack, process the first output branch r2, go to next hyperedge B
4. peek the fork stack, get the next branch r3
5. process r3, go to next hyperedge B
6. peek the fork stack, since every output branch of A has been traversed, pop up A

from stack, and get next output branch r6 of synchronization B
7. process r6, get next hyperedge end point end
8. Since there is still scenario start points left for visit, get the next start point s2
9. process s2, get next hyperedge r4
10. process r4, reach next hyperedge B
11. peek the fork stack, it is now empty, and return a NULL pointer, the program tries

to manipulate on the NULL pointer, and thus crashes at this point.

Obviously, although 2 branches of A have been visited, we can not judge from it that B
has been synchronized. Use Case Maps can be in any complex combinations. That is
where the problem resides.

10

Similar problems exist for class Timer, Wait, both are subclasses of Wait_synch. When a
Wait or Timer is encountered, it will call a method NextScanningPath in class
MSC_generator, which tries to find the hyperedge that triggers the Wait_synch. But the
method NextScanningPath only restrict itself to the top element of the fork stack while
looking for the trigger element. If one of the branches of the top fork triggers the
Wait_synch, that is fine. Otherwise it returns the next starting points, as though it will
trigger the Wait_synch. This is not true in most cases.

3. Design of New Traversal Algorithm
From the above analysis, we conclude that the existing traversal algorithm has the
following problems:

1. It assumes that UCMs are in well-nested form.
2. It treats Synchronization, Timer, Wait in different ways during traversal, thus

makes the program very complex.

In order to solve the problems, I propose a new depth-first traversal mechanism. The
detailed algorithm is as follows:
Variables:

Fork_Stack : holding the and-fork elements, if all branches of the fork have been
visited, the fork will be popped up from the stack

Path_Elements: stores all Synchronization, Wait, Timer elements when they are
encountered for the first time during traversal

Algorithm:
1. Start from one of the start points defined by the user.
2. Moves from path element A to path element B if continuation condition for

element A is met.
3. If a Synchronization (in particular and-join), Timer, or Wait is encountered,

register this element with Path_Elements, then get the next parallel branch from the
top of the Fork_Stack. If all branches of the top element have been visited, remove
it from Fork_Stack.

4. If the Fork_Stack is empty, get the next start points, and continue.
5. If one of the Synchronization, Timer, or Wait has been synchronized (that means

that all input branches of it have been visited), mark the corresponding element in
Path_Elements as all visited, and get the first output branch of this hyperedge.

6. If an end point is reached, first check the Fork_Stack, if it is not empty, then get the
next parallel branch, otherwise get the next start points, and continue.

7. After no more start points of the scenario are left for traversal, check each element
of Path_Elements, if any one of them is not marked as all visited, that means there
is an error with the scenario definition, generate an error message and abort
traversal. Otherwise traversal succeeds.

8. Clean up the Stack and reset the generation state of all elements in Path_Elements.

Since the UCMs can be in well-nested and unwell-nested form, and Synchronization and
Wait_synch share some similar characteristics, the algorithm adopts a depth-first
approach, it keeps traverse the path elements until a stop point (means and-join, Wait,
Timer) is reached, then it backtracks to get next available hyperedge. The hyperedge can

11

be either one branch of an and-fork or one of the scenario start points. So this approach
treats Synchronization, Timer, and Wait in similar way while traversing, and thus is much
simpler and robust than the original one.

4. Implementation
The implementation of this algorithm is mainly accomplished through modifying existing
source code in class msc_generator.cc, msc_generator.h, synchronization.cc,
synchronization.h, timer.cc, timer.h, wait.cc, wait.h, and class node.cc, node.h, etc.

First I removed the functionality of scenario highlighting from method ScanScenarios in
class Hyperedge and its subclasses. The original method tries to accomplish scenario
highlight and MSC generation in one method, thus make its structure too complex and
error phony. Then I added a method HighlightScenario to Hyperedge and its subclasses to
accomplish scenario highlighting through implementing the new algorithm. In addition, I
also made the following modifications:

1. In class node.h, add an instance variable bool visited to keep track of the visiting
state of the node, in class node.cc add corresponding set and get method, and in the
constructor set the variable’s value to false.

2. In class empty.cc, in the method HighlightScenario add a function call to set the
target node’s variable visited to true.

3. In class map.h, add instance variable scanning_parent_stub with the type Stub * to
keep track of the parent stub of current map, and initialize its value to NULL in the
constructor, and add corresponding set and get method.

4. In class stub.cc, in method ScanPlugInMap add a function call to method
SetScanningParentStub to variable submap.

5. modify the virtual method HighlightScenario for each subclass of class hyperedge.

After the coding phase, I thoroughly tested the program on many UCM examples. It
works well.

Task 2: Define Neutral Scenario Definition
The existing UCMNav is a fairly complex tool, it has many functionalities, such as
scenario highlighting, generating MSC, generating LQN, export maps in SVG, CGM,
EPS, and MIF format, as well as the basic file operations. So the source code is very
complex, it is difficult for maintenance. Especially, considering the fact that the UCMs
may late be transformed to TTCN, LOTOS, and even UML, should we add all these
functionalities to UCMNav? The answer is No. It would be much easier to generate a
neutral representation of UCM scenarios, and have other tools to process the scenario to
output TTCN, LOTOS, or UML, etc.

My second task is to define a new scenario definition in XML. It should provide adequate
information for future processing of scenarios. This task was completed with the help of
Dr. Daniel Amyot.

12

The top element of the scenario is scenarios, it may contain multiple scenario groups, and
each scenario group may also contain multiple scenarios. The path progression of a
scenario is the most important part of scenario definition. There are 2 types of path
progression, sequence (seq) and parallel (par). The most basic elements of scenario are
do and condition. do represents responsibility, start point, end point, wait, and timer.
condition represents path selection condition in or-fork. For detailed definition of
scenario, please refer to Appendix 1: Scenario Documentation Type Definition.

Task 3: Generate Scenario from UCM
1. Scenario Generation Algorithm
Scenario generation consists of two major aspects, one of them is scenario traversal,
which is basically the same as path traversal algorithm in Task 1; the other one is
scenario restructuring. In this section, we will focus on the algorithm used in
restructuring scenario.

The scenario is defined in XML, which is a well-nested format, however the actual UCM
maps can have any complex format, and they may be unwell-nested. Therefore during the
transformation of UCM maps to new scenario we need to make some modifications to the
representation of UCM. The transformation process is called collapsing, it takes place
when the waiting place (such as Synchronization, Wait, Timer) is synchronized. We will
use the example in Figure 3 – 3 to illustrate the collapsing algorithm.

s1 endr1 r7J1

r5 r6

s2

r2

r3
r4J2

Figure 3 - 3

The scenario traversal starts at start point s1, and continue to r1, then it reaches the first
and-fork. At the pint, one parallel path r5 is chosen, and the fork is put on a stack. The
traversal continues until it reaches a synchronization point where the traversal gets stuck.
Then it pops up the stack and get the next parallel branch r2, the traversal gets stuck
again. Since the stack is empty, the path traversal mechanism will try to get the next start
point, in this case s2, and start traverse from s2. The traversal continues to r3, after that it
reaches synchronization point J2. At this point, all input branches of J2 have been visited,
so J2 is synchronized. The parallel paths need to collapse now. Before collapse, the paths
are shown in Figure 3 – 4.

13

Figure 3 - 4

On this graph, each node represents a start point, responsibility, or an and-join. To
collapse the paths, we should search through the 2 branches starting from synchronization
point J2, for each node, if it has next node that do not leads to J2, we will move the next
node to J2, until the start point is encountered, or the common ancestor of the 2 branches
is reached. Since the 2 branches all start from start points, they have no common
ancestor. In order to make the parallel block easy to process, we add an additional node S
before start points s1 and s2. So this additional node becomes the start point of the
parallel. After collapsing, a parallel block starting from S and ending at J2 is constructed;
the paths are shown Figure 3 – 5.

Figure 3 - 5

Since the transformation process is a partial ordering, so after collapsing, some of the
scenario information is lost. For example, in the original UCM map, r5 should start after
r1 and before r6, but in the collapsed graph, r5 is deemed to start after J2.

The path traversal resumes from J2, continues to r4, until it reaches J1. At this point J1 is
synchronized, so it needs to be collapsed again. Before collapsing, the graph is shown in
Figure 3 – 6.

S1 r1

r5 r6

r2

J2 J1

S2 r3

S

S1 r1

r5 r6

r2

J2

J1

S2 r3

14

Figure 3 - 6

Since the 2 branches of J1 are both starting from J2, J2 is the common ancestor of the 2
branches. For each node of the 2 branches, we should check if any one of its next nodes
does not lead to J1, if not, we should shift it to J1, this process continues until it reaches
J2. In this particular case, no node needs to be shifted. So the graph after collapse is
essentially the same as the one before collapse.

Path traversal continues from J1, through r7, to the end point end, since the stack is
empty, and there is no more start point left to be traversed. The path traversal ends at this
point. The final scenario is shown Figure 3 – 7. For the output of the scenario in XML
format, please refer to Appendix 2: Example Scenario Output 1

Figure 3 - 7

2. Design of Classes
The new scenario definition requires us to make modifications, such as collapsing to the
maps while traversing the maps. However we should not change the original map, so we
need to design some additional classes to store the path information, to make necessary
processing, and leave the original map intact.

The scenario is actually a nested graph, it consists of nodes, and each node represents a
responsibility, start point, end point, and-join, and condition. The node should also have
pointers pointing to its next nodes and previous nodes. Each node can point to multiple
next nodes and previous nodes. Since do and condition are two different identities in the
scenario definition, they have different types of attributes, it is reasonable to have 2
classes to represent the two types of objects.

S1 r1 r5 r6r2

J2
J1

S2 r3 r4

r7

end
S

S1 r1 r5 r6r2

J2 J1

S2 r3 r4

S

15

Besides, the two classes also share some common features, such as they both have a field
to represent the hyperedge-id of the hyperedge, more importantly, each of them should
have pointers pointing to its previous and next nodes. It is appropriate to have a super
class to stand for the common attributes of element do and condition.

Based on the above analysis, I designed three classes to represent the elements of the
scenario definition. The class hierarchy and major data field are listed in Figure 3 - 8.

Class Path_data stands for the common characteristics of path element, it has the methods
necessary for list operations, such as add an element after the element, add an element
before the element, remove an element from previous or next list. The instance variable
scanCount is not an attribute of the class Path_data, but it is used during the process of
collapsing, which will be illustrated in next section.

Class Action is a subclass of class Path_data. It corresponds to element do in the scenario
definition. Class action contains methods necessary to initialize, destruct the Action
object, and the methods to print the scenario element in XML format. Similarly, class
Conditions is also a subclass of class Path_data, which corresponding to element
condition in the scenario definition.

Figure 3 – 8

Path_data

Cltn<Path_data> * next_path
Cltn<Path_data> * previous
Path_data * root
Path_data * destination
int scanCount

Action

int hyperedge_id
char name[]
char * description
action_type type
char component_name
int component_id
ComponentReference *

containingComponent

Conditions

int hyperedge_id
char label[]
char * expresssion

16

There is also a class SCENARIO_Generator, which is used to initializing, managing the
scenario generation process, as well as output the scenario in XML format. Class
SCENARIO_Generator is very similar to class MSC_Generator. It has one additional
variable Cltn<Path_data *> path_traversal to hold the Path_data elements it have created
during the process of traversal. When it outputs the scenario information, it just prints the
path_traversal one by one.

3. Implementation Details
From the scenario generation algorithm presented in section 1, we know that the actual
collapsing takes place after the path traversal synchronizes an and-fork, a Timer, or a
Wait. Since Timer and Wait have much characteristic in common, I decided to implement
the collapsing process at class Synchronization, Wait_Synch respectively. Wait_Synch is
a super class of Timer and Wait.

Collapsing is a complex process; it involves finding of the root element, moving the
redundant element, etc. Especially for Synchronization, it can have multiple input
branches, which makes the structure of maps very complex. We will take a close look at
the methods in Synchronization.

Every time when a synchronization point is synchronized, it means that a parallel block
can be formed. Since there is no parallel object in our class definition, we have to define
the scope of the parallel through its root and destination. Root is the parallel’s start point;
destination is the parallel’s end point. For the second parallel block in the example of
Figure 3 -3, the root is J2, and destination is J1. Path_data J1’s instance variable root
should be set to J2.

The method SearchRoot in class Synchronization is intended to find the root of the
parallel block. In order to find the root, we should backtrack along each input branch of
the synchronization, and increments the instance variable scanCount of each Path_data
element along the path until the end of the path. At the end, the first element with the
scanCount greater than 1 is the root of the parallel block. If there is no element with
scanCount greater than 1, then it means that all input branches starts with different start
points. For example, in figure 3-3, the first parallel block with destination J2, the 2
branches are S1 - r1 – r2 and S2 – r3, each element’s scanCount equals to 1. So we
should set the J2’s destination equal to NULL.

s
end

r1

r3 r4

r6J1

r8
r9

r5

Figure 3 – 9

17

The reason we use scanCount to find root element and Boolean variable
incompleteSearch in method TraverseScenario is mainly to deal with the situation
depicted in Figure 3 – 9. When path traversal synchronized and-join J1, there are 3 input
branches, obviously, r9 and r5 should form an inner parallel block (let’s denote it P1), P1
and r8 form one branch of the outer parallel block, r3 and r4 form another branch.

After backtracking from J1 to increment scanCount, r8 has a scanCount value 2, S and r1
with value 3. Since r8’s scanCount value is less than the number of input branches of J1,
we can conclude that there exists an inner parallel, variable incompleteSearch is set to
true, and r8 becomes the root of inner parallel. So we need to collapse the map for the
inner parallel first, after that we will collapse the out parallel block.

When performing collapsing of inner parallel, we need to insert an additional and-join
between the inner parallel and J1 in order to facilitate collapsing of outer parallel. Before
collapsing of inner parallel block, the paths are shown in Figure 3 – 10.

Figure 3 – 10

After collapsing the inner parallel, supposing that the additional and-join is called JJ, the
new figure is shown in Figure 3 – 11. From the figure, we can see that r8 is the root of the
inner parallel; JJ is the destination of the inner parallel. Now the total number of input
branches of J1 becomes 2.

Figure 3 – 11

S r1 r5

r8
JJ

r3 r4

r9

J1

S r1 r5

r8

J1

r3 r4

r9

18

Since variable incompleteSearch is true, it means there exists outer parallel remain to be
collapsed. So we should backtrack from J1 to increment scanCount, and search the new
root again. This time r1’s scanCount is 2, which is equal to the number of input branches
of J1, so r1 becomes the new root, J1 is the destination of the outer parallel, and variable
incompleteSearch should be set to false. The map is already well-nested, so the second
collapse does not modify the graph. Because incompleteSearch is false, the collapsing of
J1 is complete, and we can continue to traverse the map. The final map is shown in
Figure 3- 12. For the output of the scenario in XML format please refer to Appendix 3:
Example Scenario Output 2

Figure 3 – 12

Discussion on Future Design
Although the functionality of path traversal and scenario generation can work properly
most of the time, there are still some issues that need to be solved in order to improve the
algorithm.

Reset of Synchronization Point
With current path traversal algorithm, every time when a synchronization point is
synchronized, the algorithm will reset Boolean variable visited to be false for all input
branches of the synchronization. This has two limitations, first, it cause the traversal
result tightly coupled with the order of start points; second, there may be situations, that
the synchronization point can be kept synchronized once it was synchronized. Let’s first
look at the example shown in Figure 4 – 1.

B

A

C R

D

r1

Figure 4 – 1

S r1
r5

r8

JJ

r3 r4

r6 end

r9

J1

19

For this example, when the start points of one scenario begin in the following order: A-B-
C-D, start points A, B, C first triggers the and-join, path traversal continues to R, then
start point D begins to be processed . When it reaches and-join, the path traversal will
generate an error message because only one branch is visited.

However when the start points begin in the order of A-C-B-D, A, C first triggers the and-
join, path traversal continues to R, then B, D begin to traverse, and they will trigger the
and-join again, so the synchronization is actually traversed two times.

Therefore, I think that we can add an attribute to Synchronization, so that the designer
can specify if he/she wants to keep the synchronization open (synchronized) once the
synchronization is triggered. For example a Boolean variable keep_open, if it is true, then
after the synchronization was synchronized, we do not need to reset the input branches’
visited value; if it is false, then we should reset them.

Traversal on Plug-in Map
If path traversal visits a plug-in map more than once, is it visiting the same plug-in or a
new instance? [5] This is a question still not answered. Current traversal algorithm does
not work when a plug-in map is bound with multiple stubs in one root map.

The reason I decided not to consider this situation, is that there are many plug-in maps in
a complex UCM map, and each map may contain multiple start points. If the start points
in plug-in map are bound with the stub entries, then it is not difficult to implement an
algorithm to determine which plug-in map is being visited. However the current UCM
syntax allows the maps at all levels to have start points and the start points in plug-in map
do not have to be bound with the stub entries, it is virtually impossible for the current
path traversal mechanism to determine which stub’s plug-in map is being visited when a
start point in a plug-in map is initiated. Again let’s look at an example in Figure 4 – 2.

Here we are supposing that when traversing a plug-in map it is a new instance of the map
being traversed. The map in Figure 4 – 2 (a) is a root map, it has two stubs, both of the
stubs are bound to the plug-in map in Figure 4 – 2 (b). Besides, start point s1 in plug-in
map is bound to the stub entry of both stubs; end point e1 is bound to the stub exit path of
stubs. The traversal procedure is as follows:

Start point s, and responsibility r1 are visited. We reach the and-fork, the fork is put on
the stack, and the first output branch s1 is chosen. s1 and r3 are visited. The traversal
reaches the and-join of plug-in map, and gets stuck. So it pops up the stack and gets the
next parallel branch – s1 of plug-in map bound with stub st2. Path traversal continues to
r3, and then it gets stuck at the and-join. Since the stack is empty, the traversal
mechanism tries to get the next start point of the scenario. So s2 is picked up, now we
have the problem, is this s2 belonging to the plug-in map of stub st1 or st2?

Currently, the traversal algorithm uses a variable decomposition stack to determine the
stub decomposition level. When an input branch reaches its synchronization point, wait,
or timer, the decomposition levels of different branches are first compared to determine if

20

they belong to the same instance. It assumes that all branches of the same instance should
have the same decomposition level and decomposition stack. However the start point in
plug-in maps completely destroyed the mechanism, we have no way to figure out which
decomposition level the start point is at.

s

end1OUT1

end2

st1
IN1

st2
IN1

OUT1

r1

r2

Figure 4 – 2 (a)

s1 e1

s2

r5r3

r4

Figure 4 – 2 (b)

Thus the decomposition level and decomposition stack becomes redundant under current
circumstance. I did not delete the two variables, because many issues are undetermined
around plug-in map and stub, we may need these structures later.

If no plug-in map is allowed to be used more than once in the same root map, then we can
completely remove the decomposition level and decomposition stack. If multiple
instances of the same plug-in map are allowed, and all start points should begin from the
root map, then we can slightly modify the algorithm to make it work well. Otherwise we
would have to find a different approach to determine which instance is being traversed.

Conclusion
Use Case Map is mainly used in software engineering for describing functional
requirements and high-level design. UCMNav is currently the only tool used to create
and edit use case maps. The major objective of this project is to modify UCMNav to
implement a new path traversal algorithm and generate scenarios in a neutral scenario
definition.

After 3 months hard work, and with the help of Professor Daniel Amyot, I have
successfully completed the project. This report presents the design and implementation of

21

the algorithms I have adopted. First, it analyzes the original path traversal algorithms and
point out the problems with it. Then, it proposes a new traversal algorithm, and illustrates
how the algorithm is implemented with examples.

Scenario generation is a new functionality added to UCMNav. It is used to generate
scenarios under new scenario definition, so that the scenarios can be post-processed to
generate MSC, TTCN, and LOTOS. Scenario generation algorithm is addressed in detail,
especially the process of collapsing the maps.

Finally, it raises some questions in traversing synchronization and plug-in maps. It
discusses some design options for each question and how they will be solved in future
designs to improve the functionality of UCMNav.

22

References

1. Daniel Amyot, Draft Specification of the Use Case Map Notation (Z.152), [on-line]
Available:http://www.usecasemaps.org/urn/urn-meetings.shtml#latest, 2002

2. R.J.A. Buhr, R.S. Casselman, Use Case Maps for Object-Oriented Systems, Prentice
Hall, 1996

3. Daniel Amyot, Use Case Map quick tutorial version 1.0, [on-line], Available:
http://www.usecasemaps.org/pub/UCMtutorial/UCMtutorial.pdf, 1999

4. Dorin B. Petriu, Layered Software Performance Models Constructed from Use Case
Map Specifications, M. Eng thesis, Carleton Univ., [on-line] Available:
http://www.usecasemaps.org/pub/dp_msc.pdf, 2001

5. Source Navigator documentation, [on-line] Available:
http://sources.redhat.com/sourcenav/, 2001

6. LiveDTD documentation, [on-line], Available:
http://www.sagehill.net/livedtd/manpage.html, 2000

7. Daniel Amyot, UCM Scenarios and Path Traversal, [on-line] Available:
http://www.usecasemaps.org/urn/200203-geneva/UCM-Scenarios-Traversal.ppt,

