
CSI4900
Automatic Generation of MSC from UCM Scenario

1

Project Report

Automatic Generation of MSC from
UCM Scenario

Name: Dae Yong Cho

ID: 1338984

Supervisor: Daniel Amyot

Project Report.doc - version 1.0

CSI4900
Automatic Generation of MSC from UCM Scenario

2

TABLE OF CONTENTS
1. ABSTRACT...3

2. INTRODUCTION...4

3. USE CASE MAP ...4
DESCRIPTION..4
UCM SCENARIOS ...5
UCM NAVIGATOR ...5
SCENARIO DEFINITION...6

4. MESSAGE SEQUENCE CHART ...8
DESCRIPTION..8

5. TRANSFORMATION ..10
RELATIONSHIP BETWEEN UCM AND MSC ..10
RELATIONSHIP BETWEEN ELEMENTS OF UCM SCENARIO AND MSC ...10

6. EXTENSIBLE STYLE LANGUAGE ...10
DESCRIPTION..10
XSLT...11
XPATH ...12

7. IMPLEMENTATION ..12
ENVIRONMENT & TOOLS...12

Compiler..12
XML Parser ...12
XSLT Processor..13

TRANSFORMATION ALGORITHM ...13
The Algorithm..13
Scenario ..13
Instances...14
Inter-instance Messages...14
Parallel Sequences ...15
Actions ..16
Conditions ...16
Timer ...17

FUTURE DESIGN ..17
Message ID and Overall Design ...17
Extending Templates ..18

8. CONCLUSION ..18

9. REFERENCES..19

Project Report.doc - version 1.0

CSI4900
Automatic Generation of MSC from UCM Scenario

3

1. ABSTRACT

The UCM provides a high-level view of functional requirements and the causality flow between
different elements of proposed system. The UCM is used to model both structural and behavior
aspects of the system. Furthermore, the UCM permits the client to define a set of Boolean
variables that are used in UCM path traversal. A path generated by the traversal is called
scenario. The UCMNav is a software-engineering tool that is capable of producing a scenario
definition file, which includes a set of scenarios categorized into groups. The main goal of the
Converter is to produce basic MSCs from the scenario definition file.

Project Report.doc - version 1.0

CSI4900
Automatic Generation of MSC from UCM Scenario

4

2. INTRODUCTION

The Converter is a tool that produces message sequence charts (MSC) in textual Z.120 format
from UCMNav generated scenario file and its original use case map (UCM) file. A scenario
constitutes a path segment within the context of the UCM (the UCM might be a concurrent model
of a set of scenarios in which case a set of related scenarios are generated by UCMNav). A
scenario always has a start point and an end point. In between those two elements a number of
other path elements (i.e., responsibility, condition, waiting place, trigger, timer, and connection)
may exist. The scenario file assembles a set of related scenarios into groups. The goal of the tool
is to produce a basic MSC of a single scenario.

UCMNav supports the notion of scenario definitions. The feature, through global variables for
path selection, allows the user visually highlight a single scenario and used to produce other
representation of scenarios like Message Sequence Charts. Initially path traversal and generation
of MSCs are combined into one algorithm. However, due to its complexity, the resulted code was
difficult to maintain and it often generated incorrect path traversals.

To remedy the situation, UCMNav 2.0 de-couples the UCM path traversal algorithm from MSC
generation. The tool now generates neutral scenario definition in XML. The main goal of the
project is to produce a tool that can automatically generate MSCs from UCM scenario definition
files and investigate tools and infrastructure that we can use to produce other types of scenario
representations.

3. USE CASE MAP

Description

Figure 1: Examples of Use Case Map

Project Report.doc - version 1.0

CSI4900
Automatic Generation of MSC from UCM Scenario

5

Use Case Map (UCM) is a scenario-based notation for modeling functional requirements. It is
one of the two modeling techniques that constitute User Requirement Notation (URN) standard
[X]. The main intent of the notation is to provide a way to express and validate high-level
architectural designs of concurrent real-time systems at very early stages of the software
development process.

Use Case Map’s approach for describing systems behaviors is based on the scenarios and the
scenarios are (within the context of UCM) the causality flows between system responsibilities.
Responsibilities are generic system functions (or actions) that are (optionally) bound to
components, which are abstract organizational structures of the system [sdl01].

UCM Scenarios

A single UCM can contain multiple causality paths between responsibilities and each
deterministic path is referred to as a scenario. In other words, a scenario is a sequence of
executions of system responsibilities. A path contains a number of basic path elements
[sam2000].

They are…

 Start Point. It is a triggering event and pre-conditions that marks the beginning of a path
segment. A UCM has at least one Start Point.

 Responsibility. Responsibilities are high-level system elements that are executed as

the responses to a triggering event.

 End Point. An End Point is defined as system post-conditions and after effects. Like
Start Point, a UCM can contain more than one End Point.

Responsibilities can be superimposed on top of Components. Components are system-level
organizational structure abstraction. Furthermore, UCM defines several path connectors such as
AND-fork, AND-join, OR-fork, and OR-join for denoting concurrent path progressions and
alternatives [sam2000].

Figure 2: Path connectors

UCM Navigator

Project Report.doc - version 1.0

CSI4900
Automatic Generation of MSC from UCM Scenario

6

UCM Navigator is a platform neutral software engineering tool for UCM notation. It is mainly work
of Andrew Miga at Carleton University. The tool allows the user to visually create and manipulate
UCMs that are always syntactically valid. It supports path connections and transformations based
on hypergraph-based semantics [web]. Also, it fully supports the concepts of components and
nested levels of stubs and plug-ins.

Figure 3: UCMNav Interface

Moreover, UCMNav can output UCMs in XML that are valid according to UCM document type
definition (DTD).

Scenario Definition

UCM Navigator 2.1 incorporates the notion of scenario definition and can generate scenario
definition file in XML using newly developed path traversal algorithm [work-term]. XML scenario
definition files are valid against scenario DTD. The organization of scenario definition as follows:
a set of related scenario elements are gathered as child elements of a group element. Each
scenario element can have either one par or seq element. Recursively, par or seq element can
contain a number of its counterpart as its children. Furthermore, a number of do and condition
elements can also be child elements of either par or seq.

Project Report.doc - version 1.0

CSI4900
Automatic Generation of MSC from UCM Scenario

7

scenarios

conditiondo

seq

group

scenario

par

1..*

1..*

1 1

1..*

1..*

1..*1..*

Figure 4: The tree view of scenario document type definition

This relatively simple representation provides a neutral definition of UCM scenarios. Thus, by
implementing various transformation algorithms, it can be used to derive other scenario notations
such as TTCN, UML, and MSC from the original UCM.

Scenario Definition Elements

Logically, a single scenario element can represent a path segment or path progression within the
original UCM. As the intent of UCM is to model concurrent system behavior, two types of path
progression elements, par and seq, are mapped into scenario DTD. The par element is used to
describe two or more parallel sequences of responsibilities and as previously stated it can also
contain a number of do and condition elements as its direct child nodes. Where as, seq element
is to define a single sequence of responsibilities.

Condition elements are used to denote both pre and post conditions of path connectors (par, seq)
and path elements (do). The do elements are used to model UCM path elements such as
Responsibility, Start point, End point, Timer, and Trigger.

Project Report.doc - version 1.0

CSI4900
Automatic Generation of MSC from UCM Scenario

8

4. MESSAGE SEQUENCE CHART

Description

Message Sequence Chart (MSC) is the International Telecommunication Union’s (ITU) standard
language for describing interactions between message-passing instances. Its purpose and
functions are similar to UML sequence diagram at basic level. MSC is both graphical language
and textual notation (Z.120). The two-dimensional diagrams give an overview of interactions
between communicating instances. The textual form of the language is mainly for data exchange
between tools.

Figure 5: Basic MSC

A global clock is assumed by one Message Sequence Chart [z.120]. Each timeline below each
instance indicates its lifetime. However, no time scale is given. This means that MSC provides an
ordered view of events such as inter-component messages and actions, but does not provide
actual duration of each event. Like UCM, MSC also support concurrent sequences of events.

Following is the list of some of notations supported by MSC.

 in: This statement models in going message from an instance to another.

 out: 'out' statement represent out going message from an instance to another.

 instance: 'instance' statement marks the beginning of the lifeline of an instance or
component of the system.

 endinstance: 'endinstance' statement signifies the end of an instance.

 action: the 'action' denotes an action or method performed by an instance.

 set: 'set' is used to mark a timer start.

Project Report.doc - version 1.0

CSI4900
Automatic Generation of MSC from UCM Scenario

9

 reset: 'reset' is used to mark a timer end.

 timeout: This statement represents the timer timeout.

 All: par begin: The 'All: par begin' statement marks the starting of parallel processing.

 end: This statement represents the end of parallel processing.

mscdocument BioOK;
msc BioOK;

BioDB: instance;
Session: instance;
Electronic_Accountant: instance;
Security: instance;
TaxPayer: instance;

text 'scenario: BioOK';

TaxPayer: out Access,1 to Security;
Security: in Access,1 from TaxPayer;
 action 'CheckID';
 action 'GetBio';
 out m2,2 to BioDB;
BioDB: in m2,2 from Security;
 action 'CheckBio';
 condition [BioOK];
 out m3,3 to Security;
Security: in m3,3 from BioDB;
 action 'Continue';
all: par begin;
Security: action 'Acquire';
Security: out m4,4 to Electronic_Accountant;
Electronic_Accountant: in m4,4 from Security;
 action 'Create';
 out m5,5 to Session;
Session: in m5,5 from Electronic_Accountant;
 action 'Start';
 out Ready,6 to Electronic_Accountant;
Electronic_Accountant: in Ready,6 from Session;
par;
Security: action 'LogOK';
Security: out Accepted,7 to TaxPayer;
TaxPayer: in Accepted,7 from Security;
end;

BioDB: endinstance;
Session: endinstance;
Electronic_Accountant: endinstance;
Security: endinstance;
TaxPayer: endinstance;

endmsc;

Figure 6: An example of MSC (BioOK)

Project Report.doc - version 1.0

CSI4900
Automatic Generation of MSC from UCM Scenario

10

5. TRANSFORMATION

Relationship between UCM and MSC

In order to achieve proper transformation of UCM scenario to basic MSC, we must first clearly
identify the relationship between two scenario modeling techniques. Both UCM and MSC focus
on the scenario description. However, there are few major differences in their respective
concepts. Here is a list of their differences that are relevant to the transformation.

 Level of Scenario Abstraction. The first dissimilarity is the abstraction level at which
each notation models scenarios. In UCM, scenarios are modeled as sequences of
responsibilities and inter-component interactions are abstracted away. By contrast,
(basic) MSC describes scenarios as a sequence of inter-instance message, and action.

 Component and Instance. Within the context of UCM, a component is a role-play by

scenario and it has a set of responsibilities and it is optional. On the other hand, MSC
instances express separate location and they are mandatory.

 Condition. When a condition is modeled into a UCM scenario, it is explicitly defined as

a pre or post condition for other UCM elements. However, MSC doesn’t make such
distinction and conditions are used to describe System State.

Relationship between elements of UCM scenario and MSC

Besides identifying conceptual differences, to develop transformation algorithm we also have to
map one-to-one relationship between elements of UCM scenario definition file and basic MSC.

 UCM component to MSC instance.

 scenario element to basic MSC.

 par element to MSC par statement.

 condition element to MSC condition statement.

 do elements to MSC messages, actions, and timers.

6. Extensible Style Language

Description

The eXtensible Style Language is a W3C standard that describes how to define XML stylesheets.
The stylesheet provides exact description on how to represent the structured content of a XML

Project Report.doc - version 1.0

CSI4900
Automatic Generation of MSC from UCM Scenario

11

document in other textual notations such as HTML, SVG, and VRML. In other word, it shows how
to lay out and style source XML document onto some other presentation medium.

An XSL processor receives a XML document and XSL stylesheet as inputs and constructs a
presentation of source XML document as intended by the author of the stylesheet. The process is
divided into two phases: XSL Transformation and XSL Formatting. The XSL Transformation
refers to the result tree construction phase and the XSL Formatting represents the process of
formatting the result tree into the target presentation medium and it is achieved by the formatter
(the rendering engine inside of web browser can be a formatter).

Result

Source Tree Result Tree

XSL
Transformation

XSL
Formatting

Figure 7: XSL Process

XSLT

As mentioned before, the XSL Transformation refers to the part of XSL that allows the
construction of the result tree. Within the context of XSL, the result tree is called the element and
attribute tree. In order to construct the result tree, the construction rules embedded in the
stylesheet are used. Each tree construction rule is consisted of a pattern that is matched against
element(s) in source XML document and a template that contains precise instructions on how to
construct the corresponding portion of the result tree. This means that the same stylesheet can
be applied to XML documents that have similar structure (i.e., same DTD).

The XSL Stylesheet itself is a XML document and it contains a set of result tree construction rules
(i.e., templates). The rules can specify literal result element structure or can be XSLT elements
that are used to create result tree fragments. The XSLT processor such as Xalan scans through
the source tree and instantiates appropriate templates. When a template is invoked it is always
respect to the current node, which is a member current node list.

There are two types of transformation templates within XSLT. The first is 'named' template (i.e.,
<xsl:template name = "xxx" >). A named template can be explicitly called within the XSL
file. In most cases, it is used to encapsulate repetitive transformations that are not specifically tied
to a XML pattern. The second template type is 'matched' template (i.e., <xsl:template
match = "xxx" >). This kind of templates are called by the XSLT processor when it encounter
a XML element after the <xsl:apply-templates select = "xxx" /> statement.

Project Report.doc - version 1.0

CSI4900
Automatic Generation of MSC from UCM Scenario

12

XPath

The XPath is a part of XSLT whose main purpose to address a portion of XML document. In
addition, it is also used to for pattern matching. The basic XPath syntax is similar to the file
system addressing. For example, if the path expression starts with a slash ('/'), then it indicates
an absolute path. XPath also defines a library of standard functions for working with strings,
numbers and Boolean expressions.

Here are examples of XPath notations.

 ancestor: ancestor represent all nodes that is parent of current node or parent of
parent of current node and so on so forth.

 descendant: descendant represent all nodes that is child of current node of child of

child of current node and so on so forth.

 parent: the parent of current node.

 child: any child of current node.

 following: any node after the current node excluding any descendants.

 following-sibling: any sibling node that is after the current node.

 preceding: any node that precedes the current node excluding any child node of its
preceding siblings.

 preceding-sibling: any sibling node that precedes the current node.

7. IMPLEMENTATION

ENVIRONMENT & TOOLS

Compiler

The initial software development and testing will proceed in Win32 environment. The program will
be first developed as a Win32 console application using VisualC++ compiler. At the same time all
platform specific code will be identified and marked. Once program logic and structure have been
verified and tested, the source code will then be ported to Cygwin and will be re-compiled using
GNU C++ compiler (g++) provided in the Cygwin environment.

XML Parser

The Xerces is a XML parser that is freely available at xml.apache.org. The parser, which is
initially developed by IBM, confirms to XML 1.0 recommendation and supports both SAX and

Project Report.doc - version 1.0

CSI4900
Automatic Generation of MSC from UCM Scenario

13

DOM APIs. Contrast to Expat, Xerces is a validating parser, which means it checks validity of the
XML document against constraints described in the DTD as well as well-formedness of the
document. This is important in our project since all scenario files must conform to the scenario file
DTD to be valid. The source code of the parser is platform-independent and various binary ports
to different platforms are available including Win32, Linux, and Unix.

Unlike Expat, which only supports SAX and event-driven programming approach, the Xerces
supports Document Object Model (DOM) API in addition to SAX. DOM creates tree-based in
memory representation of the XML document. This approach to XML document might prove to be
useful when generating MSCs from scenario file since it eliminates the needs to parse the
document for a specific scenario (at the expense of memory).

XSLT Processor

The Xalan is a XSLT processor that is also freely available at xml.apach.org. Xalan is a free
XSLT processor from Apache that implements the XSL Transformations (XSLT) Version 1.0 and
the XML Path Language (XPath) Version 1.0. It allows API programmers to transform an XML
document into another text-based representation such as HTML. [note: currently, Xalan does not
supports cygwin and I was unable to compile Xalan under cygwin.]

TRANSFORMATION ALGORITHM

The Algorithm

The scenario XSL file contains all transformation templates necessary for deriving basic MSC
representation (in textual Z.120) of a scenario from the given UCM scenario definition file.
The overall algorithm is relatively simple. Each XML element of the scenario definition file has a
corresponding 'matched' template (i.e., <xsl: template match = "xxx") and different
subtypes of a 'do' element also have corresponding named template (i.e., <xsl: template
name = "xxx"). Once each template is done transforming current element, the execution
control is passed on to the next 'following' or 'descendant' element's template. The
execution sequence is almost recursive in nature and it is due to the generation of message ids.
Every transformation template except 'scenario', receives the next message id as the template
parameter. If a message is generated by the current template then the next template will receive
an id that is one value greater than the previous one.

Scenario

<xsl:template match = "//scenario">
<xsl:param name = "msgid" />
…
</xsl:template>

Figure 9: scenario matched template

Project Report.doc - version 1.0

CSI4900
Automatic Generation of MSC from UCM Scenario

14

The 'scenario' template marks the beginning of scenario transformation. When the transformation
algorithm detects the presence 'scenario' XML element, it invokes the 'scenario' matched
template. The template first prints out the MSC document header follows by 'instance' statements
and the scenario header. Then it applies the matched template for the first direct child element of
the 'scenario'. When the execution control returns to the template, it generates 'endinstance'
statements and writes the document footer.

Instances

<xsl:template name = "generate_instances">
…
</xsl:template>

<xsl:template name = "generate_endinstances">
…
</xsl:template>

Figure 10: generate_instances and generate_endinstance named templates

The Z.120 dictates that the basic MSC begins with 'intance' statements and ends with
'endinstance' statements. Both 'instance' and 'endinstance' identify unique instance
names used in the basic MSC. Both algorithms that generate above statements from UCM
scenario are almost identical. The algorithms sequentially process 'descendant' 'do' elements
one by one and count the number of remaining 'do' element with the same 'component-name'
attribute. When there are no more remaining 'do' with the same component name, they
generates an 'instance' or 'endinstance' statement.

Inter-instance Messages

<xsl:template name = "generate_message">
<xsl:param name = "msgid" />
…
</xsl:template>

Figure 11: generate_message named template

The most complex of part of the transformation is the generation of messages between instances.
When two 'do' elements in sequence have different component-name attribute this represents the
UCM path crossing from one component another. In such case, the transformation algorithm
should generate a MSC inter-instance message (i.e., 'in' message and 'out' message statement
pair). However, there is a case when the generation message is unwarranted. When current 'do'
element is the last child element of 'seq'. The first example is the 'do' element that has the
'End_Point' as the type attribute. This element signifies an end point of the scenario (scenario
may have multiple end points) thus no message should be generated - even the following 'do'

Project Report.doc - version 1.0

CSI4900
Automatic Generation of MSC from UCM Scenario

15

element has different component-name attribute. The second example is the last child 'do'
element of 'seq' that is again one of the (direct) child element of 'par'. Such set of 'seq' elements
models parallel executions of system responsibilities. And since there could be a second 'seq'
element following the parent (i.e., seq) of the current 'do', the algorithm must not produce
messages between the current 'do' and its 'following' 'do' element. However, above two cases
somewhat intersect. If the scenario has multiple end points, then they may be encapsulated in
the 'par/seq' as the last 'do' element of each 'seq' child element of the 'par'.

ComponentBComponentA

msg1
ACT

ACT

ComponentA ComponentB

Figure 12: MSC message

Each inter-instance MSC message must have a unique id. Because, messages are derived, the
transformation algorithm itself must tag each message with a unique number. The problem is
XSLT does not provide adequate mechanisms, which one can use to generate a unique number.
Furthermore, the lack of variable construct (yes XSL has 'XSL:variable' but it is more like a
constant than a variable since its value can not be reset) further compounds the problem. This
means that as the algorithm process each XML element it must pass the next message id to the
transformation template of next element as its parameter (i.e., xsl:param). If an inter-instance
message is generated, then the text template receives the id that is one value greater than the
previous id.

In most cases, the messages that are generated by the transformation algorithm have generic
names (i.e., mx). However, there are two instances when the value of do's name attribute is used
instead. The first case is the 'Start' 'do' element. When the algorithm encounters the 'Start'
'do' element, it uses the name of 'do' element as the message name. The second case is when
'following' 'do' element's (of current 'do') type attribute is 'End_Point'. In such as the name of
'End_Point' 'do' is used.

Parallel Sequences

<xsl:template matched = "par" >
<xsl:param name = "msgid" />
…
</xsl:template>

<xsl:template matched = "seq" >
<xsl:param name = "msgid" />

Project Report.doc - version 1.0

CSI4900
Automatic Generation of MSC from UCM Scenario

16

…
</xsl:template>

Figure 13: par and seq matched templates

Like UCM, MSC supports parallel sequences of events. The beginning of parallel sequence is
marked with 'all: par;' statement and the end with 'end;'. Each parallel sequence in between
those two statements begins with 'par;'. When the algorithm process the 'par' template, the
template prints out 'all: par;' but not ''end;'. This is because the algorithm first processes all
'following' and 'descendant' elements before returning to the par template. Thus, printing out
'end;' is unadvisable. Instead an 'end;' is generated when the algorithm processes the last do
element of the last child 'seq' element of par. Similarly, the 'seq' element could be stand-alone
or a child element of a 'par'. If the current 'seq' is a child of 'par' and it has 'preceding-
sibling' that is again 'seq', then we print out 'par;' statement to mark the beginning of the
new parallel sequence.

Actions

<xsl:template name = "Resp" >
<xsl:param name = "msgid" />
…
</xsl:template>

Figure 14: Resp named template

MSC 'action' statement represents an action (or responsibility) that is taken by a specific instance.
When the algorithm encounters a 'do' that has 'Resp' as its type attribute, it outputs 'action'
follow by the value of 'component-name' attribute.

Conditions

<xsl:template match = "condition" >
<xsl:param name = "msgid" />
…
</xsl:template>

Figure 15: Condition matched template

MSC also support conditions, but unlike UCM it does not distinguish between post and pre
conditions. When the transformation algorithm processes a do element, before proceeding to
next element or generating inter-instance message, it writes out all 'following-sibling'
conditions of the current 'do'. This may contradict the intention of the scenario since the

Project Report.doc - version 1.0

CSI4900
Automatic Generation of MSC from UCM Scenario

17

conditions may be pre-conditions of path branching (i.e., 'par') or the following 'do' element.
However, the end product is the same for MSC.

Timer

<xsl:template name = "Timer_Reset">
<xsl:param name = "msgid" />
…
</xsl:template>

<xsl:template name = "Timer_Set">
<xsl:param name = "msgid" />
…
</xsl:template>

<xsl:template name = "Timeout">
<xsl:param name = "msgid" />
…
</xsl:template>

Figure 16: Timer named templates

Both UCM scenario and basic MSC implements the timer functions and the notations used in
both languages are relatively similar. Within UCM scenario definition, behaviors of timer are
encoded as do element's type attribute and element's name attribute is the name of the timer.
When the algorithm sees a 'do' with 'Timer_Set' as the value of type attribute, it first prints out
'action' statement for the owner component of 'do' to indicate that the component is waiting
for a timer. Then, it outputs 'set' with the value of the 'do' element's name attribute to begin the
timer. Similarly, for Timer_Reset type attribute, it again writes the 'set' statement. Finally, the
'Timeout' type attribute of 'do' perform literal translation to 'timeout' in basic MSC.

FUTURE DESIGN

Message ID and Overall Design

It is author’s opinion that the design of the overall transformation algorithm is relatively
straightforward but it is also a bit difficult to maintain and to extend due to its ‘recursive’ nature.
With the current design, it is impossible to mark the end of an element (ex: 'All: par begin'
and 'end;') within its template because all following and descendant elements are
processed before the execution control returns to the current element’s template. A better design
could have achieved if the scenario template applies templates for each its descendant
elements (ex: '<xsl: for-each select = "xxx">') and the hyperedge-id attribute of do
element is used as the message id rather than generating a unique number.

Project Report.doc - version 1.0

CSI4900
Automatic Generation of MSC from UCM Scenario

18

Extending Templates

The XSLT provides two mechanisms to extend or change behaviors of transformation templates.
One could add more transformation templates by including '<xsl:include href =
"xxx.xsl" />' statements. This statement enables the XSLT processor to seek out missing
templates from the specified XSL file. Other mechanism is the '<xsl:import href =
"xxx.xsl" />'. Unlike the 'include' statement, this tells the processor to replace original
template with the template that is embedded in the imported XSL file. Furthermore, one can add
extra transformation behavior by inserting '<xsl:import href = "xxx.xsl" />' statement
to the template. This statement directs the XSLT processor to insert the transformation behavior
of the template in the imported file where the statement is inserted. Unfortunately, Xalan only
supports insertion of second template behavior and do not permit to replace a whole template.

8. CONCLUSION

As XML is platform and application independent, by encoding the UCM scenarios in XML, we
were able to separate scenario generation from its representation. Also, it offers a way to
performed continued analysis of the high level system design using other notations such as MSC
and UML sequence diagram. The Extensible Stylesheet Language Transformation provides the
best generic solution for transforming the scenario definition files to another textual
representation of scenario such as basic MSC. Since it is XML based, its very flexible and
changing transformation behavior does not require re-compilation of the application. Furthermore,
the transformation behavior encoded in the original XSL file could be easily extended using the
extension mechanisms provided by the XSLT.

However, there are more works that need to be done. In order to achieve proper transformation
of the given scenario without referring to the original UCM file, all necessary information has to be
presented in the XML scenario definition file. Moreover, the scenario definition has to be general
enough to be transformed into another languages than MSC.

Project Report.doc - version 1.0

CSI4900
Automatic Generation of MSC from UCM Scenario

19

9. REFERENCES

1. F. Bordeleau, D. Cameron, On the Relationship between Use Case Maps and Message
 Sequence Charts, [on-line], Available: http://www.usecasemaps.org/pub/sam2000.pdf , 2000

2. XiangYang He, Path Traversal and Scenario Generation from Use Case Map, 2002

3. Andrew Miga, Daniel Amyot, Francis Bordeleau, Donald Cameron, Murray Woodside,
 Deriving Message Sequence Charts from Use Case Maps Specifications, [on-line],
 Available:
http://micmac.mitel.com/conferences/2001/presentations/Andrew_Miga_MICON_Presentation.pd
f
 ,2001

4. Daniel Amyot, Gunter Mussbacher, URN: Towards a New Standard for the Visual Description
 of Requirements, [on-line], Available: http://www.usecasemaps.org/pub/sam02-URN.pdf, 2002

4. Nic Miloslav, XSL Tutorial, [on-line]

 Available: http://www.zvon.org/HTMLonly/XSLTutorial/Books/Book1/

5. XSL Transformations (XSLT) Version 1.0, [on-line] Available: http://www.w3.org/TR/xslt ,
2001

6. Message Sequence Chart (MSC) Z.120, [on-line], Available:
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-Z.120-199911-I,
1999

Project Report.doc - version 1.0

http://www.usecasemaps.org/pub/sam2000.pdf
http://micmac.mitel.com/conferences/2001/presentations/Andrew_Miga_MICON_Presentation.pdf
http://micmac.mitel.com/conferences/2001/presentations/Andrew_Miga_MICON_Presentation.pdf
http://www.usecasemaps.org/pub/sam02-URN.pdf
http://www.zvon.org/HTMLonly/XSLTutorial/Books/Book1/
http://www.w3.org/TR/xslt
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-Z.120-199911-I

	ABSTRACT
	INTRODUCTION
	USE CASE MAP
	Description
	UCM Scenarios
	UCM Navigator
	Scenario Definition

	MESSAGE SEQUENCE CHART
	Description

	TRANSFORMATION
	Relationship between UCM and MSC
	Relationship between elements of UCM scenario and MSC

	Extensible Style Language
	Description
	XSLT
	XPath

	IMPLEMENTATION
	ENVIRONMENT & TOOLS
	Compiler
	XML Parser
	XSLT Processor

	TRANSFORMATION ALGORITHM
	The Algorithm
	Scenario
	Instances
	Inter-instance Messages
	Parallel Sequences
	Actions
	Conditions
	Timer

	FUTURE DESIGN
	Message ID and Overall Design
	Extending Templates

	CONCLUSION
	REFERENCES

