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Abstract

A LOTOS interpretation of the Timethread notation is given in this docu-
ment. Timethreads are an informal technique that focuses on end-to-end
behaviours of a system while LOTOS is a formal technique with well
developed theories of transformation, validation and testing. Timethreads
constructors and their interpretation are discussed in the context of their
possible use as a thinking tool in a design framework.
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1 Introduction

1.1 Motivation

Formal methods provide many ways to transform, validate, verify, and test a specification.
However, they are limited in their use mostly because they are often not justified on a cost
benefit analysis and they are seen as being rather mathematical and intellectually hard to
use [Tur 93].

Engineers using formal methods may find too long the step from requirements to specifi-
cation. They can lose trace of some basic end-to-end behaviours, while being in their
design process. Visualization is also essential from a design perspective, and most formal
methods do not provide such facility.

Where formal methods alone fail, a combination of engineering principles and formal
methods may lead to rigorous and cost-effective computer system design.
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1.2 The Timethread Notation

"A timethread is a path traced over a system to show operational behaviour. They are use-
ful for design discovery and system reasoning at a global perspective" [LaB 92]. A timeth-
read links activities performed by the system, resulting from some stimulus (cause) and
terminating with some eventual response (effect). We use timethreads to stay focused on
the end-to-end behaviour of the system we want to design.

This notation is considered intuitive and appealing by many engineers. At a very abstract
level, timethreads leave intentionally many details unresolved. Refinement permits to
clarify many of these details.

Still very young and not really formal, the Timethread notation has many open-ended
problems. This document tries to provide a better semantics to this notation and to solve
some of its problems, while keeping it appealing to engineers.

1.3 Why LOTOS?

LOTOS [ISO88] is a standardized Formal Description Technique that has been chosen as
a formal basis for our Timethread notation. Other formal methods, e.g., Petri nets [FCB
93] and event structures, could be considered as options, but some problems are associated
with these techniques:

Petri nets: Petri nets are a well-known specification technique. One of the major draw-
backs of Petri nets, particularly in a system design perspective, is the complexity of com-
positionality features that are available. Nowadays, to solve these modularity and
compositionality problems, enhancements to the basic model are provided, such as using a
state machine as the basic component in the theory of modular Petri nets. Nevertheless, a
few problems still exist: modularity is achieved only for limited classes of nets and behav-
ioral properties are still very hard to analyse. Correctness preserving transformations are
being developed, but much work still remains to be done in this area. These points are
developed in [BDC 92].

Event structures: Event structure are a poset based model for describing the behaviour of
distributed systems. They have an independent theory rooted in the theory of formal lan-
guages, but are too weak to express more general nets and problems, such as the producer
and consumer paradigm (for example, see [Roz 92]). Extensions have been proposed and
could seem as powerful as labelled transition systems (LTS), which are LOTOS’ underly-
ing model. However, there is no standardized event structures-based language available
for the moment, and LTS, which are well understood, can be considered sufficient for our
work.
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What is very interesting in LOTOS is that we can manipulate, combine, factor, and trans-
form various expressions quite easily. Many properties can be verified, tested and vali-
dated by the numerous available tools [GLO 91]. Extensions, although not standardized
yet, will eventually provide other functionalities and facilities very useful for real-time
and distributed systems design.

Previous work has been done on similar approaches. In [ViB 91], the authors presented a
technique that can be used to support an effective process for generating the design of con-
current systems, with the help of timethreads (called slices in the paper) and LOTOS. In
[LaB 92], the authors try to see if two different approaches of a design conception, Objec-
Time1 and LOTOS, could be used in a complementary way in order to add timethreads
concepts to ObjecTime. The approach presented in the current document differs consider-
ably from these two but the experience gained from [ViB 91] and [LaB 92] will help in
avoiding some mistakes.

1.4 Organization of the Document

Section 2 introduces some definitions and a sequence of activities notation used in most
examples. Section 3 presents many concepts related to LOTOS interpretation of timeth-
reads: a basic timethread set, levels of specifications, and instance identifiers. Section 4
defines the basic LOTOS interpretation of single timethreads, while section 5 deals with
simple timethread interactions.  Section 6 mentions some special symbols that are part of
in the Timethread notation. In section 7, we discuss a number of topics related to a more
complete design methodology. Finally, a conclusion is given in section 8.

2 Definitions and Notation

2.1 Definitions

Since LOTOS and the Timethread notation use some common words with different mean-
ings, we define a specific terminology that will be used in this document:

Timethread: Cause-to-effect relationship.

Triggering event: Starting event of a timethread.

Resulting event: Ending event, termination of a timethread.

1. ObjecTime is the new name for the real-time CASE toolset Telos.
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Process: By default, will be used to denote a LOTOS behaviour abstraction,
except where the meaning is expressed explicitly as in Machine
Charts process and design process.

Interaction: General relation of observation between the environment and a trig-
gering or resulting event, or between many timethreads on a wait-
ing place.

Synchronization: Special case of interaction, usually artificial and internal, within
one timethread. Multiway synchronization refers however to the
LOTOS concept.

Activity: Action or event along a timethread.

Event: Activity on which there is interaction. Events are of three kinds:
triggering, resulting or synchronization events.

Action: Activity on which no timethread interaction is allowed. An action
corresponds to a certain functionality within the system.

2.2 Notation Used

In the following examples, a special notation to represent sequences of activities and
LOTOS behaviours will be used:

• L is the alphabet, or the set of activities (including the internal action i).

• A+ is a non-empty sequence of activities with the BNF:
A+ ::= a | a; A+ .

• A is a sequence of activities with the following BNF notation:
A ::= ∅ | A+ , where ∅ represents the empty sequence.

• B is a LOTOS behaviour expression. For instance, a sequence A followed by
stop, exit or a process instantiation is a behaviour expression.

• P, Q and R are usually used as LOTOS process identifiers.

Most LOTOS process definitions in our examples will not include gate parameters for
conciseness. Note also that, in a behaviour expression:

• ∅; exit reduces to exit

• ∅; stop reduces to stop

• ∅; P reduces to P (where P is a process instantiation)
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These equivalences are given to match LOTOS’ syntax.

New words or concepts, as well as references to timethreads and LOTOS code, will be
italicized.

3 Basic Concepts of Timethreads in LOTOS

3.1 Basic Timethread Set and Notation Elements

The Timethread notation [BuC 93][Buh 93a] includes the basic set of timethreads, possi-
ble interactions between timethreads and special symbols. Sections 4, 5 and 6 of the cur-
rent document will present the LOTOS semantics of these timethreads and we will see
that, from a LOTOS point of view, many details will become more abstract, reducing the
complexity of the interpretation. Basically, there will be one LOTOS process per timeth-
read. However, extra processes may be created to accommodate asynchronous or concur-
rent behaviours.

Figure 1 shows the basic notation elements of timethreads:

Figure 1 : Basic notation elements

Waiting places and junction points will be represented as LOTOS gates on which interac-
tion with the environment or with other timethreads will occur. The body will only repre-
sent the sequencing of activities along it.

Note that some LOTOS operators, like the disabling and the enabling, will be put aside at
this stage for simplicity reasons. Abstract data types and their corresponding operators
will also be put aside. We try to use only a small set of LOTOS operators to be able to
answer questions asked to a specification obtained from timethreads.

For instance, timethread interactions, which could be considered a case of enabling, can be
easily generalized in LOTOS with multiway synchronization on extra hidden gates. We try
not to use the LOTOS enabling operator (>>) since most of its functionality can be simu-
lated with synchronization on hidden gates. This "simulation" allows us to have fewer

Body

Waiting place
At the beginning of body, for a start triggering event.
Along a body, for a triggering event from another timethread

or from the environment.

On which activities are placed.

Junction point
At the end of body, for a resulting event.
Along a body, for synchronization between concurrent timethreads.
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LOTOS operators to consider (thus more generality) for the creation, the transformations
and the verification of our specifications. Some special symbols in [BuC 93] and [Buh
93a] will not be discussed in depth since they may not be essential to the notation.

Our interpretation of timethreads may often result in a new style of LOTOS code, i.e., with
a lot of concurrent instances and many resulting stop processes. This timethread style
reflects the timethread structure of the system under design but not its final architecture.
Since we are only concerned with a purely behavioural interpretation without any archi-
tectural consideration, at least for the moment, this fact is not a real problem.

3.2 Levels of Specifications

Figure 2 : Basic timethread

Figure 2 represents a basic timethread, or a cause-to-effect relationship. It would be easy
to think about this behaviour in a sequential way and to define its LOTOS equivalence as
P:= A;stop, where A represents a sequence of activities. A timethread’s activity can
identify future fragments of sequential code: an abstract sequence of actions, a function, a
procedure, a method or parts of processes. Timethread activities are mapped onto LOTOS
gates: gates without interaction (from the environment or other timethreads) for actions,
and gates on which there is interaction for events (refer to §2.1 for the terminology).

We should also consider the start point and the end point as LOTOS gates. The start point
has a triggering event coming from the environment (or from another timethread) and the
end point has a resulting event that will be called Result when it goes to the environment,
and Continue when it triggers another timethread. Thus, a unique instance of this timeth-
read could be represented as follows (we deliberately forget the gate parameters for con-
ciseness although they should be all present in each definition and instantiation):

process P[...] : noexit :=
   TriggerP; A; ResultP; stop
endproc (* process P, level 1 without recursion *)

Nevertheless, since we deal with a reactive system, our timethread’s representation must
be able to react to more than one initial stimulus from its environment, i.e., we would like
this process to be executed as often as the environment desires to. Hence, some recursion
has to be included in the process definition:

AP
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process P[...] : noexit :=
   TriggerP; A; ResultP; P[...]
endproc (* process P, level 1 with recursion *)

We also need these instances to execute concurrently, which is not the case in the last def-
inition. LOTOS parallelism needs to be introduced:

process P[...] : noexit :=
   TriggerP; (A; ResultP; stop ||| P[...])
endproc (* process P, level 3 *)

As expressed, A could be an empty sequence of activities, but the timethread still repre-
sents the cause-effect relationship between TriggerP and ResultP. Besides, since the first
action, TriggerP, is observable (or synchronized with other timethreads, as it will be
explained later), unguarded recursion is avoided1.

For execution purposes, we may prefer not to have an unbounded number of instances of a
timethread at once in a system. Hence we could parametrize the maximum number of
instances using, for example, the NumberInstances abstract data type:

type NumberInstances is NaturalNumber
opns Pred : Nat -> Nat
eqns

forall x : Nat
ofsort Nat
   Pred(Succ(x)) = x;

endtype

This parametrized number of concurrent instances could be done, for example, using
recursion and selection predicates in the following way:

1. A first attempt in defining this kind of recursion was P := (A; stop  ||| i; P) ,

Although recursion is guarded, this process introduces infinite sequences of internal events.
This kind of problem must be avoided for the verification and execution of LOTOS specifica-
tions.
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process P[...] (n:Nat): noexit :=
(* n is the maximal number of instances *)
TriggerP; (
   A; ResultP; P[...] (Succ(0))
   |||
   [n ne Succ(0)] -> P[...](Pred(n))
   )
endproc (* process P, level 2 with recursion and *)
        (* with concurrent execution *)

The guard [n ne Succ(0)] together with the parametrized recursion P(Pred(n)) instantiate n
instances of process P, as in a countdown, named P(n) to P(Succ(0)). Then, no other con-
current process will be created. Tail recursion (P(Succ(0))) will keep the number of
instances to n in the system.

Another possibility would be to instantiate an absolute maximum of n occurrence of pro-
cess P in parallel, without any tail recursion. Therefore, only n concurrent instances will
exist and terminate:

process P[...] (n:Nat): noexit :=
(* n is the maximal number of instances *)
TriggerP; (
   A; ResultP; stop
   |||
   [n ne Succ(0)] -> P[...](Pred(n))
   )
endproc (* process P, level 2 without recursion and *)
        (* with concurrent execution *)

The last possibility presented here is a parametrization where we have a bounded number
(n) of instances, executed sequentialy:

process P[...] (n:Nat): noexit :=
(* n is the maximal number of instances *)
TriggerP; (
   A; ResultP;
      ( [n ne Succ(0)] -> P[...](Pred(n)) )
   )
endproc (* process P, level 2 with sequential *)
        (* execution *)

Many different types of behaviours could be associated with one timethread. Depending
on what exact behaviour we want to simulate or verify, some levels of abstractions, with
their options, can be defined.
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Table 1 presents a summary of options associated to our levels of specification. A short
example (without gate parameters) is given for each:

Depending on what questions we want to ask to a generated specification, and on how
much detail we want to consider, we may prefer to use different levels. For example, if we
wish to quickly test some behaviours or play some easy scenarios, a level 1 (L1) specifica-
tion should be enough and could be rapidly generated and tested. For more complex and
realistic scenarios or for the generation of tests for the implementation, a level 2 specifica-
tion could be used. The last level (L3) may be useful to check equivalences between a

Table 1: Levels of abstraction and their options.

Level Options Example

L1:
Single instance

Without tail
recursion

process P : noexit :=
   TriggerP; A; ResultP; stop
endproc

With tail
recursion

process P : noexit :=
   TriggerP; A; ResultP; P
endproc

L2:
Parametrized
number of
instances

With
sequential
execution

process P (n:nat) : noexit :=
   TriggerP;(
     A; ResultP;
     ( [n ne Succ(0)] -> P(Pred(n)) ))
endproc

Without tail
recursion,
Concurrent
execution

process P (n:nat) : noexit :=
   TriggerP;(
     A; ResultP; stop
     |||
     [n ne Succ(0)] -> P(Pred(n)) )
endproc

With tail
recursion,
Concurrent
execution

process P (n:nat) : noexit :=
   TriggerP;(
     A; ResultP; P(Succ(0))
     |||
     [n ne Succ(0)] -> P(Pred(n)) )
endproc

L3:
Unbounded
number of
instances

None process P : noexit :=
   TriggerP;(
     A; ResultP; stop
     |||
     P )
endproc
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refined specification and a previous one, to validate some kind of extension between a sys-
tem with added behaviours and the previous system, or to cover a level 2 specification
without committing to a specific number. Note that (L3) has a semantics nearly equivalent
to the Petri nets’ presented in [FCB 93], while (L1) gives more workable and understand-
able but less complete LOTOS code.

Of course, a natural extension of this concept would be to allow mixed-levels specifica-
tions, i.e., each timethread would independently have its own level and options. These
specifications could simulate the behaviour of a final system in a very realistic way and
would be more implementation-oriented than pure L3, L2 or L1.

Using such concurrent and recursive interpretation, the execution of our specification will
result in a large number of stop processes interleaving with the rest of the behaviour.
Although this type of resulting behaviour is usually unwanted, it does not really lead to
any problem, even for simulation tools (like XELUDO or LITE). What is really dangerous
is the recursion in parallelism (levels 2 and 3), which is not accepted by some tools (for
instance, the tool CAESAR).

One way to avoid problems arising from recursion in parallelism might be to add a macro
command in a metalanguage (or a tool control language) to manage the number of
instances of a process. No option would be needed with such an operator: level 3 specifi-
cations could always be used for any simulation. Further research is needed to solve this
issue.

3.3 Instance Identifier

For verification and simulation purpose, we may like to formalize the separate identity of
timethread instances. Each instance has an implicit state or a set of local variables that
determine, e.g., choices of (guarded) paths taken along it. Observe figure 3:

Figure 3 : Timethread without instance identifier

What happens when the environment is:
TriggerP; TriggerP; a; ...

The first two events will instantiate two concurrent processes and the activity a will have
to synchronize with one or the other, non-deterministically (see fig. 4). One may raise the
question if we need this kind of verification or if we want the first action a to synchronize
with the first instance, the second action a with the second instance, etc.

a
P b

process P[...] : noexit :=
   TriggerP;(a; b; ResultP; stop ||| P[...])
endproc (* process P, level 3 *)
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Figure 4 : Non-determinism on activity a

At a high level of abstraction, we shall not need to determine which timethread we are cur-
rently dealing with. We have to let this situation as abstract as possible. If a distinction is
really needed, the designer could include such identification mechanism or we could pro-
vide an instance identifier to timethreads and events. This identifier could be a natural
number associated to (some) events and actions in a timethread:

process P[...] (id: Nat) : noexit :=
   TriggerP!id ;(a!id ; b!id ; ResultP!id; stop

 |||
 P[...](Succ(id)) )

endproc (* process P, level 3 *)

This approach has however many weaknesses:
• How will the environment associate identifiers to its events? How can we be

sure an event goes to a specific timethread while avoiding possible unwanted
deadlocks?

• How do we represent, verify and test a race problem in such a specification?

• Isn’t the identification of some activities part of a kind of protocol to be
designed anyway?

This problem will not be discussed any further in this document, although it will have to
be solved at a later stage.

4 Single Timethreads in LOTOS

We now look at some of the basic elements of the Timethread notation in order to define
some correspondence of its semantics in LOTOS. A true semantics (level 3 in §3.2) will
be always given first, and a few timethreads will also have a level 1 and/or level 2 descrip-
tion1, to give a general idea of what these levels could look like. Some problems and
restrictions will be raised and discussed. Note that the full LOTOS syntax (gate parame-
ters and process identification) is not respected here.

a

First instance of P

Second instance of P
TriggerP

TriggerP

Environment

...
?
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Section 4.1 presents basic timethread combinations, i.e. unconstrained and constrained
starts, and the loop constructor. Section 4.2 shows the use of concurrent and alternate seg-
ments within a given timethread.

4.1 Basic Combinations

Sequence

Figure 5 : Basic timethread, unconstrained start

The basic timethread has been already fully discussed in §3.2. Therefore, here are the
three specifications given in §3.2:

P := TriggerP; A; ResultP; P (*L1*)

P(n:Nat) := TriggerP; (A; ResultP; P(Succ(0)) (*L2*)
 |||
 [n ne Succ(0)] -> P(Pred(n)) )

P := TriggerP; (A; ResultP; stop ||| P)  (*L3*)

Constrained Start

Figure 6 : Constrained start

The corresponding behaviour of figure 6 is that a constrained start timethread only accepts
one instance of process P at a time in the system, i.e., P has to terminate for a new instance
to start. However, the triggering event should not be refused, for level 2 and level 3 speci-
fications, while an instance is executed. In fact, those triggering events have to be accumu-
lated to allow many instances of P to be executed, one at a time.

1. We will use the tail recursion option of L1 and L2, and also the concurrent option of L2. Refer
to §3.2 for more details.

AP

P

A
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This representation of a constrained start is a shortcut notation for this timethread:

Figure 7 : Equivalent behaviour of a constrained start

Thus, we obtain the following LOTOS representations:

P := TriggerP; A; ResultP; P  (*L1*)

hide Sync in P |[Sync]| P2  (*L2*)
where
   P(n:Nat) := TriggerP; (Sync; P(Succ(0))

    |||
    [n ne Succ(0)] -> P(Pred(n)))

   P2 := Sync; A; ResultP; P2

hide Sync in P |[Sync]| P2  (*L3*)
where
   P := TriggerP; (Sync; stop ||| P)
   P2 := Sync; A; ResultP; P2

This behaviour possesses a representation very similar, w.r.t synchronization on extra hid-
den gates, to those of §5.3.

Loop

Figure 8 : Loop

In the LOTOS representation of the general loop, we have to define a sub-process (Psub)
corresponding to the loop part and the ending part. Of course, recursion still has to be sup-
ported as well for levels 2 and 3:

P := TriggerP; A0; Psub
where
   Psub := A1; (A2; Psub [] A3; ResultP; P) (*L1*)

P
A

P

A2

A1A0 A3
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P(n:Nat) := TriggerP; (A0; Psub            (*L2*)
  |||
  [n ne Succ(0)] -> P(Pred(n)) )

where
   Psub := A1; (A2; Psub [] A3; ResultP; P(Succ(0)) )

P := TriggerP; (A0; Psub ||| P)
where
   Psub := A1; (A2; Psub [] A3; ResultP; stop) (*L3*)

Note that A1, A2 and A3 can be empty sequences, as long as A1 and A2 are not both empty
at the same time. The latter case would not be a desirable LOTOS expression for execu-
tion, although it would be a valid one from a syntactic point of view. We already said that
a timethread is never really empty, but an empty loop (without any event nor activity)
could be a sign of a bad design.

4.2 Concurrent and Alternate Segments

Two very intuitive junction points (OR paths and AND paths) will be used to represent
concurrent and alternate segments. Each can have 2, 3, 4 or more branches. Two examples
or fork-join with 3 branches are presented to give a general idea of the LOTOS interpreta-
tion of these behaviours.

Figure 9 : Fork-join (concurrent segments with an AND junction point)

In the fork-join path presented in figure 9, A2, A3 and A4 may represent a sequence of
more than 1 activity. In a previous attempt to define this behaviour, we were using the exit
and enable operator (>>) to synchronize concurrent segment. Here, we prefer to stay more
homogeneous and consistent by using the hiding operator with a synchronization gate:

A1
P

A2

A3

A4

A5
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P := hide Sync in
TriggerP;((A1; ( A2; Sync; stop

|[Sync]|
A3; Sync; stop
|[Sync]|
A4; Sync; stop )

    |[Sync]| (Sync; A5; ResultP; stop))
||| P)  (*L3*)

The same type of structure applies when we start concurrent threads (§5.2).

Figure 10 : Fork-join (alternate segments with an OR junction point)

In the alternate segments of figure 10, one and only one path (A2, A3 or A4) will be exe-
cuted:

P := hide Sync in
TriggerP;((A1; ( A2; Sync; stop

[]
A3; Sync; stop
[]
A4; Sync; stop )

    |[Sync]| (Sync; A5; ResultP; stop))
||| P)  (*L3*)

In the refinement process, conditions or predicates will have to be somehow inserted to
determine which guarded path to follow, but this will not happen until we consider data as
part of our model.

In [BuC 93], the difference between xor (exclusive or) and ior (inclusive or) for alternate
segments of a timethread is explained. We will probably formalize only the xor part since
this one is easier to define and probably more useful for designers.

A1
P

A2

A3

A4

A5
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5 Simple Timethreads Interactions

A timethread diagram of a system is viewed as a collection of interacting timethreads. We
can differentiate two types of interactions: starts (§5.2), where one or many timethreads
start one or many other timethreads, and other synchronous and asynchronous interactions
(§5.3), where different interactions occur along timethread paths. The structural part of
these interactions will be obtained using a LOTOS structural method defined in [Bor 93]
(§5.1).

5.1 LOTOS Architectural Representation Graphs

In [Bor 93], a LOTOS architectural interpretation method is defined. This method is based
on a particular type of architectural interpretations called LARG (LOTOS Architectural
Representation Graph) from which architectural expressions are generated. These graphs
are very useful to timethread diagrams because interaction architectures are easily
obtained in a LOTOS format, and timethreads’ local behaviours can then be expressed fol-
lowing the approach presented in section 4.

Figure 11 shows an example of the LARG representation of a small timethread diagram:

Figure 11 : Example of a timethread diagram and its LARG representation

The LOTOS architecture of such a LARG (binary grouped, however) would simply be:

a
P

bQ

R

c

d

ContinueP

ContinueR

P

a

R

Q

d

b, c
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(P |[ContinueP]| Q) |[ContinueR]| R
where ... (* behaviour of processes P, Q and R *)

By considering timethreads as entities or processes in their own rights, without reference
to the system architecture, modularity is achieved and behaviours (and constraints) can be
described locally on a timethread by timethread basis.

Thus, to complete our example, the behaviours of P, Q and R have to include the pertinent
gates at the right place. Such behaviours are presented in §5.2 and §5.31. Note that in the
next two sections, synchronization gates are hidden, i.e., not accessible from the environ-
ment. On a timethread design, what is to be shown to the environment and what is to be
hidden is still a research topic. Since we do not consider any skeleton architecture to
present what should be hidden, we will not propose any solution to this problem right now.
However, we will consider any combination of hidden and accessible gates valid for the
moment.

5.2 Starting Concurrent Timethreads

In this section, we present many different scenarios where timethreads are started.

Off End Start

Figure 12 : Off end start

Here is one of the most simple interaction: the off end start. P will enable Q when it termi-
nates and Q cannot start by itself. This could represent a sequence that has been refined for
some design decision. The corresponding LOTOS behaviour is:

(* Timethreads’ architecture section *)
hide ContinueP in P |[ContinueP]| Q  (*L3*)
where
   (* Timethreads’ behaviours section *)
   P := TriggerP; (A0; ContinueP; stop ||| P)
   Q := ContinueP; (A1; ResultQ; stop ||| Q)

Again, we see that guarded recursion is present in both processes. Some precisions are
needed here: we do not have an event TriggerQ any more because the triggering event of
timethread Q is now ContinueP from timethread P.

1. Examples of LOTOS architectures will also be present, although LARGs will not be shown.

A0
P

A1
Q
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Figure 13 : LOTOS synchronization on an off end start

With a level 3 semantics, we cannot use the LOTOS enable operator (>>) to describe the
internal interaction because all instances of P, although they are executed in parallel,
would have to synchronize on exit before Q starts (see fig. 13a), which is impossible.
Using a hidden gate ContinueP, an instance of process Q is created every time an instance
of process P terminates (fig. 13b). Note that the termination order of process P instances is
not know. For example, as shown in figure 13c, the third instance may terminate first, fol-
lowed by P2, P4 and P1, and instances of Q would be created accordingly1. Therefore, fig-
ure 13b is a special (or constrained) case of figure 13c, which is the intended and more
general behaviour.

Generalized termination, as presented in [QuA 92], would be an other option to represent
this behaviour. In their document, the authors present an unsynchronized termination
obtained by a new exit process and a new enabling operator (>ei>), which could solve the
exit problem of figure 13a. Nevertheless, as explained in §3.1, adding hidden gates for
timethreads synchronization is more homogeneous and consistent with our work than
using exit and the generalized enable operator. Moreover, the extension of [QuA 92] needs
some changes in the underlying model of LOTOS (a new compound event) and their pro-
posal is far from being standardized.

A level 1 specification of figure 12 looks like this:

1. This situation is not a real problem since all instances of process Q are the same when created.
Data from an instance of P may eventually be passed to an instance of Q through gate Contin-
ueP when our model will support data flow.
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hide ContinueP in P |[ContinueP]| Q  (*L1*)
where
   P := TriggerP; A0; ContinueP; P
   Q := ContinueP; A1; ResultQ; Q

If P and Q are the refinement of a previous timethread, then the refinement would be sim-
ilar to a pipe or a production line; as soon as P terminates, Q can start while P can work on
something else. At a level 1, the previous unrefined timethread (Pprev) could be repre-
sented by figure 14:

Figure 14 : Timethread before refinement of figure 12

Interestingly enough, we can now observe that Pprev and the composition of P and Q are
not weak bisimulation equivalent with level 1 specifications since there is this production
line effect. Note however that a level 3 off end start is weak bisimulation equivalent to its
level 3 unrefined basic timethread. This kind of relations has to be considered while study-
ing possible transformations.

In Passing Start

Figure 15 : In passing start

hide Sync in P |[Sync]| Q  (*L3*)
where
   P := TriggerP; (A1; Sync; A2; ResultP; stop ||| P)
   Q := Sync; (A3; ResultQ; stop ||| Q)

In the "in passing" start of figure 15, timethread P never really waits since there is always
a process Q ready to synchronize with P.

The last four figures of this section present other types of scenarios where timethread
instances are created. Only final results are given since they do not really need additional
explanations.

A1
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Pprev := TriggerP; A0; A1; ResultQ; Pprev
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Or (Fork) Start

Figure 16 : Or (fork) start

hide ContinuePQ, ContinuePR in  (*L3*)
   P |[ContinuePQ, ContinuePR]| (Q ||| R)
where
   P := TriggerP;((A1; ContinuePQ; stop

   []
   A2; ContinuePR; stop)
 ||| P)

   Q := ContinuePQ; (A3; ResultQ; stop ||| Q)
   R := ContinuePR; (A4; ResultR; stop ||| R)

Or (Join) Start

Figure 17 : Or (join) start

hide ContinueR in (P ||| Q) |[ContinueR]| R  (*L3*)
where
   P := TriggerP; (A1; ContinueR; stop ||| P)
   Q := TriggerQ; (A2; ContinueR; stop ||| Q)
   R := ContinueR; (A3; ResultR; stop ||| R)

And (Fork) Start

Figure 18 : And (fork) start
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hide ContinueQR in
   P |[ContinueQR]| Q |[ContinueQR]| R  (*L3*)
where
   P := TriggerP; (A1; ContinueQR; stop ||| P)
   Q := ContinueQR; (A2; ResultQ; stop ||| Q)
   R := ContinueQR; (A3; ResultR; stop ||| R)

And (Join) Start

Figure 19 : And (join) start

hide ContinueR in
   P |[ContinueR]| Q |[ContinueR]| R  (*L3*)
where
   P := TriggerP; (A1; ContinueR; stop ||| P)
   Q := TriggerQ; (A2; ContinueR; stop ||| Q)
   R := ContinueR; (A3; ResultR; stop ||| R)

The hide operator and synchronization on on events are a powerful combination letting us
specify these types of behaviours quite easily in a homogeneous way. The next section
shows more about the usefulness of this LOTOS operator.

5.3 Other Synchronous and Asynchronous Interactions

This section deals with different kinds of shared paths, synchronizations and triggering
events between timethreads. Waiting places on the timethreads will be used. The quite
exhaustive list of behaviours may appear unnecessary; it is however there to show that
almost any combination can be easily expressed in LOTOS following the same approach.

Join-Fork (Synchronous)

Figure 20 : Join-fork (synchronous)
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One easy way to formalize the synchronous join-fork would be the following representa-
tion where the synchronization between processes P, Q and R is on all gates included in
the sequence A:

P |[a0,...an]| Q |[a0,...an]| R  (*L3*)
where
   P := TriggerP; (A1; A; A11; ResultP; stop ||| P)
   Q := TriggerQ; (A2; A; A21; ResultQ; stop ||| Q)
   R := TriggerR; (A3; A; A31; ResultR; stop ||| R)

However, this synchronization on observable gates is not very meaningful in a timethread
context. Moreover, synchronization in all other timethread combination is done on hidden
gates. Therefore, for homogeneity purpose, we introduce a new process, executing the
sequence A, and we synchronize all these processes on hidden gates. This method will also
ease transformations like regrouping and splitting:

hide S1, S2 in
   SynchroPQR
   |[S1, S2]|
   P |[S1, S2]| Q |[S1, S2]| R  (*L3*)
where
   P := TriggerP; (A1; S1, S2; A11; ResultP; stop ||| P)
   Q := TriggerQ; (A2; S1, S2; A21; ResultQ; stop ||| Q)
   R := TriggerR; (A3; S1, S2; A31; ResultR; stop ||| R)
   SynchroPQR := S1; (A; S2; stop ||| SynchroPQR)

This solution corresponds to the usual way of representing a semaphore in LOTOS.

Of course, the data that could be passed from P, Q and R to SynchroPQR and then passed
back to P, Q and R will require some special attention. However, we are not concerned
with data for the moment.

Join-Fork (Asynchronous)

Figure 21 : Join-fork (asynchronous)
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P ||| Q ||| R  (*L3*)
where
   P := TriggerP; (A1; A; A11; ResultP; stop ||| P)
   Q := TriggerQ; (A2; A; A21; ResultQ; stop ||| Q)
   R := TriggerR; (A3; A; A31; ResultR; stop ||| R)

The join-fork of figure 21 represents simply 3 parallel timethreads sharing common activ-
ities (A) without any synchronization. This is probably the easiest way to represent this
behaviour.

End-Trigger

The next figure represents a process P waiting (after the execution of sequence A1) for an
instance of Q to terminate before continuing:

Figure 22 : End-trigger

hide ContinueP in P |[ContinueP]| Q  (*L3*)
where
   P := TriggerP; (A1; ContinueP; A2; ResultP; stop

   |||
   P)

   Q := TriggerQ; (A3; ContinueP; stop ||| Q)

Trigger-In-Passing

Figure 23 : Trigger-in-passing

The synchronization part or the diagram presented in figure 23 is really "asynchronous"
for Q, i.e., the timethread Q will never wait for P while P has to wait for Q to be ready:
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Q

A1P A2

A4Q A3
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hide ContinueP in P |[ContinueP]| Q  (*L3*)
where
   P := TriggerP; (A1; ContinueP; A2; ResultP; stop

   |||
   P)

   Q := TriggerQ; (A3; (ContinueP; stop
  |||
  A4; ResultQ; stop)

   |||
   Q)

The last three figures show some combinations, with more than 2 timethreads acting in the
synchronization, of the previous behaviours:

And-Trigger

Figure 24 : And-trigger

hide ContinueP in
   P |[ContinueP]| Q |[ContinueP]| R  (*L3*)
where
   P := TriggerP; (A1; ContinueP; A2; ResultP; stop

   |||
   P)

   Q := TriggerQ; (A3; ContinueP; stop ||| Q)
   R := TriggerR; (A4; ContinueP; stop ||| R)

And-Trigger (1 In-Passing)

Figure 25 : And- trigger (1 in-passing)
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hide ContinueP in
   P |[ContinueP]| Q |[ContinueP]| R  (*L3*)
where
   P := TriggerP; (A1; ContinueP; A2; ResultP; stop

   |||
   P)

   Q := TriggerQ; (A3; ContinueP; stop ||| Q)
   R := TriggerR; (A4; (ContinueP; stop

  |||
  A5; ResultR; stop)

   |||
   R)

Or-Trigger

Figure 26 : Or-trigger

hide ContinueP in
   P |[ContinueP]| (Q ||| R)  (*L3*)
where
   P := TriggerP; (A1; ContinueP; A2; ResultP; stop

   |||
   P)

   Q := TriggerQ; (A3; ContinueP; stop ||| Q)
   R := TriggerR; (A4; ContinueP; stop ||| R)

More complex behaviours can also be described using the same approach. A separate
architectural approach, like the LARG method presented in [Bor 93], combined with a
timethread-by-timethread description, gives us the LOTOS architecture required to repre-
sent the most complex timethreads interactions. The method for such complete timethread
diagrams is presented in [BoA 93].

6 Special symbols

We discuss here some special-purpose timethread symbols mentioned in the literature
[BuC 93] [Buh 93a].
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6.1 Timer

Figure 27 : After timeout (or delayed) start

hide Sync in P |[Sync]| Q  (*L3*)
where
   P := TriggerP; (A1; Sync; A2; ResultP; stop ||| P)
   Q := hide TimeOut in
           Sync; (TimeOut; A3; ResultQ; stop ||| Q)

The timer symbol is a waiting place which is triggered by a timeout. In fig. 27, the internal
action TimeOut in timethread Q represents the desired delay or timeout. Note here that the
timeout represents effectively a delay, because TimeOut will always occur.

Time is a very abstract notion in LOTOS and we will have to determine what timed exten-
sions (if any) would be the most appropriate to us to represent this behaviour.

6.2 Stubs

Stubs represent a non-refined behaviour. They are treated as activities representing part of
a process that has to be defined at a later stage (fig. 28a), or as empty timethreads when
they are not directly on the body of another timethread (fig. 28b). Stubs could then be
refined easily while providing a better semantics sooner.

Figure 28 : Possible LOTOS refinement for stub S in timethread P

Discontinuities are another type of constructor that are very similar to stubs. Since they are
not essential to us (at least for the moment), we will not consider them as part of our basic
timethread set.
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6.3 Abort

This operator has to be associated with the LOTOS disabling operator ([>). Note that an
abort really kills all instances of a timethread until a new instance is triggered. Figure 29
shows an example of a timethread Q aborting a timethread P:

Figure 29 : Example of an abort

hide Abort in P |[Abort]| Q   (*L3*)
where
   P := TriggerP; (A1; ResultP; stop ||| P)

  [> Abort; P
   Q := TriggerQ; (A2; Abort; A3; ResultQ; stop

   |||
   Q)

Note here that the Abort is really hidden, and that all instances of P can be killed anytime
after they have been triggered.

It is difficult to know if this approach becomes quickly too complex or even impossible to
deal with. Nevertheless, some simple examples could be developed to see what are the
real problems and limitations of this LOTOS correspondence.

6.4 Other Symbols

Other special symbols, introduced in the timethread literature, will not be fully formalized
since their usefulness may not worth their complexity. Memoryless waiting places and dif-
ferent relationships are such symbols. They will not be part of our basic timethread set
until we get a better understanding of their exact meaning and importance.
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7 Discussion

7.1 Action Refinement

Actions in the basic timethread can represent many different abstract concepts: a proce-
dure, a function, a method, etc., which could be refined later, in a design process, into a
more concrete representation. Action refinement is recognized as a fundamental technique
for designing complex systems, as it permits to consider designs at different levels of
abstraction. Note that we use the term action because we do not consider events yet in our
refinement process. In [CoS 93], two ways of performing action refinement are defined:
(i) syntactical substitution, i.e., substituting a process for any action to be refined, and (ii)
by using a new operator of the language.

Syntactical substitution appears more difficult to perform than the second option, mainly
in respect with synchronization mechanisms, particularly the implicit multiway synchroni-
zation of LOTOS. However, we do not really have synchronization on actions in our time-
thread context, as we saw in §4 and §5. Therefore, syntactical substitution could be a more
efficient way to introduce action refinement in our methodology. Also, some equivalence
relations have been defined for this type of transformation. We will have to look at exist-
ing relations like branching bisimulation [vGW 89], which is a relation with the same
expressiveness of a weak bisimulation, but which remains preserved under action refine-
ment.

Refinement by Sequence of Actions

We can use the concept of event refinement expressed in [CPT 92]. This is a design trans-
formation in which an action of the initial high-level design is replaced by multiple sub-
actions in the resulting design. This refinement allows concurrent activities to overlap in
time, which is not possible using single actions due to the atomicity of LOTOS events.

Since there is no parallelism within an action, we will consider action refinement as the
replacement of an action by a sequence of sub-actions (a → A) or by a whole process (a →
P). Therefore, concurrent actions could be refined by intervals to overlap, and not just to
interleave with each other. This transformation allows us to test and verify some kind of
true concurrency in a multiple timethreads diagram. For example, suppose we have two
concurrent timethreads P and Q (fig. 30) that have actions a and b respectively:

Figure 30 : Unrefined actions

aP bQ
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Using simple interleaving in LOTOS, we can only know that a occurs before or after b,
although a and b may not be atomic and could be executed on a certain interval of time.
These could be refined in the following way:

Figure 31 : Refined actions

There could be other intermediate new sub-actions between abegin and aend, and between
bbegin and bend in figure 31. Although no problem concerning the synchronization of these
refined actions will occur1, their  individual hiding will have to be considered.

Refinement by Process

The refinement of an action into a process can be achieved in two ways. The first one is to
replace the action by a LOTOS process, e.g., if we want to refine b into P in the sequence
a; b; c; ..., then we get a; P >> c; ..., where P is a process definition with exit functional-
ity. The problems here are that we use the enable operator (>>), which may complicate
other correctness preserving transformations, and that there is no real correspondence
between P and its timethread correspondence. Furthermore, due to the semantics of the
LOTOS parallel operator (|||), all instances of a process P would have to synchronize with
each other before Q could start (see fig. 13a). The second (and better) option is to use
stubs (see §6.2) instead of an action to be refined.

Glue Refinement

Refinement could also be done on the glue that links activities on a timethread. Figure 32
shows the link between a and b. This glue could represent some means by which a com-
municates with b.

Figure 32 : Glue linking activities

Our LOTOS representation should not consider the glue specification unless it is refined
explicitly with other activities, or with a new timethread. A LOTOS transformation cannot
guess what is not specified on the timethread! Therefore, we will not consider this glue
any further in our approach.

1. a and b are actions, therefore they will never be part of synchronization gates between two or
more LOTOS processes representing timethreads.
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P
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aP b

glue
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Naturally, in our representation, some refinements could be impossible or not meaningful
w.r.t. possible equivalence relations. "Given a well-established equivalence notion which
is not preserved under refinement, is there a way of restricting either the allowed refine-
ments or the class of system representations under consideration such that preservation of
this equivalence in the restricted setting is obtained?" [CGG 92]. Therefore, we will have
to work not only on new possible relations for our framework, but also on restrictions on
action refinement.

7.2 Context and Constrained Use of Timethreads

In this document, we try to map timethreads diagrams onto LOTOS processes. Since
LOTOS can be very (and sometimes too) abstract and can express only some of the time-
thread’s informal semantics, mapping a LOTOS process back onto timethreads could be
too complex for us right now. This is true even if LOTOS processes are obtained from a
previous mapping. By using formalism, we lose the shape, the environment, the context of
the timethread, and thus part of its semantics. We may have a projection of the timethread
design onto LOTOS semantics, but we cannot directly map LOTOS back onto timethreads
if we do not remember or consider the context.

If we work with an informal use of our Timethread notation, we may be able to map some
of its semantics on a LOTOS specification. The latter could however have some inconsis-
tencies (w.r.t. gate names, mapping of timethread constructs, etc.) and many difficulties
will arise when working in such a design environment. Since timethreads are abstract,
ambiguous and often incomplete from a formal methods point of view, a constrained use
has to be described. This constrained use has to be more suitable for formal methods (and
thus LOTOS) while still being intuitive and attractive for designers.

A constrained use also means that we need a formal definition of timethreads diagrams.
This strict definition might be represented as a grammar where all information needed by
formal methods1 concerning the timethreads’ behaviours will be included. Timethreads
interactions might be represented by LARGs [Bor 93], for instance. A single model to rep-
resent both timethreads behaviours and interactions might be difficult to find.

Timethreads are a visual notation, thus visual and spatial information has to be recorded
somewhere. Our formal definition will probably not include such information, although a
more general description, called intermediate representation, including both the formal
definition and the visual information should also be defined.

1. LOTOS is not the only formal methods to be considered. This description has to be abstract
and not focused on a specific Formal Description Technique only. It may be mapped later on
other formal methods, e.g., Petri nets or event structures.
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Figure 33 : Intermediate representation of a timethreads diagram

This intermediate representation of a timethreads diagram (fig. 33) will be especially use-
ful for interactive design and for automatic transformations at the formal methods level
(see §7.3).

In future work, we will have to find from the context what is to be mapped onto LOTOS
and what is to be left out exactly. To decide what is to be represented, questions to be
asked about the specification have to be defined. Building some examples will help us
finding what are the real needs for verification and testing. This will help us defining a
useful, pertinent and efficient formal definition.

7.3 Timethread Refinement and LOTOS Relations

One of the timethreads’ strengths is the way they can be refined, transformed and
extended to represent more detailed and complete behaviours. LOTOS possesses similar
characteristics; a process can be refined and extended in many ways. Using correctness
preserving transformations [CPT 92] and other LOTOS relations [BoB 87] [KhB 92]
could help us formalizing timethread refinement.

When we add new timethreads, activities or alternatives, we may want to preserve some
characteristics or some behaviour of our previously specified system. The papers men-
tioned previously give us some tools and relations already existing to answer such ques-
tions:

• Functionality extension,

• Reduction (red), conformance (conf), extension (ext) and other new extension
relations,

• Event refinement, etc.

During the mapping of timethreads on a skeleton architecture, we would like our specifi-
cation to be arranged, composed or decomposed in some specific way (network of compo-
nents) while preserving the correctness of the defined behaviour. Some methods also exist
to solve part of this problem:

• Splitting and regrouping parallel processes [Lan 90],

• Interaction points (gates) rearrangement,

Intermediate representation (Constrained use)

Formal definition

Grammar
(Behaviours)

Context
(Visual information)LARG

(Interactions)
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• Bisimulation (strong, weak and congruence), testing and trace equivalences,

• Inverse expansion (to get more parallelism),

• Multiway to two-way synchronization, etc.

General restructuring algorithms for LARGs [Bor 93] are also needed for timethreads
splitting, merging, etc.

In the literature, we find a large number of existing correctness preserving transformations
and relations. Our focus should not be exclusively on LOTOS transformations and rela-
tions. If we look attentively, many other domains can provide excellent hints and ideas to
help us defining our own timethread relations and transformations. For example, many
equivalence semantics, from trace to testing to bisimulation equivalences, exist for these
domains [vGl 90]:

• Graph domains (process graph, state transition diagram)

• Net domains ( (labelled) Petri nets)

• Event structure domains ( (labelled) event structure)

• Explicit domains (mathematically coded set of properties)

• Term domains (term in a system description language)

• Projective limit domains (projective limits of series of finite term domains)

Since timethreads are often related to simple cases of such existing domains, it could be
worthwhile looking at the work already done and adapting it for the Timethread notation
afterwards.

Figure 34 : Refinement using timethread CPT.

Figure 34 presents a refinement approach where timethreads correctness preserving trans-
formations (based on LOTOS CPT) are used. Corresponding LOTOS CPT supporting
these timethread transformations in a formal way would have to be defined. Validation is
not needed using this type of refinement.
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Figure 35 : Refinement using validation.

Where timethreads CPT cannot be defined, a validation approach will have to be taken.
Figure 34 illustrates this type of refinement. This situation is however generally not suit-
able since validation using any known relation is very costly.

Validation is very hard for any but trivial systems, so validation of larger or complex sys-
tems is usually not feasible in practice. "A component-based style allows components to
be verified individually. Larger combinations (or designs) of trusted components can then
be verified more easily" [Tur 93]. In our validation domain, a timethread-based style,
timethreads could be validated individually. This validation approach is not obvious for
the moment but should be studied further in the future.

In a refined specification, data might be associated to timethreads. LOTOS abstract data
types may then have to be used. However, the data part will not be investigated in this doc-
ument, although we will have to consider its formalization later.

7.4 Design Methodology

Why would we need another design methodology using formal methods while some
already exist? For instance, the Lotosphere Methodology [LOT 92], based on the conven-
tional stepwise refinement, offers powerful structuring and abstraction facilities that allow
the designer to maintain control of the different aspects of the design at all levels along the
design trajectory. This is achieved by enabling formal statements of design constraints and
objectives in the structure of the design. The quality of the design is improved because of
mathematical foundations of LOTOS, that allow verification of properties and extensive
support for testing.
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What we need is a  thinking tool, a methodology more intuitive and appealing than the one
proposed in the Lotosphere project. It has to be used in the framework of a practical design
process that engineers in industry can use without having to be formalists. The Lotosphere
Methodology takes a formal method (LOTOS) and tries to build a complete design meth-
odology on it, which is not really what we said we needed. In our approach, we start with
some visual design concepts, very natural to designers, and we try to use a formal method,
LOTOS in our case, to help formalizing some of its part with what LOTOS offers the best.
This direction seems to be more promising than the former one.

Although we know how to capture the main requirements with a timethread design and
then get the corresponding LOTOS specification (explained in the following sections),
this does not mean that we have a complete design framework! We have to get a complete
implementation-oriented model, or architectural specification, of our timethread-designed
system. Two major approaches are presented here: the derivation (fig. 36a) and the valida-
tion (fig. 36b).

Derivation: In this approach, an architectural specification of the system (AD) is obtained
from the LOTOS mapping of the timethread design (TD) on which correctness preserving
transformations like restructuring, process splitting and merging, etc., can be applied.

Validation: Here, we have to design both the timethread diagram and a sketch of an archi-
tecture. We then map the two designs onto LOTOS specifications (TV and AV). Finally,
we try to validate the LOTOS specification obtained from the architectural design (AV),
using either some relations or test cases derived from the LOTOS specification obtained
from the timethread design (TV).
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Figure 36 : Derivation and validation approaches

The advantages of using CPT is quite obvious: no need for costly validation or for the gen-
eration of test cases. Although this solution is theoretically appealing, CPT are sometime
difficult to define and also hard to apply. Nevertheless, this solution seems promising and
deserves some good research.

8 Conclusion and Future Work

Although still theoretical, this document gives a good overview of the possibilities of a
LOTOS-Timethreads framework. The results of the correspondence of §4 and §5, which
describe the LOTOS interpretation of a new design style called timethread style, can be
very helpful and could lead to a better formalization and use of the Timethread notation as
a thinking tool in a design process.
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Timethreads seem to be liked by designers, and using LOTOS as an underlying model
gives much more power to the notation. Timethreads need to keep their "informal look" to
stay appealing for users. However, in order to be used in a comprehensive software devel-
opment model (from requirements to validated implementation), their concepts need to be
cast into a more formal framework. This could be LOTOS.

A LOTOS interpretation method for timethreads together with a case study (the traveller
system) is presented in [BoA 93]. Other examples of the methodology, like the elevator
system, the MTU or a telephony system, will help us defining a complete framework
where formal methods are integrated in the design process.

Many topics presented here require further attention. In the short term, we have to:

• Formally define timethread diagrams and the notion of context.

• Define consistent transformations w.r.t. the formal definition of timethreads.

• Look at strengths of the validation and derivation approaches in the design
methodology.

• Explore the advantages and drawbacks of a mixed-levels specification of a
timethread system.

• Look at what can and cannot be answered by a specification.

• Integrate skeleton architectures in the notation to define what activities are to be
hidden from the environment.

• Look at the real necessity of instance identifiers and special symbols.

• Define more clearly constraints to be applied to activity refinement.

• Look at the use of LOTOS CPT for our framework.

In the long term, we could be more ambitious:

• Introduce data in the notation.

• Since we mostly deal with real-time systems, introduction of time concepts will
be needed sooner or later. A new underlying model, probably a time-extended
LOTOS, should also be studied.

• Define the intermediate representation, more general than what is needed by
LOTOS.

• Define the needs for timethread refinement.

• Define Timethreads Correctness Preserving Transformations (TCPT).

• Define equivalence, reduction and extension relations for validation purpose.
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• Look at a timethread-by-timethread validation process.

• When we know the limitations of the LOTOS approach w.r.t. validation, testing
and verification, other underlying models (e.g., Petri nets or event structures)
should be explored to complete the LOTOS approach.

• Define a performance analysis model and metrics applied to timethreads
restructuring for performance purpose.

• A real-life case study form industry could be an excellent way to test and
improve the design framework, once defined.

Much work remains to be done, but the result could worth the effort.
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