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Abstract Coverage analysis of programs and specifications is a common approach to
measure the quality and the adequacy of a test suite. This paper presents a probe
insertion technique for measuring the structural coverage of LOTOS specifica-
tions against validation test suites. Coverage results can help detecting incom-
plete test suites, a discrepancy between a specification and its tests, and
unreachable parts of a given specification. Such results are provided for several
examples, taken from real-life and hypothetical communicating systems for
which a LOTOS specification was constructed and validated.
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1. INTRODUCTION

“When to stop testing?” is and will remain an important problem for com-
munications software validation and verification. Lai [16] mentions that
knowing how much of the source code has been covered by a test suite can
help estimate the risk of releasing the product to users, and discover new tests
necessary to achieve a better coverage. Inexperienced testers tend to execute
down the same path of a program, which is not an efficient testing technique.

Coverage measures are considered to be a key element in deciding when to
stop testing. Coverage analysis of code is a common approach to measure the
quality and the adequacy of a test suite [23]. Coverage criteria can guide the
selection of test cases (a priori, i.e. before the execution of the tests) and be
used as metrics for assessing the quality of an existing test suite (a posteriori,
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i.e. after the execution of the tests). Many methods are available for the meas-
ure of different coverage criteria such as statements, branches, data-flow,
paths, and so on [9].

This paper covers a different angle of the same question, relating to speci-
fication coverage. Specifications, just like programs, can be covered for sev-
eral reasons and according to several criteria. For example, we could want to
cover a specification in the generation of conformance test cases for an imple-
mentation, or in order to check whether a specification satisfies abstract re-
quirements. These processes can also gain in quality from the use of coverage
measurements. Many formal specification languages already benefit from
tool-supported coverage metrics, including SDL with Telelogic’s Tau [21] and
VDM with IFAD’s VDMTools [13]. Unfortunately, no such tools are currently
available for ISO’s formal specification language LOTOS [14].

Still, several coverage criteria have been defined for LOTOS. For instance,
van der Schoot and Ural developed a technique for static data-flow analysis
[20], whereas Cheung and Ren proposed an operational coverage criterion
[10]. These two techniques are used mostly for guiding, a priori, the genera-
tion of test cases from specifications. The first one is based on data usage and
the second one is based on the semantics of LOTOS operators.

The availability of a formal specification enables the (automated) genera-
tion of test cases based on different coverage criteria [18]. This feature is par-
ticularly beneficial in a context of conformance testing, i.e. when the
behaviour of an implementation under test is required to conform to its speci-
fication [15]. One of the main assumptions behind this use of coverage criteria
is that the specification is correct and valid with respect to the system require-
ments. This validity cannot usually be established formally because initial re-
quirements are often informal. Specifications can however be exercised
through different means, including validation testing (different from conform-
ance testing), until a sufficient degree of confidence in their validity is reached.

This paper presents a new a posteriori coverage technique for LOTOS,
based on the specification’s structure. This technique is intended to be used
during the initial validation of the specification against a test suite that captures
the main functionalities of the requirements. In this particular context, valida-
tion test cases are often generated manually rather than automatically. For in-
stance, the SPEC-VALUE methodology (Specification-Validation Approach
with LOTOS and UCMs) promotes the use of scenarios, which capture informal
functional requirements from a behavioural perspective, for the construction of
an initial formal specification in LOTOS [1][2][3][4]. These scenarios also
guide the generation of a validation test suite to ensure the consistency be-
tween the LOTOS specification, which integrates all scenarios, and the require-
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ment scenarios. The specification is considered satisfactory once all the test
cases pass successfully and once the structural coverage goals are achieved.

To measure this structural coverage, the LOTOS specification is instrument-
ed with probes, which are visited by validation test cases during their execu-
tion. Section 2 illustrates a probe insertion technique for sequential programs.
This idea is adapted to the LOTOS context in Section 3. Section 4 provides cov-
erage results coming from experiments with specifications of communicating
systems of various natures and complexity. Conclusions follow in Section 5.

2. PROBES FOR SEQUENTIAL PROGRAMS

Probe insertion is a well-known white-box technique for monitoring soft-
ware in order to identify portions of code that have not been yet exercised, or
to collect information for performance analysis. A program is instrumented
with probes (generally counters) without modification of its functionality.
When executed, test cases trigger these probes, and counters are incremented
accordingly. Probes that have not been “visited” indicate that part of the code
is not reachable with the tests in consideration. Obvious reasons could be that
the test suite is incomplete, or that this part of the code is unreachable.

Section 2.1 raises several issues related to probe instrumentation, and Sec-
tion 2.2 gives an illustrative overview of an existing probe insertion technique
for well-delimited sequential programs.

2.1 Issues With Probe Instrumentation

The following four points are notable software engineering issues related
to approaches based on probe instrumentation of implementation code or of
executable specifications:
1. Preservation of the original behaviour. New instructions shall not inter-

fere with the intended functionalities of the original program or specifica-
tion, otherwise tests that ran successfully on the original behaviour may no
longer do so.

2. Type of coverage. Because probes are generally implemented as counters,
it is easier to measure the coverage in terms of control flow rather than in
terms of data flow or in terms of faults. Other techniques, summarized by
Charles in [9], are more suitable for the two last types.

3. Optimization. In order to minimize the performance and behavioural
impact of the instrumentation, the number of probes shall be kept to a min-
imum, and the probes need to be inserted at the most appropriate locations
in the specification or in the program.
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4. Assessment. What is assessable from the data collected during the cover-
age measurement represents another issue that needs to be addressed.
Questions such as “Are there redundant test cases?” and “Why hasn’t this
probe been visited by the test suite?” are especially relevant in the context
of SPEC-VALU E.
These issues will be discussed first for sequential program in the next sec-

tion, and then for two LOTOS-based strategies developed in Section 3. 

2.2 Probe Insertion Technique

For well-delimited sequential programs, Probert suggests a technique for
inserting the minimal number of statement probes necessary to cover all
branches [19]. Table 1 illustrates this concept with a short Pascal program (a)
and an array of counters named Probe[] . The counters indicate the number
of times each probe has been reached. Intuitively, (b) shows three statement
probes inserted on the three branches of the program. In (c), the same result
can be achieved with two probes only. Using control flow information, the
number of times that statement3  is executed is computed from Probe[1]-
Probe[2] . After the execution of the test suite, if Probe[2]  is equal to
Probe[1] , then the conclusion is that the ‘else’ branch that includes
statement3  has not been covered.

Table 1. Example of probe insertion in Pascal

It has been proven in [19] that the optimal number of statement probes nec-
essary to cover all branches in a well-delimited sequential program is E-V+2,
where E and V are respectively the number of edges and of vertices of the un-
derlying extended delimited Böhm-Jacopini flowgraph of the program.

The four issues raised in Section 2.1 are covered as follow:

a) Original Pascal code b) Three probes inserted c) Optimal number of probes

statement1;
if  ( condition )
then
  begin
    statement2
  end
else
  begin
    statement3
  end
{end if};

statement1;
inc(Probe[1]);
if  ( condition )
then
  begin
    inc(Probe[2]);
    statement2
  end
else
  begin
    inc(Probe[3]);
    statement3
  end
{end if};

statement1;
inc(Probe[1]);
if  ( condition )
then
  begin
    inc(Probe[2]);
    statement2
  end
else
  begin
     {No probe here!}
      statement3
  end
{end if};
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1. Preservation of the original behaviour: if the probe counters are variables
that do not already exist in the program, then the original functionalities
are preserved.

2. Type of coverage: the coverage is related to the program control flow.
3. Optimization: there exists a way to minimize the number of statement

probes so it can be smaller than the number of statements.
4. Assessment: this technique covers all branches in a well-delimited sequen-

tial program.

3. PROBES FOR LOTOS SPECIFICATIONS

Test cases extracted (manually) from requirements are often used to estab-
lish the validity of a specification. A posteriori measurements help to assess
the coverage of the specification structure by the validation test suite. This sec-
tion presents a structural coverage technique for LOTOS specifications. Simi-
larly to probe insertion for sequential programs, LOTOS constructs can be used
to instrument a specification at precise locations while preserving its general
structure and its externally observational behaviour. Because the measurement
of the structural coverage is performed during the execution of test cases, LO-
TOS testing theory is briefly discussed in Section 3.1. Then, Section 3.2 intro-
duces a simple insertion strategy, which is improved in Section 3.3. The
interpretation of coverage results is discussed in Section 3.4.

3.1 LOTOS Testing

The LOTOS testing theory has a test assumption stating that the specifica-
tion, modelled as a labelled transition system (LTS), communicates in a sym-
metric and synchronous way with external observers, the test processes [5].
There is no notion of initiative of actions, and no direction can be associated
to a communication.

To verify the successful execution of a test case, the corresponding test
process and the specification under test (SpecUT) are composed in parallel.
They synchronize on all gates but one, the Success event, which must be added
at the end of each test case. If the composed behaviour expression deadlocks
prematurely, i.e. if Success is not always reached at the end of each branch of
the LTS resulting from this composition, then the SpecUT failed this test. If
this is not the case, then it must have passed the test1.

1. The test has passed unless the SpecUT exhibits divergent behaviour, such as an
infinite loop of internal events, a case that is outside the scope of this paper.
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In the real world, test cases are often executed more than once when there
is non-determinism in either the test or the implementation. Things are simpler
at the LOTOS level. LOLA, a tool used to test LOTOS specifications rather than
to generate tests, avoids this problem altogether. It determines the response of
the SpecUT to a test by a complete state exploration of their composition [17].
For each test case, one of the three following verdicts is output by LOLA: 
• Must pass: all the possible executions (called test runs) were successful.
• May pass: some test runs were successful, some unsuccessful.
• Reject: all test runs failed as they deadlocked prematurely, and the Success

event was never reached.

3.2 Simple Probe Insertion Strategy

Among the LOTOS constructs, the most interesting candidate for represent-
ing a probe is an internal event with a unique identifier. Such event can be
composed of a hidden gate name that is not part of any original process in the
specification (e.g. Probe), followed by a unique value of some new enumerat-
ed abstract data type (ADT) (e.g. P_0, P_1, P_2, P_3, etc.).

In LOTOS, a basic behaviour expression (BBE) is either the inaction stop ,
the successful termination exit , or a process instantiation (P[ …] ). A behav-
iour expression (BE) can be one of the following1:
• A BBE.
• A BE prefixed by a unary operator, such as the action prefix (; ), a hide , a

let , or a guard ([predicate]-> ).
• Two BEs composed through a binary operator, such as a choice ([] ), an

enable (>>), a disable ([> ), or one of the parallel composition operators
(|[ …]| , || , or ||| ).

• A BE within parentheses.
In this paper, a sequence is defined as a BBE preceded by one or more

events, separated by the action prefix operator (e1; e2; ... en; BBE). A BBE that
is not preceded by any event is called a single BBE.

Probes enable the measure of the coverage of every event in a behaviour
expression, and therefore in a whole specification. The simplest and most
straightforward strategy consists in adding a probe after each event at the syn-
tactic level. For each event e and each behaviour expression B, the expression
e; B is transformed into e; Probe!P_id; B where Probe is a hidden gate and
P_id a unique identifier. A probe that is visited guarantees, by the action prefix

1. This paper considers a very common subset of LOTOS where there are no gener-
alized Par  or Choice  operators.
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inference rule, that the prefixed event has been executed. In this case, if all the
probes are visited by at least one test case in the validation test suite, then the
test suite has achieved total event coverage, i.e. the coverage of all the events
in the specification (modulo the value parameters attached to these events).

Table 2 illustrates this strategy on a very simple specification S1 (a). Since
there are three occurrences of events in the behaviour, three probes, imple-
mented as hidden gates with unique value identifiers, are added to S1 to form
S2 (b). The validation test suite is somehow derived from scenarios or require-
ments according to some test plan or functional coverage criteria not discussed
here. In this example, it is composed of two test cases (Test1  and Test2 ),
which remain unchanged during the transformation. The third specification (c)
will be discussed in Section 3.3.

Table 2. Simple probe insertion in LOTOS

Probe insertion is a syntactic transformation that also has an impact on the
underlying semantic model, i.e. the specification’s labelled transition system
(LTS). Table 3 shows the LTSs resulting from the expansion of S1 and S2. A
LOTOS exit  is represented by δ at the LTS level. When a test case ending by
exit  is checked (e.g. Test1 ), LOLA automatically transforms such δ into i
followed by Success. Although the LTSs (a) and (b) are not equal as trees, they
are observationally equivalent [14]. Therefore, as shown by Brinksma in [5],
the tests that are accepted and refused by S1 will be the same as those of S2.

Table 3(c) presents two traces, resulting from the composition of each test
process found in Table 2(a) with S2, that cover the events and probes of S2.
Test1  covers P_1 in the left branch of (c) whereas Test2  covers P_2 and P_3
in the right branch. Neither of these tests covers all probes, but together they
cover all three probes, and therefore the event coverage is achieved, as expect-
ed from such a validation test suite. The fact that the entire LTS is covered here
is purely coincidental, as it is usually not the case for complex specifications.

a) Original Lotos 
specification (S1)

b) Simple probe insertion 
strategy (S2)

c) Improved probe insertion 
strategy (S3)

specification  S1[ …]: exit
  … (* ADTs *)
behaviour
  a; exit
  []
  b; c; stop
where
 process  Test1[a]: exit :=
   a; exit
 endproc  (* Test1 *)
 process Test2[ …]: noexit :=
   b; c; Success; stop
 endproc  (* Test2 *)
endspec  (* S1 *)

specification  S2[ …]: exit
  … (* ADTs *)
behaviour
  hide  Probe in
  (
    a; Probe!P_1; exit
    []
    b; Probe!P_2;
       c; Probe!P_3;  stop
  )

where
 … (* Test1 and Test2 *)
endspec  (* S2 *)

specification  S3[ …]: exit  
  … (* ADTs *)
behaviour
  hide  Probe in
  (
    a; Probe!P_1; exit
    []
    b; c; Probe!P_2;  stop
  )

where
 … (* Test1 and Test2 *)
endspec  (* S3 *)
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Table 3. Underlying LTSs

Going back to the four issues enumerated in Section 2.1, the following ob-
servations are made:
1. Preservation of the original behaviour: probes are unique internal events

inserted after each event (internal or observable) of a sequence. They do
not affect the observable behaviour of the specification. This insertion can
be summarized by Proposition 1, which coincides with one of the LOTOS

congruence rules found in the standard [14] (congruence rules preserve
observational and testing equivalences in any context):

e; B  ≈c  hide Probe in (e; Probe!P_id; B)  =  e; i; B (Prop.  1)

2. Type of coverage: this coverage is concerned with the structure of the
specification, not with its data flow or with fault models. The resulting
event coverage makes abstraction of the semantic values in the events (e.g.
the expression dial?n:nat  abstracts from any natural number n).

3. Optimization: none; the total number of probes equals the number of
occurrences of events in the specification. Reducing the number of probes
is the focus of the next section.

4. Assessment: this strategy covers all events syntactically present in a speci-
fication. Single basic behaviour expressions are not covered.

3.3 Improved Probe Insertion Strategy

The simple insertion strategy leads to interesting results, yet two problems
remain. First, the number of probes required can be very high. The composi-
tion of a test case and a specification where multiple probes were inserted (and
transformed into internal events) can easily result in a state explosion problem.
Second, this approach does not cover single BBEs as such, because they are
not prefixed by any event. Single BBEs may represent a sensible portion of the

a) Original Lotos 
specification (S1)

b) 3 probes inserted in the 
specification (S2)

c) Composition of S2 with two
test cases: Test1 & Test2

a b

δ c

a b

i (* P_1 *) i (* P_2 *)

δ c

i (* P_3 *)

i (* P_1 *) i (* P_2 *)

i (* δ *) c

Success i (* P_3 *)

Success

a b
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structure of a specification that needs to be covered as well. This section
presents four optimizations that help solving these two problems.

In a sequence of events, the number of probes can be reduced to one probe,
which is inserted just before the ending BBE. If such a probe is visited, then
LOTOS’ action prefix inference rule leads to the conclusion that all the events
preceding the probe in the sequence were performed. The longer the sequence,
the better this first optimization becomes. Table 2(c) shows specification S3
where two probes are necessary instead of three as in S2. This sequence cov-
erage implies the coverage of events with fewer probes or the same number of
probes in the worst case.

The second optimization concerns the use of parenthesis in e; (B), where B
is not a single BBE. In this case, no probe is required before (B). The behaviour
expression B will most certainly contain probes itself, and a visit to any of
these probes ensures that event e is covered (by the prefix inference rule).

The third optimization is concerned with the structural coverage of single
BBEs (without any action prefix), where some subtle issues first need to be ex-
plored. Suppose that *  is one of the LOTOS binary operators enumerated at the
beginning of Section 3.2 ([] , >>, [> , |[ …]| , || , ||| ). If a single BBE is pre-
fixed with a probe in the generic patterns BBE * BE  and BE * BBE , then care
is required in order not to introduce any new non-determinism. Additional
non-determinism could result in some test cases to fail. A probe can safely be
inserted before the BBE unless one of the following situations occurs:
• BBE is stop : this is inaction. No probe is required on that side of the

binary operator (* ) simply because this inaction cannot be covered. This
syntactical pattern is useless and should be avoided in the specification.

• BBE is a process instantiation P[ …] : a probe before the BBE can be safely
used except when *  is the choice operator ([] ), or when *  is the disable
operator with the BBE on its right side (BE [> P[ …] ). In these cases, a
probe would introduce undesirable non-determinism that might cause
some test cases to fail partially: LOLA would return a may pass verdict
instead of a must pass. A solution would be to guard the process instantia-
tion. One way of doing so in many cases would be to partially expand
process P with the expansion theorem so an action prefix would appear.
Another solution is presented below, in the fourth optimization.

• BBE is exit : the constraints are the same as for the process instantiation.
The solution is also to prefix this exit  with some event.
The fourth optimization is concerned with BBEs that are process instanti-

ations. When a process P is not defined as a single BBE, then the necessary
number of probes can be further reduced when P is instantiated in only one
place in the specification (except for recursion in P itself). In this case, a probe
before P is not necessary because probes inserted within P will ensure that the
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single instantiation of P is covered. This is especially useful when facing a
process instantiation as a single BBE. For example, suppose a process Q that
instantiates P in one place only, where P is not a BBE and P is not instantiated
in any process other than Q and P itself:

Q[ …] := e1; e2; e3; stop  [] P[ …]
A probe inserted before P would make the choice non-deterministic, which

could lead to undesirable verdicts during the testing. However, if P is not a sin-
gle BBE and if it is not instantiated anywhere else, then no probe is required
before P in this expression. Any probe covered in P would ensure that the BBE
on the right of the choice operator in Q has been covered. This situation often
occurs in processes that act as containers for aggregating and handling other
process instances, a common pattern in communicating systems.

Regarding the four issues enumerated in Section 2.1, the improved strategy
achieves a larger coverage of the specification than the simple strategy of Sec-
tion 3.2, and it requires fewer probes to do so.
1. Preservation of the original behaviour: probes are unique internal events

inserted before each BBE. When such BBE is prefixed by an event, then
the probe does not affect the observable behaviour (Proposition 1). When
the BBE is not prefixed, a case not addressed by the simple strategy, then
special care must be taken in order not to introduce new non-determinism. 

2. Type of coverage: the sequence and single BBE coverage, which implies
the event coverage of the simple strategy, is concerned with the specifica-
tion structure.

3. Optimization: the total number of probes is less than or equal to the total
number of sequences and BBEs in the specification.

4. Assessment: this strategy covers all events syntactically present in a speci-
fication, as well as single BBEs other than stop  (which should not be
found in the specification anyway).

3.4 Interpretation of Coverage Results

Several problem sources can be associated to probes that are not visited by
a test suite. They usually fall into one of the following categories: 
• Incorrect specification. In particular, the specification could include

unreachable code caused by processes that cannot synchronize properly or
by guards that can never be satisfied.

• Incorrect test case. This is usually detected before probes are inserted,
during the verification of the functional coverage of the specification.
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• Incomplete test suite. Caused by an untested part (an event or a single
BBE) of the specification (e.g. a feature of the specification that is not part
of the original requirements).

• Discrepancy. Due to the manual nature of the construction of the specifi-
cation from the scenarios or requirements, there could be some discrep-
ancy between a test and the specification caused by ADTs, guards, the
choice ([] ) operator, or other such constructs.
Code inspection and simulation of the specification can help diagnosing

the source of the problem highlighted by a missing probe. Several LOTOS

tools, including LOLA, also offer reachability and expansion mechanisms that
can be helpful in determining whether a specific probe can be reached at all.

4. EXPERIMENTATION

The structural coverage technique was applied to various specifications
and validation test suites developed using the SPEC-VALU E methodology
(Section 4.2) and a self-coverage experiment (Section 4.3). But first, current
tool support is briefly presented in Section 4.1.

4.1 Tool Support for Structural Coverage Measurement

A filter tool called LOT2PROBE was built for the automated translation of
special comments manually inserted in the original specification (e.g.
(*_PROBE_*) ) into internal probe events with unique identifiers (e.g.
Probe!P_0; ). A new data type that enumerates all the unique identifiers for
the probes is also added to the specification. Care was taken not to add any new
line to the original specification, in order to preserve two-way traceability be-
tween the transformed specification and the original one. Though full automa-
tion of probe insertion is possible, the solution developed so far is still semi-
automatic because of some special cases (e.g. single BBEs) that are not trivial
to handle. However, the manual insertion of these probe comments has the
benefit of being more flexible, and it can be done at specification time or after
the initial validation.

Batch testing under LOLA can then be used for the execution of the valida-
tion test suite against the transformed specification. Several scripts compute
probe counts for each test and then output textual and HTML summaries of the
probes visited, with a highlight on probes that are not covered by any test.



30 TESTING OF COMMUNICATING SYSTEMS

4.2 Scenario-Based Validation Experiments

The SPEC-VALU E methodology focuses on the construction of a LOTOS

specification from a collection of scenarios described with the Use Case Map
(UCM) notation [6][7]. UCMs have proven to be useful for the high-level de-
scription of communicating systems as they visually describe scenarios in
terms of causal relationships between responsibilities, the latter being bound
to system components. The specification integrates all UCM scenarios into a
component-based description, which is then validated against black-box test
cases derived from those same UCMs, which capture functional requirements.

For the sake of simplicity in this paper, the functional coverage goals are
considered to be achieved once the test suite is successfully executed. At this
point, the specification can be considered from another perspective, namely
from the structural coverage viewpoint. The techniques and tools discussed so
far are hence applied to obtain results indicating whether or not the validation
test suite has covered the entire specification structure. If so, then the confi-
dence in the validity and completeness of the specification and its test suite is
increased. If not, then appropriate measures (inclusion of test cases, correction
of the specification or of the tests, etc.) can be applied at a very early stage of
the design process.

SPEC-VALU E was applied to the following examples of communicating
systems:
• Group Communication Server (GCS) [1]: an academic example that

describes a server with different functionalities for group-based multicast.
• GPRS Group Call [2]: a real-life mobile communication feature of the

General Packet Radio Service (GPRS), based on GSM. This work was
done during the first standardization stage of GPRS [12].

• Feature Interaction Example (FI) [3]: an academic case study oriented
towards the avoidance and the detection of undesirable interactions
between a collection of telephony features described in the 1998 Feature
Interaction Contest.

• Agent-Based Simplified Basic Call (SBC): real-life system developed dur-
ing a feasibility study for the application of a functional testing process to
industrial telephony applications based on agents and the Internet protocol
(IP). This work was extended to include several features in [4].

• Tiny Telephone System (TTS): an academic example (basic call plus two
telephony features) used as a tutorial for the SPEC-VALU E methodology.
For each of these systems, which are significantly diverse in nature and in

complexity, Table 4 summarizes the main characteristics of the LOTOS speci-
fication and the test suite constructed from the UCM scenarios. Then, charac-
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teristics and results related to the structural coverage are provided. The last
column (MAP protocol) will be discussed in Section 4.3.

Row n shows the reduction obtained using the optimizations on sequences
(n = (k+l-m)/(k+l)), whereas row o represents the reduction relative to the
number of events and BBEs in the specification (o = (j+k-m)/(j+k)). These
measures show the effectiveness of the optimizations discussed in Section 3.3.

LOLA was used in two different ways to generate the coverage results. Row
q indicates the number of seconds1 taken by LOLA’s TestExpand command,
which does a full exploration of the state space resulting from the synchroni-
zation of each test process with the specification. This command was not used
on the GPRS, SBC, and MAP specifications and test suites because of their
complexity. Row i uses the same command on the specification without
probes, but with an option which applies equivalence rules on the fly to reduce
the state space (hence resulting in faster executions).

Table 4. Summary of structural coverage experiments

The legend for row s respects the interpretation of coverage results dis-
cussed in Section 3.4:
n Unreachable code or error in the LOTOS specification.
o Incomplete test suite.
p Discrepancies between the LOTOS specification and either the test suite

itself or the scenarios from which these tests were derived.

1. Measured on a 300MHz Celeron with 64 MB RAM and Windows 98.

System GCS GPRS FI SBC TTS MAP

L
O

T
O

S

a) # Process definitions 19 30 13 9 11 14
b) # Lines of behaviour 750 1400 800 750 375 850
c) # Abstract data types 29 53 39 8 19 22
d) # Lines of ADTs 800 1125 750 200 400 375
e) # Lines of test processes 1600 800 1325 300 375 7725
f) Total number of lines 3150 3325 2875 1250 1050 8950

Te
st

s g) # Functional test cases 109 36 37 11 33 603
h) # Unexpected verdicts 0 0 1 3 0 6
i) Test time (in seconds) 5 120 11 64 5 16

C
ov

er
ag

e

j) # LOTOS events 57 126 94 204 25 156
k) # LOTOS BBEs 35 86 27 20 22 46
l) # Sequences 40 74 49 60 18 67
m) # Probes inserted 54 99 55 64 26 83
n) Optimization reduction 28% 38% 28% 20% 35% 27%
o) Overall reduction 41% 53% 55% 71% 47% 59%
p) # Missed probes 3 11 4 17 0 17
q) Time, with TestExpand 235 - 165 - 140 -
r) Time, with OneExpand 31 81 37 18 9 1000
s) Why probes missed p n, p p o, p - n
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Row r shows the time taken by LOLA’s OneExpand command to measure
the structural coverage. This command performs a partial coverage of the com-
position through random executions (five executions per test in the above ex-
amples). This pragmatic solution handles large state spaces and provides quick
and effective coverage results for complex specifications. However, unlike
TestExpand, the use of OneExpand does not guarantee that reachable probes
will be covered by random test runs.

As for the missed probes (row p), the reasons and resulting actions are:
• GCS: Additional feature not in the original set of UCM scenarios (two

probes). This resulted in the addition of the feature to the UCMs, which in
turn led to two new test cases. One other UCM scenario was specified as
two alternatives in LOTOS (one probe), so one test case was added.

• GPRS: Unreachable code (one probe). This part of the specification and
its probe were removed. This GPRS specification includes robustness con-
ditions that are unreachable when correct client and server processes are
composed (ten probes). No system-level test was added, but we checked
that these probes were manually reachable by simulating the client and
server processes taken individually.

• FI: Partial specification of the whole collection scenarios (4 features out of
13 in the UCMs). The specification structure contains placeholders for
scenarios still to be specified (four probes). There was no action taken
because this situation was expected. However 1 unexpected interaction
was detected between two features (this was fixed in a recent version).

• SBC: Failure conditions were handled by the specification and the scenar-
ios but were not tested as the test suite focused on correct user-level inter-
actions (17 probes). New test cases are required, but none was added to
the test suite. This specification and its test suite were intended to be part
of a proof of concept rather than to be complete. This also explains the 3
unexpected verdicts. A more complete version is discussed in [4].
Many bugs and inconsistencies were detected and fixed during the valida-

tion testing. However, the structural coverage helped fine-tuning these speci-
fications and test suites by detecting several non-trivial problems at a very low
cost (from a few seconds to a few minutes).

4.3 Self-Coverage Experiment

The structural coverage technique was also applied to a specification de-
veloped in a rather different context. The system under study was GSM’s Mo-
bile Application Part (MAP) protocol [11], which maintains consistency
among databases frequently modified by mobile telephone users.
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In this experiment, the MAP specification was derived manually from the
standard and validated (also manually) through simulations. Then, an abstract
conformance test suite was generated automatically from this specification via
TESTGEN, a tool that covers all transitions of the underlying state machine by
using Cavalli’s unique event sequences [8]. This test suite was converted back
to LOTOS test processes in order to check whether or not the structural cover-
age of the MAP specification was achieved (hence the name self-coverage). A
100% coverage was of course expected.

Three major iterations were needed to achieve a satisfactory coverage. In
the first one, less than half of the probes were visited by the test suite (417
tests) because of a problem with the data types and guards which caused about
half of the specification not to be reachable. The second iteration fixed this bug
and resulted in a new test suite (603 tests), whose results are shown in Table 4.
Several verdicts were wrong because of remaining non-determinism in the
specification. This also caused problems when generating the test suite, which
couldn’t cover 17 probes. A third version (not shown here) fixed this problem
and led to the generation of 684 test cases, with a full structural coverage.

The use of this structural coverage technique helped preventing the gener-
ation of a faulty conformance test suite from an incorrect specification. Such
a self-coverage approach to testing is an interesting by-product of the tech-
nique. It shows it can be useful even in the absence of validation test cases.

5. DISCUSSION AND CONCLUSIONS

This paper presents a probe insertion technique for measuring the structural
coverage of initial LOTOS specifications against validation test suites. This
coverage can improve the quality and consistency of both the specification and
the tests, hence resulting in a higher degree of confidence in the system’s de-
scription. The paper describes how probes can be inserted in a specification
without affecting its observable behaviour. Different optimizations for reduc-
ing the number of probes while preserving the coverage of single BBEs and
event sequences are also discussed.

Through experimentation with several communicating system specifica-
tions of various sizes and complexity, it is shown that coverage results can help
detecting incomplete test suites, discrepancies between specifications and
their tests, and unreachable parts of specifications. Results can also be output
quickly and at low cost. This technique is valuable not only for scenario-based
approaches such as SPEC-VALU E, but also for checking, through self-cover-
age, the quality of conformance test suites generated (by other means) from
LOTOS specifications. Others have started incorporating this technique in their
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validation processes, e.g. Yi uses this structural coverage approach on the de-
scription of a Wireless Intelligent Network feature [24].

Complex specifications can be handled by this technique because the struc-
tural coverage can also be measured compositionally. Probes can be covered
independently, even one at a time, through multiple executions of the same test
suite. The LOT2PROBE filter allows different variations of the probe comment
in the specification (e.g. (*_PROBE_A_*) , (*_PROBE_B_*) , etc.), which
represent different groups of probes. Partial results only need to be put togeth-
er at the end. Having fewer probes inserted at once reduces the number of in-
ternal actions and helps avoiding the state explosion problem.

This technique provides an assessment of how well a given test suite has
covered a LOTOS specification rather than providing a guideline on how the
specification is to be covered for testing purpose. Validation test suites are not
intended to replace conformance test suites; their respective goals are quite
different. Validation test suites can be reused throughout the evolution of a
specification, similarly to a regression test suite, but they may not be adequate
to ensure conformance of an implementation to a specification. Coverage of
the implementation code is also still necessary at a later stage of the design
process, and it can be measured through conventional techniques.

The structural coverage technique opens the door to other research issues.
Coverage measurements could be used as a potential guide for test case man-
agement. A test which covers probes already all visited by another test may be
a sign of redundancy. Test cases could also be sorted in the test suite according
to their structural impact (e.g., according to the number of probes they cover).
Our structural coverage criterion could also be complemented by a coverage
of the abstract data type definitions. Finally, two equivalent specifications
written using different styles might lead to different coverage results for the
same test suite.
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