
JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005 1

Interactive Conflict Detection and Resolution for
Personalized Features

Daniel Amyot, Tom Gray, Ramiro Liscano, Luigi Logrippo, and Jacques Sincennes

Abstract: In future telecommunications systems, behaviour will be
defined by inexperienced users for many different purposes, often
by specifying requirements in the form of policies. The Call Pro-
cessing Language (CPL) was developed by the IETF in order to
make it possible to define telephony policies in an Internet tele-
phony environment. However, user-defined policies can hide incon-
sistencies or feature interactions. In this paper, a method and a tool
are proposed to flag inconsistencies in a set of policies and to assist
the user in correcting them. These policies can be defined by the
user in a user-friendly language or derived automatically from a
CPL script. The approach builds on a pre-existing logic program-
ming tool that is able to identify inconsistencies in feature defini-
tions. Our new tool is capable of explaining in user-oriented termi-
nology the inconsistencies flagged, to suggest possible solutions, and
to implement the chosen solution. It is sensitive to the types of fea-
tures and interactions that will be created by naive users. This tool
is also capable of assembling a set of individual policies specified in
a user-friendly manner into a single CPL script in an appropriate
priority order for execution by telecommunication systems.

Index Terms: Call Processing Language, features, interactions, In-
ternet telephony, personalization, policies, services.

I. INTRODUCTION

Telecommunications systems offer many features and ser-
vices to users. Features are capabilities offered to users to man-
age the handling of their calls. Well-known examples of features
are Call Forwarding, Call Screening and Call Waiting. Services
are marketable entities that bundle features together for offer
to the user. For example a Call Forwarding service might in-
clude Call Forward Unconditional, Call Forward No Answer
and Call Forward on Busy. Commercially available PBXs (Pri-
vate Branch Exchange) offer hundreds of such features.

In general, features can be parameterized to give the user
control over how they operate. Users for example are allowed
to set the phone number to which their calls are forwarded in
call forwarding features. Recent technological developments are
now offering users much greater programmability of their fea-
tures [1][13][24]. Services can be offered in which users may
specify policies that indicate how incoming and outgoing calls
should be handled, according to certain conditions. These con-
ditions can classify calls on the basis of the users’ social and
business environment. For example, calls could be classified on

Manuscript received January 6, 2004; approved for publication by Hyeong Ho
Lee, Division III Editor, July 12, 2005.

D. Amyot, R. Liscano, and J. Sincennes are with the School of Information
Technology and Engineering, University of Ottawa, Canada, email: {damyot |
rliscano | jack}@site.uottawa.ca.

T. Gray is with PineTel, Canada, email: digroup_codec@direcway.com.
L. Logrippo is with the Département d’informatique et ingénierie, Université

du Québec en Outaouais, Canada, email:luigi@uqo.ca.

the basis of the business relationship with the caller (VIP cus-
tomer, boss, friend, subordinate, etc.), the user’s current location
(out of the office, in the office, in the car, etc.), her current ac-
tivity (in a meeting, working alone, etc.) etc. Users may then
specify how each call category should be treated (reject, for-
ward to voice mail, notify user and ask caller to wait, etc.). In
other words, users will be given the capability of personalizing
the handling of their calls. Services will be adapted to the envi-
ronment of users and will function to their specific needs.

This abundance of possibilities will carry risks, however.
Multiple personalized features may interact in ways that will
cause them to defeat each other or create system malfunctions
(unexpected or unpredictable behaviour, loss of connection,
etc.). This is the feature interaction problem, which has been
identified as a research problem in its own merit and has gener-
ated some amount of literature [2][6]. If care is not taken, the
combination of features may cause unwanted results in features
that work flawlessly in isolation.

Feature interactions were under control in traditional switch-
ing, because the creation and combination of features were lim-
ited and in the hands of qualified designers. Personalized poli-
cies were nearly non-existent. New features were evaluated ex-
tensively in the design process by experts and tested in conjunc-
tion with all other features in order to prevent undesirable in-
teractions from reaching the end user. In the new world of per-
sonalized features, end users will design their own features and
policies, possibly many of them, to cover many different types
of operations and applications. These users may have a clear
idea of how each feature or policy will behave on its own, but
will be puzzled by the fact that they won’t work as expected in
conjunction. It is common for people to specify features that
are on the surface inconsistent. For example, an executive may
tell her secretary that no calls should be put through on Tuesday
afternoons and also tell her that if an important customer named
Terry March calls to put him straight through. What happens if
Terry March calls a Tuesday afternoon? Whatever decision the
secretary might take, the boss may be surprised. It may be easy
to see a conflict if only two policies are specified, but surely de-
tection will be more complex in the case of many policies spec-
ified at different times. Means must be provided to bring such
conflicts to the attention of ordinary users, while at the same
time suggesting possible resolutions.

In this paper, a method and a tool are proposed to flag in-
consistencies in a set of personalized features, to explain them
with user-oriented terminology, to suggest possible solutions,
and to implement the chosen solution. Section II introduces
basic concepts and a pre-existing feature interaction detection
tool used in our approach. High-level system goals and func-
tionalities are presented in section III. The main elements and

1229-2370/03/$10.00 c© 2003 KICS

2 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005

functionalities of our system are detailed and illustrated in sec-
tions IV through VII. Related work and potential extensions are
discussed in section VIII, followed by our conclusions.

II. BACKGROUND CONCEPTS

This section introduces concepts (feature interactions), a lan-
guage (CPL), and a relevant pre-existing tool for policy-based
call control and feature interaction detection (FIAT).

A. Feature Interactions and Policy Conflicts

Traditionally, communication services have been created by
service providers. This is the approach used in the Intelligent
Network [3]. Engineers have two choices for detecting and re-
solving conflicts or undesirable interactions [6]:
• At design time (offline): When different features (often cre-

ated independently) are integrated to the system, before it is
made available to the end-user. Techniques such as testing
and proofs based on formal models can be applied at the re-
quirements, design, and code level to detect the interactions;
feature precedence or tighter feature integration (where fea-
tures become aware of each other) can be used to solve them.

• At run time (online): When not all conflicts or undesirable
interactions can be eliminated at design time (e.g., call for-
warding loops), service providers rely on run-time mecha-
nisms that monitor the system and react to detect and resolve
problems.
In both cases, the resolution is the same for all users, whatever

their preferences, intentions, context, or understanding of the
features.

New types of communication and collaboration services and
applications, enabled by recent IP telephony protocols and lan-
guages such as IETF’s SIP (Session Initiation Protocol) [14]
and CPL (Call Processing Language) [16], are emerging. These
features will benefit from the availability of various sources of
contextual information (e.g., user’s location, presence, sched-
ule, relationships, preferences, etc.) to satisfy a wide variety
of requirements [1][24]. End-users will have the capability of
creating their own features through policies, and they should be
involved in defining their own solutions to resolving conflicts
among these policies. If an increased number of undesirable
interactions were anticipated because even amateur program-
mers can implement Internet telephony features [15], the situ-
ation could deteriorate rapidly without tools to guide naïve end-
users (non-programmers) into creating their own features. We
can distinguish two main situations:
• Conflicts among policies of a single user: Such conflicts can

be detected at design time, when a user inputs policies in the
system. Since the system and the user have the knowledge of
all the policies of the user, conflicts can be solved according
to user intentions, rather than with fixed mechanisms as in
traditional systems.

• Conflicts among policies of multiple users: Since there can be
a large number of users, each with their own customized set
of policies, the set of potential conflicts can be unmanageable.
But each one of these potential conflicts will cause difficulties
only if the users that have conflicting policies actually become

involved in the same call. The method and tool discussed in
this paper do not cover this type of conflict.
Policy conflict detection is present in various domains, princi-

pally in network management. Much of the existing work in that
domain is based on concepts developed by Sloman and Mof-
fett [19]. In particular, Thebaut et al. [26] have embedded in
their system conflict resolution approach rules that are triggered
at run time. Lupu and Sloman presented several challenges re-
lated to policy conflicts in distributed systems [17]. Fu et al.
tailored Sloman’s work to detect and solve IPSec policy con-
flicts, at run-time, while trying to comply with security require-
ments [10]. However, as noted in [25], techniques developed for
network management are not necessarily well tailored to per-
sonalized communication services.

B. Call Processing Language (CPL)

The Call Processing Language (CPL) is a language that can
be used to describe and control Internet telephony services [16].
CPL uses the eXtensible Markup Language (XML) [5] to de-
scribe personalized features in terms of policies applicable to
incoming and outgoing calls. CPL is powerful enough to de-
scribe a large number of services and features, but is limited in
power so that untrusted users may develop services that can run
safely in Internet telephony servers. Notably, the language pro-
vides no way to define loops or recursive scripts, and therefore
it is not Turing-complete.

CPL scripts can be created by end-users to proxy, redirect, or
reject calls. Policies for one user can be combined into a single
CPL script. Such a script expresses a decision tree where the
conditions are based on different types of switches, which group
conditions based on addresses, call priority, time, languages, and
any string found in the header of a request. There are two deci-
sion trees: one for incoming calls and one for outgoing calls.

Since they order the feature preconditions, CPL decision trees
provide an implicit and absolute ordering of priorities among the
features. This prevents indeterminacy among features with over-
lapping preconditions. However this comes with the price of re-
quiring that the user decide the ordering of feature priorities on
her own. To do this she must understand all of the implications
that any chosen priority ordering will have on the execution of
her features. She is required to detect and understand the effect
of ordering on the interactions among features.

CPL, and variants such as the Language for End System Ser-
vices (LESS, [28]), have no mechanism of their own to detect
feature interactions [27]. A CPL-based telecommunication sys-
tem just traverses the user’s CPL decision tree and triggers a fea-
ture it encounters if all preconditions are met. Therefore, CPL
uses a totally-ordered priority system for resolution. This is suf-
ficient in an execution environment, but is inadequate in a design
environment because individual policies cannot be distinguished
in CPL scripts and hence their management becomes problem-
atic. A small change to one individual policy could require a
complete restructuring of the CPL script taking into considera-
tion all of a user’s individual policies.

C. Policy-Based Call Control

Call control engines in IP-based PBXs, switches, gateways,
and proxy servers can make use of policies to implement, con-

AMYOT et al.: INTERACTIVE CONFLICT DETECTION AND RESOLUTION... 3

Policies
(CPL)

Policy
Agent

Call Control

SIP, H.323, …

Execute
Policies

Call
handled

Fig. 1. Policy execution in call control.

trol or restrict various types of communication services (e.g.,
VOCAL1). In a sense, policies can be executed by the call con-
trol engine. For instance, a generic policy-based architecture for
executing policies is presented in [24].

The Use Case Map 2 scenario in Fig. 1 illustrates a simple sit-
uation where a conventional call control engine asks its policy
agent what to do upon receiving or prior to sending a commu-
nication by some user (e.g., a telephone call). The policy agent
accesses the relevant policies (described as CPL scripts or in an-
other representation) and executes them by telling the call con-
trol what to do with that communication (e.g., redirect the call,
reject the call, log the call, etc.). The protocol used between
the call control engine and the policy agent is outside the scope
of this paper, being understood that SIP, H.323, or proprietary
signalling protocols can be used.

A thesis [11] and a paper [12] propose a logic representation
of features and a tool called FIAT (Feature Interaction Analysis
Tool) for “filtering” (i.e., detecting the possibility of) inconsis-
tencies among these features, at the design stage. This represen-
tation is generic enough to support personalized communication
policies and we have used the FIAT tool in this context to detect
policy conflicts.

In FIAT, a feature is described as a four-part tuple, using a
Prolog-based syntax [7]:
• Preconditions: mandatory conditions or system state under

which the feature is activated (e.g., this policy is active from
Monday through Friday only).

• Triggering events: action(s) triggering the feature (e.g., there
is an incoming call from Bob).

• Results: represent the actions produced by execution of the
feature and the state in which the system is after such execu-
tion (e.g., forward the call to the voice mail system).

• Constraints: restrictions relative to the possible values of the
variables used in the preconditions, triggering events, and re-
sults describing this feature (e.g., originator is different from
terminator).
The vocabulary used for conditions and actions is not pre-

determined and is hence adaptable to various contexts and do-
mains such as telephony, network management, or presence and
availability.

FIAT is a Prolog program that takes pairs of feature descrip-
tions as input and uses filtering rules to detect inconsistencies
(also called incoherencies in [11] and [12]). Three main filtering
rules are currently part of the tool. These rules have sub-cases

1Vovida Open Communication Application Library, available at
http://www.vovida.org/applications/downloads/vocal/

2A UCM scenario start with a filled circle (triggering event), progresses along
the path (superimposed on entities and components), and terminates with a bar
(result). Such scenarios are independent of the types of messages exchanged
between the components. See http://www.UseCaseMaps.org

(not described in detail here), and other rules could easily be
added.
• Two features can be triggered by the same event with the same

preconditions and yield different and possibly contradictory
results (non-determinism). A classical example is the case of
two concurrent features reacting in different ways to the same
signal. For instance, for the conventional features Incoming
Call Screening and Call Forwarding, if a call comes in from
a subscriber in the screening list, should it be forwarded or
simply blocked?

• The results of a feature trigger another feature and the results
of the two features present a contradiction (transitive incon-
sistency). A classical example of this case is Originating Call
Screening, after which Call Forwarding is possible, leading
to the possibility that a subscriber gets connected to another
subscriber in the first subscriber’s screening list.

• The results of a feature trigger another feature and vice-versa
(feature loop). The typical example here is a Call Forwarding
loop.
FIAT makes use of Prolog’s backtracking and unification

mechanisms to catch inconsistencies under these criteria. A
finite set of constants representing users is considered, and
for each possible binding of such constants to the variables in
pairs of feature descriptions, it is checked if one of the fil-
tering rules above is satisfied. If this happens, then there is
an inconsistency and a potential interaction and this fact is re-
ported in a helpful plain language diagnostic message. Note
that contradictions can be explicitly defined by the user of the
tool, between user-defined terms: for instance, busy(A) can
be defined as being in contradiction with idle(A) as contradic-
tion_pair(busy(A),idle(A)), where busy and idle are user-defined
terms, and A is a common parameter.

For each inconsistency detected, FIAT can generate an exam-
ple of a specific situation or scenario that can lead to an unde-
sirable interaction. These scenarios can be used as user infor-
mation to better illustrate the problem, or be converted to test
cases. FIAT reports these in a text-based output. Note that the
presence of an inconsistency does not necessarily imply an inter-
action, but enough information is given to the user to determine
if an interaction exists.

Finally, FIAT supports a database of previously reported in-
consistencies. This database can be used to restrict reported in-
consistencies to those not discovered before. This database can
be adapted to hide problems (e.g., policy conflicts) that the user
would have been told about already and chose to tolerate.

It should be noted that the general problem of detecting all
inconsistencies in a set of features (e.g., a CPL script) is of
exponential complexity, because in principle it involves decid-
ing the truth of arbitrarily complex propositional logic formulae.
Therefore, in practice heuristics must be used. It has been shown
in [11][12] that the rules of FIAT, which are of polynomial com-
plexity only, are powerful enough to flag a very good number of
well-known interactions in conventional telephony. The poly-
nomial bound is due to the fact that only finite (in fact, usually
small) sets of variables and values need to be considered. As
well, this analysis has been found to be adequate for the real-life
features that were taken into consideration in the case studies for
this paper.

4 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005

III. GOALS AND SYSTEM OVERVIEW

This section enumerates the goals of our system and then
gives an overview of its main functionalities.

A. System Goals

In order for a system to allow users to define personalized
communication policies, to detect and report undesirable inter-
actions in a comprehensible way, and to allow users to resolve
them with minimum effort, we have identified several goals and
requirements, which we have grouped under five categories.

Policy Management
G1. To provide a user-friendly policy specification environment

for personalized policies. This must include means to cre-
ate, modify, delete, activate, deactivate, and prioritize poli-
cies. This can be done by using well-known Web interfaces
(section IV) and could be enhanced to voice interfaces (sec-
tion VIII-B).

G2. To support several levels of policies (e.g., user, group
and enterprise policies) and check for consistency between
these levels. This has not yet been done in our implementa-
tion and remains a goal for further study (section VIII-B).

Individual and Integrated Policy Descriptions
G3. Policies for individual features defined by users may be un-

suitable for execution. There is a need to go from user-
suitable individual policies to an execution-suitable inte-
grated version of these policies (section VII).

Conflict Detection
G4. In principle, conflicts between policies of a single user are

impossible in a sequential language such as CPL. This is
because in each case the list of policies is examined top-
down and the first applicable policy is executed (see sec-
tion II-B). Later policies applicable for the same situation
are ignored. However the coexistence of simultaneously
applicable policies in a set of policies should be addressed
(section V). At best, it could indicate poorly maintained
policies. At worst, it could indicate ambiguously specified
user intentions, of which the user should be informed.

Reporting and Suggestions
G5. To report inconsistencies at the user-level (natural) lan-

guage used to define the policies involved. This requires
the translation of the reporting obtained from tools for in-
consistency identification such as FIAT into a more user-
friendly reporting. It also requires the illustration of incon-
sistencies by providing examples of problematic situations.
Each inconsistency should be classified based on its char-
acteristics and reported (for example) as conflict, shadow-
ing, redundancy, or specialization (sections VI-A to VI-D).

G6. The reporting should be able to be modulated according
to levels of sensitivity defined by the user. For instance,
the user may wish not to be informed about shadowing in
certain situations (section VI-E).

G7. To provide suggestions on how to resolve the conflicts de-
tected. These suggestions need to be adapted to the nature
of the policies involved as well as to the type of conflict.

Suggestions could include editing a policy, disabling a pol-
icy, setting priorities between policies, adding exceptions,
tolerating the conflict by allowing the system to resolve it
as reported (sections VI-A and VI-D).

Support for Conflict Resolution
G8. Conventional approaches often implement one resolution

mechanism (at design time or at run time) for all users,
but this is not acceptable in a context where users have
the opportunity to create their own features. Resolution
mechanisms must be allowed to vary from user to user (sec-
tion VI-F).

G9. Suggesting solutions solves only half of the problem.
These solutions need to be supported by user-friendly
means to implement them (e.g., a simple click of a mouse
in a multiple-choice box). The user must be able to escape
the suggested solution and implement her own (section VI-
F).

References to these goals will be included where relevant
mechanisms are discussed.

B. System Overview

Overview of the Creation-Validation Process
Following is an overview of the policy creation and valida-

tion process supported by our system, which will be further ex-
plained in the rest of the paper:
1. Enter user policies described in a user-friendly manner (for

instance, using a Web browser).
2. Translate these policies into an executable feature language

such as CPL.
3. Prompt the user with an option to validate the overall policy

set before it is uploaded to the execution system.
4. If validation is selected, translate the policies from CPL into

the FIAT format for which it is possible to detect common
feature specification errors. Otherwise, go to step 8.

5. Take the errors detected by FIAT and interpret them with
awareness of the expectations and common errors of naïve
users.

6. Report these errors to the user (e.g., via a Web interface) in
terms which are understandable to naïve users and consistent
with the way the policies were originally described.

7. Provide the user with options to either accept the interactions
as they are, to repair them manually or to accept a recom-
mendation of automatic correction. Unlike conventional sys-
tems, where feature interactions are solved in the same way
for all users, the selected resolution is personalized to satisfy
the user’s intentions, independently of how others may solve
similar conflicts.

8. Upload the set of policies to the execution system.
Fig. 2 illustrates the general system flows of our process. It

supplements existing policy-based call control (introduced in
Fig. 1) by providing support for policy management, conflict
detection, and conflict resolution.

Policy Management
Web-based policy management enables the creation, modi-

fication, deletion, activation, deactivation, and prioritization of

AMYOT et al.: INTERACTIVE CONFLICT DETECTION AND RESOLUTION... 5

Web ServerWeb ServerWeb Browser

FIAT
Rules
FIAT
Rules

Policies
(CPL)

Policies
(CPL)

FIAT

Policy
Agent

Manag.
System

Interpret
+Suggest

Convert

FIAT FI
Report
FIAT FI
Report

Call ControlCall Control

SIP, H.323, …

HTTP

Execute
policies

Manage/Correct
policies

Validate
policies

Call
handled

Policies
updated

Suggestions
reported

Fig. 2. System overview.

policies. A policy management interface is presented to the end-
user through a Web Browser (e.g., Netscape, Internet Explorer,
Opera, etc.). To a large extent, this makes the access to the pol-
icy management system device independent.

Web-based interfaces are easily adaptable to home or work
environments (e.g., hospitality, medical, engineering, legal, etc.)
and can communicate with the end users using a language and
a terminology they are familiar with. Policies can be described
interactively in these terms, and translated to a particular rep-
resentation (e.g., CPL) by a conversion application running on
the Web server (as shown by the Manage Policies scenario in
Fig. 2). The Web-based interface can represent individual poli-
cies internally (e.g., in proprietary format or in a database) or
using a standard representation such as CPL. Through the same
interface, a single script (e.g., in CPL) that integrates all the ac-
tivated policies that belong to a user can be synthesized. This
integrated script is used at run time by the policy-based call con-
trol engine (as shown by the Execute Policies in the scenario of
Fig. 1 and Fig. 2). Therefore, the user never needs to directly
see CPL code.

Validation and Conflict Reporting
The Validate Policies scenario in Fig. 2 adds a policy con-

flict detection functionality to the policy management system.
Upon a request (e.g., by clicking a validate button on the Web
interface), a user can ask the system to detect potential problems
in her list of activated policies. To enable this, the policies are
converted to a formal representation suitable for analysis, such
as FIAT rules. Once translated, individual policies can be pro-
cessed by the FIAT tool, which reports various types of conflicts
and examples as described in section II-C. The conflicts need to
be interpreted and reported in a way understandable to the user,
using the language and concepts she used to create the policies
initially. This conversion also produces HTML code [23] for the
Web-based policy management interface.

In addition to conflict reporting, suggestions on how to re-
solve these conflicts are generated and reported as well (sec-
tion VI-A).

Automated Support for Policy Corrections
The conflict resolution suggestions are reported to the user

in a hyperlinked list in the policy management interface (sec-
tion VI-A). Selecting a suggestion (see the Correct Policies sce-
nario in Fig. 2) activates the proper sequence of requests to the

Web application (on the Web server) required to repair the prob-
lem according to the option chosen (sections VI-B and VI-F).
The individual and integrated policies are then generated again
(section VII).

IV. POLICY CREATION AND MANAGEMENT
SYSTEM

The system of Fig. 2 provides a mechanism for the creation,
management, testing and provisioning of policies. This section
presents the details of our system’s interface and operations, as
well as of the structure of the users’ policies.

A. Interface and Operations

The Web interface enables a user to manage her list of policies
(e.g., in a list box or in a different panel or frame), typically
sorted by name or by priority. Fig. 3 presents one such interface,
which was used as a prototype for doctors, nurses, and other
employees in a hospital (our ongoing example). The policies
are sorted according to their priority.

The following operations on policies are supported (via but-
tons, links, menus, or possibly voice activation) in accordance
with goal G1:
• Create: Create a new policy, add it to the list, and activate it.
• Modify: Modify the selected policy.
• Delete: Delete the selected policy from the list.
• Duplicate: Make a copy of the selected policy (with the inten-

tion of modifying it later).
• Deactivate: Deactivate the selected policy. Policies that are

inactive are still kept on the list but are marked as such (e.g.,
different color, shadowed text, or special icon). They are not
used for validation or execution, but they are kept for future
re-activation.

• Activate: Activate the selected inactive policy.
• Set Priority: Set the priority of the selected policy. This could

be an absolute priority or a relative one (e.g., move the policy
higher or lower in the list when sorted by priorities).

• Validate: Detect and report conflicts in the list of active poli-
cies.

• Approve: Approve the current list of policies and enable them
for execution (e.g., through the generation of a single CPL
script uploaded to the call control switch or to the policy
agent).

B. Policy Structure

Policies can be created using structured text, obtained in vari-
ous ways (free form, lists, pop-up menus, etc.) from the user. A
policy is composed of seven elements:
• A name, used as unique identifier.
• A priority, expressed as a numerical value. The lowest nu-

merical value is associated with the highest priority.
• The operation, which is typically one of: forward an incoming

call, reject an incoming call, or block an outgoing call.
• A precondition, based on the characteristics of the caller or

callee (e.g., phone number, role, domain, location, organi-
zation/business, name, device, presence information, etc.).
Many characteristics can be combined in a logical expression.

6 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005

Fig. 3. Example of Web interface for policy management.

• The operation target (for forward operations), typically a
phone number, a person, a role, a device, voice mail, etc.

• An optional list of exceptions to a general precondition, based
on the same types of characteristics.

• A time constraint, where the policy is active. This can be a
specific time interval (e.g., from 1:00 to 2:00) or recurring in-
tervals (e.g., every Tuesdays). “Forever” can be used to spec-
ify the absence of time constraints.
The Web interface introduced in Fig. 3 is used to create such

policies. Hyperlinks and context-driven menus are used to en-
sure the syntactical correctness of policies and the access to up-
to-date domain knowledge (e.g., the list of doctors, with their
specialities).

A policy is general when the precondition is a domain of val-
ues (e.g., all calls, all calls from Canada, all calls from a certain
company). If the precondition relates to particular enumerated
values, then the policy is specialized (e.g., how to proceed for
calls from specified individuals).

A general policy may have exceptions, which are enumerated
values. For example:

MyCompany_To_Pager (2):
Forward calls from My Company to My Pager except if
the call is from Terry March from
09:00 on Sunday, November 21, 2004 to
10:00 on Friday, November 26, 2004.

It means that:
• The policy name is MyCompany_To_Pager and the priority is

2;
• The operation is the forwarding of an incoming call, and its

target is My Pager;
• The precondition is all calls from My Company, with the ex-

ception of Terry March;

• The time constraint is from 9:00 on 2004/11/21 to 10:00 on
2004/11/26.
On a Web interface, various elements can be hyperlinked to

the form where they have been defined (see the underlined ele-
ments above).

V. TRANSLATION OF POLICIES TO CPL AND FIAT
RULES

In order to enable formal analysis and detection of undesir-
able interactions (goal G4), each individual user policy is trans-
lated into CPL specifications that consist of a single branch (in-
stead of the more conventional decision tree). A specialized
policy will lead to one CPL script, whereas a general policy will
lead to one or more CPL scripts. This section explains this trans-
lation process, as well as the conversion to a logic representation
(FIAT rules). Section V-C also addresses the conversion of more
general CPL scripts (with decision trees) to a collection of FIAT
rules.

A. Specialized Policies

The translation of specialized policies (section IV-B) into
FIAT rules (section II-C) is as follows. The single branch is vis-
ited downward, collecting the condition (e.g., time, caller, do-
main, etc.), the trigger (e.g., incoming call parameters) and the
result (e.g., redirect, location). This information is then used to
produce the corresponding FIAT rule, using the mapping found
in Table 1.

Table 1. Mapping between policy elements and FIAT rules.

Policy FIAT Rule
Name Rule name
Priority Rule number
Operation Rule result
Precondition Rule triggering event
Target Rule result
Exceptions Rule constraint
Time constraints Rule precondition

For example, here is a policy (with name Conference
and priority 1) that redirects incoming calls from Recep-
tion to My Pager (a user-friendly alias to the address
terry_march@pager.ottawahospital.com) during a conference in
November.

Conference (1):
Forward calls from Reception to My Pager
(no exceptions) from
09:00 on Sunday, November 21, 2004 to
10:00 on Friday, November 26, 2004.

The CPL script generated from this policy and called Confer-
ence_1 is the following3:

3The initial <cpl> tag usually includes a reference to the CPL XML Schema.
However, for simplicity, this information will not be included in the CPL scripts
used in this paper.

AMYOT et al.: INTERACTIVE CONFLICT DETECTION AND RESOLUTION... 7

<cpl>
<incoming>

<time-switch>
<time dtstart="20041121T090000"

dtend="20041126T100000" >
<address-switch>

<address contains="Reception">
<location url="sip:terry_march@

pager.ottawahospital.com">
<proxy/>

</location>
</address>

</address-switch>
</time>

</time-switch>
</incoming>

</cpl>

The translation of the CPL script into a FIAT rule results in:

feature([’Conference’,1],
[subs(user,Any),time([dtstart(d(2004,11,21,9,0,0)),

dtend(d(2004,11,26,10,0,0)),
interval(’1’),
wkst(’MO’)])],

[incoming([address(contains(’Reception’))])],
[proxy([location(’sip:terry_march@

pager.ottawahospital.com’)])])
:- true.

In the previous FIAT rule:
• [’Conference’,1] is the rule identifier, with the rule pri-

ority.
• [subs(...), time(...)] is the rule precondition,

with the subs part (required by FIAT but not really used in
our mapping) and time constraint, which states that the pol-
icy applies from 9:00 am on November 21, 2004 and ends at
10:00 am on November 26, 2004. The values of interval and
wkst (week start day), two fields used in the definition of pe-
riodical time constraints, are default values that appear in the
translation when not specified explicitly by the user.

• [incoming(...)] is the rule triggering event, corre-
sponding to the policy precondition.

• [proxy(...)] is the rule result, corresponding to the pol-
icy operation and its target.

• true is the rule constraint. It is set to true for specialized
policies (no constraint), but it is used to represent exceptions
in general rules.

B. General Policies

A general policy that contains exceptions generates a separate
CPL specification for the general case, and one for each excep-
tion (as opposed to being combined into a single CPL script us-
ing the otherwise construct). In our system, exceptions bear a
higher priority than the general case, which we believe to be the
normal interpretation. This is reflected by the numerical naming
scheme mentioned earlier (see also section VII).

The CPL scripts that constitute general policies are translated
to FIAT rules one at a time. While the translation of the first
script is identical to the translation of specialized policies, the
translation of the subsequent parts of that policy varies: they are
further refined by adding the negation of the conditions of all
previously translated parts. This process can be depicted by the
following algorithm:

Algorithm 1 (translateToFIAT) // translates CPL to FIAT
Input: list_of_CPL_parts
Output: // FIAT rules

previous_conditions = ∅;
foreach part in (list_of_CPL_parts) {

let part→ (conditions, triggers, results) // Tuple structure
produceFIAT(conditions && not(previous_conditions),

triggers, results)
previous_conditions = previous_conditions∪ conditions

}

For example, here is a policy that forwards all incoming calls
to Jim Darling (general part), except if the call originates from
the Reception (exception part):

Any_but_Reception (3):
Forward any call to Jim Darling except if the call is
from Reception forever.

The exception part would first be converted to the following
CPL script:

<cpl>
<incoming>
<address-switch>

<address contains="Reception">
</address>

</address-switch>
</incoming>

</cpl>

Note that the absence of specific actions to be taken in this
CPL script results in the default behaviour of the system, namely
to accept the incoming call.

The general part would result in the script below, and would
be tagged as being of lower priority than the exception part. Pri-
ority information is not encoded in the CPL script but becomes
part of the script name itself.

<cpl>
<incoming>
<location url="sip:jim_darling@

ottawahospital.com">
<redirect />

</location>
</incoming>

</cpl>

According to Algorithm 1, the translation of the CPL scripts
into FIAT rules becomes, respectively:

feature([’Any_but_Reception’,3],
[subs(user, _G728)], % _G728 is a dummy variable
[incoming([address(contains(’Reception’))])],
[defaultAction]) :-

true.

and

feature([’Any_but_Reception’,4],
[subs(user, _G834)],
[incoming(ANY)],
[redirect([location(’sip:jim_darling@

ottawahospital.com’)])]) :-
ANY \= [address(contains(’Reception’))]

% not(previous_conditions)
| ANY = anyUser.

8 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005

The priority of CPL scripts is preserved within the FIAT rules
such that later interpretation of the importance of the inconsis-
tency detected may be qualified.

C. Translation of Full CPL Scripts to FIAT

The approach presented so far assumes the presence of a pol-
icy creation environment. However, for applications where a
standard CPL script integrating multiple features or policies is
provided (e.g., generated manually or by other means), our val-
idation approach can still be used. The method for extracting
individual CPL scripts and FIAT rules with priorities for pro-
cessing by the system is described below.

As mentioned, CPL specifications are totally ordered. Hence,
in a strict sense, there can be no conflicting instructions during
execution. However, the burden of establishing this total order-
ing is carried by the user. In order to help the user establish this
ordering and to uncover possible integration problems, the CPL
specification is flattened into a set of FIAT rules, which are then
processed by FIAT to detect and report inconsistencies.

The trees for incoming and outgoing calls are flattened sepa-
rately. Starting at the top, each tree is traversed while collecting
conditions and triggers defined in the elements of decision of the
nested sub-trees. Conditions and triggers are contextual pieces
of information that establish preconditions. But for the sake of
interpretability and user-friendliness, contextual information is
collected as conditions (e.g., time) while triggers are based on
specific and connection-related facts (e.g., who is calling). Ac-
tions to be performed (e.g., redirect) are collected as results.

When the visit of a tree reaches a leaf (i.e., an action to be
performed), the conditions, triggers and results collected so far
are output as a FIAT rule. The visit continues by returning to
the closest upward decision point with an unvisited branch, re-
setting the collection of conditions, triggers and results as they
were at that point, and carrying on with the visit of the next
unvisited branch (a depth-first traversal). If the branch is an
otherwise, the corresponding condition is negated; if the
branch is a not-present, the corresponding condition is re-
moved. Then, the traversal of the tree is resumed.

As FIAT rules are produced, they are assigned a priority so
that later analysis may provide more precise information on the
inconsistencies based on the ordering used in the CPL specifica-
tion.

VI. INTERPRETATION OF FIAT RESULTS FOR
REPORTING AND SUGGESTIONS

As shown in Fig. 2, the generic results produced by FIAT need
to be interpreted in the context of personalized policy conflicts,
appropriate suggestions need to be provided, and automated cor-
rections have to be supported. Sections VI-A, VI-B, and VI-D
explain and illustrate our mechanisms for interpreting conflicts
and making suggestions. Section VI-C gives a special attention
to the problem of detecting overlapping time conditions (which
is not supported natively by FIAT). Section VI-E presents two
mechanisms to minimize the number of conflicts reported to
the user (levels of sensitivity and database of previously toler-
ated/known conflicts). Finally, the support for interactive and

personalized resolution of undesirable interactions is introduced
in section VI-F.

A. Interpretation of Inconsistencies and Suggestions

The inconsistencies reported by FIAT contain information
identifying the features, their priority, and the nature of the in-
consistency itself (i.e., which detection rule was violated). The
first step toward the interpretation of the inconsistency is deter-
mining the type of policy, namely whether it is general or spe-
cialized (section IV-B). In some cases, further understanding of
the problem is obtained by comparing the relative priorities of
the policies. Then the problem is reported to the user, starting
by identifying the category of inconsistency. The role of each
policy in the problem is exposed, an example of the possible
misbehaviour resulting from the presence of the two policies is
given and, when applicable, methods to correct the situation are
proposed. As mentioned, all inconsistencies are cases of two
policies that apply to the same situation, due to domain inter-
section, but which lead to different results. The following cate-
gories of inconsistencies are reported to the user (goal G5).
1. Redundancy: Two general policies target members of user-

defined domains that have a non-empty intersection. A spe-
cial case, Conflict within Redundancy, occurs when a general
policy defines an exception whose domain intersects the do-
main of another general policy.

2. Shadowing: The domain of a general policy includes one or
more elements enumerated by a specialized policy of lower
priority.

3. Specialization: The domain of a specialized policy is in-
cluded in the one of a general policy of lower priority.

4. Conflict: Two specialized policies address the same situation
(i.e., the policies have intersecting enumerations).

Let us elaborate on shadowing (the other inconsistencies can
be explained using similar examples). Shadowing occurs when
the preconditions of a general policy and those of a specialized
policy overlap while their respective results differ. The special-
ized policy is unreachable and never executed for the elements
in the intersection because all calls that meet its preconditions
are handled by the general policy with higher priority. For ex-
ample, a policy that forwards all calls that arrive from 2:00 pm
to 4:00 pm to voice mail shadows a policy where all calls from
John Doe from 2:30 pm to 3:00 pm should be forwarded to the
user’s mobile phone.

Upon the detection of an inconsistency, some of the following
suggestions may be provided by the system (goal G7):
a) Edit a policy (enables the user to modify one of the conflict-

ing policies).
b) Disable a policy (deactivate a policy, without deleting it).
c) Set the priority of a policy above/below the priority of an-

other policy.
d) Add an exception to a general rule.
e) Tolerate the conflict and no longer report it (the system will

proceed as explained in the conflict report).
The comments explaining the conflicts have hyperlinks to the

policies involved, hence they can at any time be edited (sugges-
tion a). Also, each detected conflict, whatever its nature, could
be tolerated and put in a database so it would no longer be re-
ported (suggestion e).

AMYOT et al.: INTERACTIVE CONFLICT DETECTION AND RESOLUTION... 9

The other types of suggestions (b, c, d) are adapted to the
particular conflict detected, and only the relevant suggestions
are offered (see Table 2).

Table 2. Suggestions offered for resolving conflicts.

Conflict Suggestions
Redundancy • Add (duplicate) exception to general pol-

icy
• Disable first general policy
• Disable second general policy

Shadowing • Set priority of specialized policy above
that of general policy
• Set priority of general policy below that
of specialized policy
• Disable general policy
• Disable specialized policy

Specialization • Notice/warning (no suggestion other than
a or e)

Conflict • Disable first policy
Disable second policy

To facilitate and accelerate the correction of the policies, the
suggestions proposed to the users are hyper-linked to commands
and parameters that instruct the system to apply the one selected
(e.g., clicked on). This will be further explained in section VI-F.

B. Inconsistency Interpretation

Each inconsistency detected by FIAT can be interpreted ac-
cording to the following procedure, which is based on the nature
(specialized or general) and the priority of the features involved:

Algorithm 2 (interpretInconsistency) // gives a diagnostic
Input: list_of_inconsistencies
Output: // Interpretation

foreach inconsistency in (list_of_inconsistencies) {
let inconsistency→ (Feature1, Feature2, problem)

// Tuple structure
determineCategory(inconsistency, Category)
if priority(Feature1) > priority(Feature2) then

// To report on shadowing
swapNumbersOfFeatures(inconsistency)

endif
reportConflict(inconsistency, Category)

}

where:

Algorithm 3 (determineCategory) // used by Algo. 2
Input: inconsistency // tuple
Output: Category // see section VI-A

let inconsistency→ (Feature1, Feature2, problem)
// Tuple structure

if generalPolicy(Feature1) then // Feature1 is general
if generalPolicy(Feature2) then // Feature2 is general

Category = 1 // Redundancy [+Conflict]
else // Feature2 is specialized

if priority(Feature1) > priority(Feature2) then

Category = 2 // Shadowing
else

Category = 3 // Exception/Specialization
endif

endif
else // Feature1 is specialized

if generalPolicy(Feature2) then // Feature2 is general
if priority(Feature1) < priority(Feature2) then

Category = 2 // Shadowing
else

Category = 3 // Exception/Specialization
endif

else // Feature2 is specialized
Category = 4 // Conflict

endif
endif

and:

Algorithm 4 (reportConflict) // used by Algo. 2
Input: inconsistency // tuple
Input: category // see section VI-A

Output: // Interpretation
let inconsistency→ (Feature1, Feature2, problem)

// Tuple structure
case category of

1: if generalTrigger(problem) then
“Redundancy: both policies provide directives for

all incoming calls”
else

“Conflict within Redundancy: exception collides”
endif

2: “Shadowing: general policy Feature1 overrides policy
Feature2”

3: “Specialization: policy Feature1 specializes general
policy Feature2”

4: “Conflict: both specialized policies address the same
case”

endcase

Using such a procedure, HTML code can be produced to for-
mat the report and provide appropriate hyperlinks to the user,
via the interface used to generate the policies.

C. Time Constraints

Time constraints, specified with semantics based on the iCal-
endar standard [8], may represent unique occurrences as well as
recurring intervals. These time constraints become members of
the set of preconditions of the FIAT description. Although FIAT
does not support the concept of time per se, it does offer general
mechanisms to define interaction of parameters. As mentioned
in section II-C, it is possible to state that two given parame-
ters are in direct contradiction, such that when FIAT encoun-
ters these parameters in the precondition parts of two different
rules, the analysis of that pair is skipped altogether. However,
this method does not apply directly to the specification of time
because time specifications in iCalendar are complex character
chains that cannot be immediately compared.

10 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005

For example, it is not immediate to know whether the 28th
of February will fall on a Monday within the next two years. In
principle, one can assume that any two time intervals that are not
obviously exclusive will overlap at some point in the future, but
it would be useful to see if this can happen within the lifetime of
the policy or in a foreseeable future. Our solution to this prob-
lem is a pragmatic one: we have created the notOverlap()
predicate, which assumes that each rule has a life expectancy
(two years by default) and exhaustively searches for overlaps in
this time interval. A contradiction pair that uses this complex
predicate is automatically included in the list of descriptions:

contradiction_pair(time(T1),time(T2)) :-
notOverlap(T1,T2).

where T1 and T2 are two time descriptions. As a result, FIAT
will avoid analysing any pair of rules for which time does not
overlap (they are disjoint in time). For example, given that one
rule applies to Mondays and another to Tuesdays, their time
specifications do not overlap and therefore no further analysis is
carried on that pair. However, a rule that applies to a particular
week and another rule that applies to Tuesdays will not contra-
dict each other (as their time specification overlap) and hence
they will need to be further analysed. To avoid problems in the
farther future, these evaluations could be automatically repeated
at fixed time intervals.

D. Illustration

As an example of conflict reporting with suggestions, we will
use the following set of four policies (prioritized as they appear).
Note that words underlined are hyperlinks to definitions (in poli-
cies and conflicts) or to correction procedures (in suggestions).

Conference (1):
Forward calls from Reception to My Pager
(no exceptions) from
09:00 on Sunday, November 21, 2004 to
10:00 on Friday, November 26, 2004.

Working_From_Home (2):
Forward any call to My Home Phone (no exceptions)
forever.

Any_but_Reception (3):
Forward any call to Jim Darling except if the call is
from Reception forever.

Appointment (4):
Forward calls from Reception to My Pager
(no exceptions) from
08:00 on Thursday, November 25, 2004 to
17:00 on Monday, November 29, 2004.

The following five problems are uncovered by FIAT and in-
terpreted by the algorithm in section VI-B. The conflicts and

suggestions are formatted in HTML and displayed on the Web
interface of Fig. 3.

Specialization
Policy Conference specializes general policy
Working_From_Home.

When a call comes in from ‘Reception’, it will be
forwarded to location
‘sip:terry_march@pager.ottawahospital.com’ by policy
Conference, instead of being forwarded to location
‘sip:terry_march@home.ottawahospital.com’ by the
general policy Working_From_Home.

This is just a notice.

Suggestions:
• TOLERATE this conflict

Conflict
Both policies Conference and Any_but_Reception
address the situation where a call comes in from
’Reception’, but they react differently.

Since policy Conference has priority over policy
Any_but_Reception, the call will be forwarded to
location ’sip:terry_march@pager.ottawahospital.com’
(instead of being [defaultAction].)

Suggestions:
• If the currently prioritized policy is preferred

• DISABLE policy Any_but_Reception
• If the alternative is preferred

• DISABLE policy Conference
• TOLERATE this conflict

Conflict within Redundancy
The general policies Working_From_Home and
Any_but_Reception specify conflicting actions to be
taken when a call comes in from ’Reception’.

The call will be forwarded to location
’sip:terry_march@home.ottawahospital.com’ since
Working_From_Home has higher priority, while policy
Any_but_Reception would have let it through.

Suggestions:
• See the related Redundancy warning for details.

AMYOT et al.: INTERACTIVE CONFLICT DETECTION AND RESOLUTION... 11

Redundancy
The general policies Working_From_Home and
Any_but_Reception both provide directives for all
incoming calls.

Policy Working_From_Home has higher priority and
will have calls forwarded to location
’sip:terry_march@home.ottawahospital.com’. Policy
Any_but_Reception will never have calls forwarded to
location ’sip:jim_darling@ottawahospital.com’.

Suggestions:
• If the currently prioritized policy is preferred,

• ADD EXCEPTION for Reception to policy
Working_From_Home

• DISABLE policy Any_but_Reception
• If the alternative is preferred,

• DISABLE policy Working_From_Home
• TOLERATE this conflict

Shadowing
General policy Working_From_Home overrides policy
Appointment.

When a call comes in from ’Reception’, it will be
forwarded to location
’sip:terry_march@home.ottawahospital.com’ by policy
Working_From_Home instead of being forwarded to
location ’sip:terry_march@pager.ottawahospital.com’
by policy Appointment.

Suggestions:
• SET PRIORITY of Appointment above that of

Working_From_Home
• SET PRIORITY of Working_From_Home below that

of Appointment
• DISABLE policy Working_From_Home
• DISABLE policy Appointment
• TOLERATE this conflict

Note that these results are returned to the user within a cou-
ple of seconds, which is a typical response time for Web-based
environments. Since users are not expected to have more than
15 or 20 policies activated at the same time, and since modifi-
cations and validation are performed by users only sporadically,
performance is adequate for practical purposes.

E. Levels of Sensitivity

Various levels of sensitivity for the detection of conflicts can
be defined by the user, similar to compiler options where one
can choose the types of warning to be reported while compiling
the source code of a program. Each level is essentially a subset
of the four types of conflicts defined in section VI-A. Predefined
levels can easily be defined for inexperienced users (goal G6):
• Complete: Redundancy, Shadowing, Specialization, and Con-

flict.
• Errors only: Redundancy, Shadowing, and Conflict.

• Conflicts only: Redundancy and Conflict. This option is par-
ticularly useful in a system where individual policies are in-
tegrated in such a way that a specialized policy always has
priority over a (otherwise conflicting) general policy.
Additionally, a database containing previously detected (and

tolerated) conflicts could be turned off or be reset. This would
enable end-users to get a complete list of conflicts for a par-
ticular level of sensitivity or just those introduced by the latest
changes to the policies (see section II-C).

F. Support for Policy Correction

As mentioned, in the previous examples of suggestions, all
underlined actions (e.g., SET PRIORITY, DISABLE) are in fact
hyperlinks with appropriate addresses and arguments to request
from the policy server that the modifications selected by the user
(i.e., clicked on) be executed. This automation level addresses
goal G9 and prevents users from having to modify the poli-
cies manually (and potentially to make mistakes along the way).
The conflict explanations also have hyperlinks to the policies
involved, hence they can at any time be edited if desired.

Note that the conflict resolution chosen by a user is based
on local priorities and local activation of policies, and hence is
independent of that of other users (goal G8). Such personal-
ized policy conflict resolution enables the same conflict to be
addressed in different ways by different users, which is a major
improvement over conventional telephony systems.

VII. PRODUCTION OF SINGLE SCRIPTS
INTEGRATING INDIVIDUAL POLICIES

Common CPL execution engines in PBXs and other telecom-
munication servers require that a user be limited to one single
CPL script (goal G3). Once the inconsistencies are removed
and the individual policies (CPL branches) ordered according to
the priorities desired by the user, the individual policies defined
within the system may be integrated into a single CPL script
according to the recursive procedure described in Algorithm 5:

Algorithm 5 (integrate) // integrates a list of policies
Input: list_of_branches // prioritized CPL policies
Output: // Single CPL script

outputBranch(head(list_of_branches))
rest = tail(list_of_branches) // remove the first branch
if rest 6= ∅ then

open_otherwise
integrate(rest)
close_otherwise

endif

This procedure produces a nested list of branches using CPL
otherwise constructs. A more advanced procedure could pri-
oritize the policies to remove all shadowing conflicts automat-
ically, before the integration (see Algorithm 6). Such integra-
tion would implement the naïve view that specialized policies
always have priority over (conflicting) general policies, at the
cost of decreased flexibility.

Algorithm 6 (removeShadowingAndIntegrate) // alternative
Input: list_of_branches // CPL policies

12 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005

Output: // Single CPL script

ConflictList = detectConflicts(list_of_branches)
new_list = list_of_branches
foreach conflict in (ConflictList)

if type(conflict) = shadowing then
// Adjust the priorities in new_list
givePriorityTo(specializedPolicy(conflict), new_list)

endif
integrate(new_list)

In the example of shadowing of section VI-A, it would be
commonly understood that the more specialized policy relat-
ing to John Doe would have higher priority. If it did not, then
the policy could never operate and the user’s probable intention
would be defeated.

VIII. DISCUSSION

A. Related Work

Recent contributions by Nakamura et al. [20][21][22] contain
an analysis of the feature interaction problem in CPL and present
a tool to detect feature interactions in single CPL scripts and in
pairs of CPL scripts. We limit our analysis to single CPL scripts,
and the detection techniques differ considerably. The authors of
these papers base their method on an analysis of the problems
that can arise in CPL scripts. They identified eight possible se-
mantic warnings and wrote a program to detect the presence of
these situations in scripts. Interactions involving scripts of two
different users are identified by combining the scripts and look-
ing for the same situations (with limitations for practical use, as
explained in section II-A). Our method is based on a general-
purpose tool (FIAT) that uses logic programming to detect log-
ical inconsistencies in feature descriptions, on the basis of the
general filtering rules described in section II-C or VI-A.

In particular, our tool does not deal with the following warn-
ings, which are identified in those papers:
• Multiple forwarding addresses
• Unused sub-actions
• Call rejections in all paths
• Identical actions in a single switch
• Overlapped conditions in nested switches
• Incompatible conditions in nested switches

Such warnings are useful, however it can be claimed that they
are more CPL programming errors than policy inconsistencies.
In fact, our CPL code generator could prevent most of these
situations from happening.

Situations covered by both tools are:
• Address set after address switch
• Overlapped conditions in a single switch

Apart from these situations, the tool in discussion does not
seem to deal with all the other cases covered by the rules of
section II-C and VI-A. Further, this approach does not men-
tion a policy creation, integration, and management system (our
sections IV and VII), or a system to help the user remove un-
desirable inconsistencies (our section VI). Finally, their system
seems to be specific to CPL, while ours can be easily adapted to
other policy languages.

In his recent thesis, Xu suggested a conversion from CPL to
a logic-based representation [29][30]. The approach includes
a Prolog theorem prover used for feature interaction detection
in single scripts and pairs of scripts. The analysis warns users
about unreachable code, redundant actions, and shadowing for
single scripts. Policy management and conflict resolution are
not addressed. This work does not use FIAT directly, but adapts
the ideas of FIAT to the analysis of CPL. Clearly, it would still
be useful to produce a tool that combines the strengths of these
two approaches with ours, but we leave this to further research.

B. Potential Extensions

Enterprise and Group Policies
Our assumption so far has been that one end-user has control

over all of her call processing policies. However, in an enter-
prise several layers of policies could be involved (as implied by
goal G2). For instance enterprise policies imposed to all em-
ployees (e.g., no outgoing calls to pay-per-call 1-900 numbers),
and group policies applicable to a group of individuals (e.g., no
long-distance calls, obligation to answer calls from the group
manager (no voice mail), etc.). Personal policies defined by the
end-user may obviously conflict with group and enterprise poli-
cies.

In this context, conflicts can be detected in the same way as
with personal policies. A sorted list of policies can be produced
out of the combination of enterprise, group, and personal poli-
cies. A typical priority scheme for these layers would be 1-
enterprise, 2-group, and 3-personal, but more fine-grained ar-
rangements could be supported. For instance, group policies
may be split into two sets, the first with a priority higher than
personal policies (mandatory), and the second with lower prior-
ity (can be overridden by personal policies). The analysis mech-
anism could take such scheme into consideration when report-
ing the conflicts (e.g., do not report conflicts between personal
policies and group policies of lower priority).

End-users would not have any means to modify group or en-
terprise policies. These would be managed separately by desig-
nated administrators with sufficient access privileges.

Voice Interfaces
It was shown how Web interfaces (running on personal com-

puters, PDAs, mobile phones, phones with HTML browsers,
etc.) can be used to manage personal policies. Voice-activated
interfaces can also be used as they nowadays provide audio
menus and speech-recognition capabilities enabling anyone to
manage policies through their phone (wired or wireless), any-
time, anywhere. To support voice, the Web server needs to be
coupled to a voice server and to generate the interface in a lan-
guage such as Voice XML [18] instead of (or additionally to) the
conventional HTML used for Web interfaces.

Interactions between policies of different users
Many feature interactions are between policies of different

users, and our method does not address these. Research done on
this issue concurs on the following main ideas [4][22][30]:
• Multi-user interactions can be handled with similar methods

as those available for a single user. It is necessary to do the

AMYOT et al.: INTERACTIVE CONFLICT DETECTION AND RESOLUTION... 13

union of the sets of policies of the users involved and to look
for interactions in this union, at run-time. If forwarding fea-
tures are present, it may be required to include, transitively,
the policies of the participants where the calls may be for-
warded.

• Who does this remains a major issue. It appears to be neces-
sary to rely on a trusted third party, which is invoked at the
time a new call is proposed. This party would collect all the
policies of all the users that are being connected and would
check for inconsistencies by using methods similar to the one
described above.

• The resolution mechanism could be predefined or described
with policies. Again, resolution schemes proposed by differ-
ent participants could themselves conflict.

• The issue of privacy in the reporting and resolution of con-
flicts between multiple parties is a serious one. A solution
to this issue that is not sensitive to sociological requirements
could cause severe embarrassment to users and rejection of
the tool.
The elaborate procedures required to handle such situations

go beyond the scope of this paper and still require further re-
search to be usable not only by expert system administrators but
also by naïve users.

IX. CONCLUSIONS

In the context of a policy-based feature creation environment,
several goals have been identified to enable naïve users not only
to create and manage policies in a usable way, but also to de-
tect conflicts and resolve them interactively (section III). We
presented a method and a tool that achieve most of these goals:
• Manage feature policies, described in natural language via a

Web interface, for inclusion in executable CPL scripts (sec-
tions IV, V, and VII).

• Detect inconsistencies between these policies, with several
degrees of sensitivity, and report conflicts with user-oriented
terminology (section VI).

• Help the user remove the inconsistencies interactively, with
minimal effort (section VI).
We also discussed possible extensions that would cover the

remaining goals (section VIII).
We believe that this framework is not limited to Internet tele-

phony. In fact, the issues we have identified in this paper are per-
vasive in policy systems. They are encountered in many other
contexts such as e-mail, active databases, Web services, routers,
and firewalls.

It is worth recalling that the approach takes into considera-
tion common principles, such as the implicit priority of special-
ized policies over general ones. Naïve users are very comfort-
able specifying features that are both shadowed and specialized
(see section VI-B). To be useful, a tool must support this natu-
ral attitude rather than trying to force users in an artificial pat-
tern. The matching of the technique to the natural tendency of
users is the reason why inconsistencies such as specialization
can be filtered out easily, giving users the opportunity to focus
on more relevant conflicts. The system is open to the application
of other ergonomic principles to make it more sensitive to im-
plicitly specified user preferences. For example, more recently

specified policies tend to be a more accurate reflection of the
user’s current intentions and can be given higher priority.

The tool is part of a prototype for an advanced IP-based PBX
developed by the company Mitel and has been used in a number
of industrial demonstrations. The method is the subject of a
patent submission.

ACKNOWLEDGMENTS

This work was funded in part by grants from Mitel, Commu-
nication and Information Technology Ontario, and the Natural
Sciences and Engineering Research Council of Canada. Kathy
Baker and Jean-Marc Seguin participated in the design and im-
plementation of the system, and are listed as co-authors on the
patent submission.

REFERENCES
[1] M. Amer, A. Karmouch, T. Gray, and S. Mankovskii, “Feature Interaction

Resolution Using Fuzzy Policies”, in M. Calder and E. Magill (Eds.), Fea-
ture Interactions in Telecommunications and Software Systems VI (Proc.
of FIW’00), IOS Press, May 2000, pp. 94–112.

[2] D. Amyot and L. Logrippo (Eds.), Feature Interactions in Telecommuni-
cations and Software Systems VII (Proc. Of FIW’03), IOS Press, 2003.

[3] U. Black, The Intelligent Network, Prentice-Hall, 1998.
[4] L. Blair and K.J. Turner, “Handling Policy Conflicts in Call Control”, in

S. Reiff-Marganiec and M.D. Ryan (Eds), Feature Interactions in Telecom-
munications and Software Systems VII (Proc. of ICFI’05), IOS Press, June
2005, pp. 39–57.

[5] T. Bray, J. Paoli, and C.M. Sperberg-McQueen, Extensible markup
language (XML) 1.0 (second edition). W3C Recommendation REC-
xml-20001006, World Wide Web Consortium (W3C), October 2000.
http://www.w3.org/XML/ Accessed January 2005.

[6] M. Calder, E. Magill, M. Kolberg, and S. Reiff-Marganiec, “Feature Inter-
actions: A critical Review and Considered Forecast”, Computer Networks
41 (2003), 115–141.

[7] A. Colmerauer, “Prolog in 10 Figures”, Communications of the ACM, 28
(1985) 1296–1310.

[8] F. Dawson and D. Stenerson, Internet calendaring and scheduling core ob-
ject specification (iCalendar), Request for Comments 2445, Internet En-
gineering Task Force, November 1998. http://www.ietf.org/rfc/rfc2445.txt
Accessed January 2005.

[9] P. Dini, A. Clemm, T. Gray, F.J. Lin, L. Logrippo, and S. Reiff-Marganiec,
“Policy-enabled mechanisms for feature interactions: reality, expectations,
challenges”, in Computer Networks 45 (2004), 585–603.

[10] Z. Fu, S.F. Wu, H. Huang, K. Loh, and F. Gong, “IPSec/VPN
Security Policy: Correctness, Conflict Detection and Res-
olution”, in IEEE Policy 2001 Workshop, January 2001.
http://www.cs.ucdavis.edu/w̃u/publications/ipsecpolicy.PDF Accessed
January 2005.

[11] N. Gorse, The Feature Interaction Problem: Automatic Filtering of In-
coherences & Generation of Validation Test Suites at the Design Stage,
M.Sc. thesis, SITE, University of Ottawa, Canada, September 2000.
http://www.UseCaseMaps.org/pub/ng-thesis.zip Accessed January 2005.

[12] N. Gorse, L. Logrippo, and J. Sincennes, “The Feature Interaction Prob-
lem: Automatic Filtering of Incoherences and Generation of Validation
Test Suites at the Design Stage”, to appear in Journal on Software & Sys-
tem Modeling, 2005.

[13] T. Gray, R. Liscano, B. Wellman, A. Quan-Haase, T. Radhkrishnan, and
D. Choi, “Context and Intent in Call Processing”. In [2], pp. 177–184.

[14] A.B. Johnston, SIP: Understanding the Session Initiation Protocol, Artech
House, 2001.

[15] J. Lennox and H. Schulzrinne, “Feature Interaction in Internet Telephony”,
in M. Calder and E. Magill (Eds.), Feature Interactions in Telecommuni-
cations and Software Systems VI (Proc. of FIW’00), IOS Press, May 2000,
pp. 38–50.

[16] L. Lennox, X. Wu, and H. Schulzrinne, Call Processing Language (CPL):
A Language for User Control of Internet Telephony Services. Request
for Comments 3880, Internet Engineering Task Force, October 2004.
http://www.ietf.org/rfc/rfc3880.txt Accessed January 2005.

[17] E. Lupu and M.S. Sloman, “Conflicts in policy based distributed sys-
tem management”, in IEEE Transactions on Software Engineering, 25(6),
November/December 1999.

14 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005

[18] S, McGlashan et al. Voice Extensible Markup Language (VoiceXML)
Version 2.0, W3C Candidate Recommendation, 20 February 2003.
http://www.w3.org/TR/voicexml20/ Accessed January 2005.

[19] J.D. Moffett and M.S. Sloman, “Policy Conflict Analysis in Distributed
System”, in Journal of Organizational Computing, 1994, pp. 1–22.

[20] M. Nakamura, P. Leelaprute, K. Matsumoto, and T. Kikuno, “Semantic
warnings and feature interaction in Call Processing Language on Internet
telephony”, in Proc. of IEEE 2003 International Symposium on Applica-
tions and the Internet (SAINT2003), Jan. 2003, pp. 283–290.

[21] M. Nakamura, P. Leelaprute, K. Matsumoto, and T. Kikuno, “Detect-
ing Script-to-Script Interactions in Call Processing Language”, in [2], pp.
215–230.

[22] M. Nakamura, P. Leelaprute, K. Matsumoto, and T. Kikuno, “On detecting
feature interactions in the programmable service environment of Internet
telephony”, in Computer Networks 45 (2004), 605–624.

[23] D. Raggett, A. Le Hors, and I. Jacobs, HTML 4.01 specification. W3C
Recommendation REC-html401-19991224, World Wide Web Consortium
(W3C), Dec. 1999. http://www.w3.org/TR/html4/ Accessed January 2005.

[24] S. Reiff-Marganiec and K.J. Turner, “Feature interactions in policies”, in
Computer Networks 45 (2004), 569–584.

[25] S. Reiff-Marganiec and K.J. Turner, “Use of Logic to Describe Enhanced
Communication Services”, in D.A. Peled and M.Y. Vardi (Eds.), For-
mal Techniques for Networked and Distributed Systems (Proc. of FORTE
2002). LNCS 2529, Springer-Verlag 2002, pp. 130–145.

[26] S. Thebaut et al., Policy management and conflict resolution in computer
networks, US Patent 5,889,953, March 30, 1999.

[27] X. Wu and H. Schulzrinne, Feature interactions in Internet tele-
phony end systems. Technical report, Department of Computer
Science, Columbia University, New York, USA, January 2004.
http://www1.cs.columbia.edu/l̃ibrary/TR-repository/reports/reports-
2004/cucs-004-04.pdf Accessed January 2005.

[28] X. Wu and H. Schulzrinne, “Location-based Services in In-
ternet Telephony”, in IEEE Consumer Communications &
Networking Conference 2005 (CCNC’05), January 2005.
http://www.cs.columbia.edu/x̃iaotaow/rer/Research/Paper/ccnc2004.pdf
Accessed January 2005.

[29] Y. Xu, Detecting Feature Interactions and Feature Inconsistencies in
CPL, M.Sc. thesis, SITE, University of Ottawa, Canada, September 2003,
http://lotos.site.uottawa.ca/ftp/pub/Lotos/Theses/ Accessed January 2005.

[30] Y. Xu and L. Logrippo, “Detecting Feature Interactions in CPL”. Submit-
ted for publication.

Daniel Amyot is Assistant Professor at the School of
Information Technology and Engineering, University
of Ottawa. He joined the Communications Software
Engineering Research Group in 2002. He was pre-
viously senior researcher in software engineering for
Mitel Networks, in the Strategic Technology group.
Daniel has a Ph.D. and an M.Sc. from the University
of Ottawa (2001 and 1994), as well as a B.Sc. from
Laval University (1992). His general research inter-
ests include scenario-based software engineering, for-
mal methods, requirements engineering, and feature

interactions in emerging applications. Daniel has several contributions in the
area of specification and validation of telecommunication services and features
with Use Case Maps and LOTOS. He is also ITU-T Rapporteur for Require-
ments Languages (URN and MSC). He co-chaired the 7th Feature Interaction
Workshop in 2003, the 4th SDL and MSC Workshop (SAM) in 2004, and the
4th NOTERE conference in 2005.

Tom Gray has had a 30-year career in the telecom-
munications industry. He has worked for Bell North-
ern Research, Mitel Corporation, and Mitel Networks.
He has over 40 patents issued and pending, and over
30 papers published in international conferences and
archival journals. At Mitel, he was instrumental in de-
veloping a consortium of university projects that ex-
plored the types of services that will be useful and
profitable in new converged multimedia networks and
how they would be developed, operated, and main-
tained. Over 20 university research groups partici-

pated in this project in Canada and the United Kingdom. This effort resulted

in useful new technology, many papers and patents, and the education of numer-
ous students. Prior to this, he was the prime mover in the group that created
the vision and technology behind the development of the Mitel Light family
of PBXs. The group realized that the assumptions that had been seen as fun-
damental to the design of telephone switches were no longer valid and based
a new architecture on the capabilities of new technology. The success of this
product changed the industry-wide model of PBX architecture. The basis of this
architecture has guided the development of PBXs and other telecommunication
switches up to the present day.

Ramiro Liscano Ramiro is a professor at the School
of Information Technology and Engineering at the
University of Ottawa. His areas of research are
in spontaneous networking, service discovery, dis-
tributed call control, mobile computing, and policy
management. Previous to that he held a Senior Re-
search Engineering position with the Strategic Tech-
nology Group at Mitel Networks. From 1995-2000
he was a research scientist in the Network Computing
Group at the Institute for Information Technology at
the National Research Council. He received his Ph.D.

from the Systems Design Engineering Dept. at the University of Waterloo in
1998. He has published over 80 papers in the past 20 years. He is a senior IEEE
member and member of the Association of Professional Engineers of Ontario.

Luigi Logrippo received a degree in law from the
University of Rome (Italy) in 1961, and in the same
year he started a career in computing. He worked for
several computer companies and in 1969 he obtained
an MSc in Computer Science from the University of
Manitoba, which was followed by a PhD in Computer
Science from the University of Waterloo in 1974. He
was with the University of Ottawa for 29 years, where
he was Chair of the Computer Science Department for
7 years. In 2002 he has moved to the Université du
Québec en Outaouais, Département d’informatique et

ingénierie, while remaining associated with the University of Ottawa as an Ad-
junct Professor. His interest area is formal and logic-based methods and their
applications in the design of communications systems. For a number of years
he worked on the development of tools and methods for the language LOTOS.
Current research deals with the formal analysis of advanced communications
services made possible by internet telephony, of the policies that govern them,
and of their interactions, in application areas such as presence features and e-
commerce contracts.

Jacques Sincennes is a research programmer/systems
analyst at the University of Ottawa, School of Infor-
mation Technology and Engineering. He has joined
the Telecommunication Software and Engineering Re-
search Group in 1988. He was involved in the devel-
opment of tools for the specification and validation of
protocols using the formal language LOTOS. In col-
laboration with Nortel Networks, he participated to
the specification of the Wireless Intelligent Network
standard and to the elaboration of formal methods. In
the realm of user-defined call control and in associa-

tion with Mitel Networks, he assembled a system for policy interaction detection
that provides customized problem resolution. He coauthored a number of papers
and a patent application.

