
Failure Semantics in a SOA Environment

Chris Hobbs, Hanane Becha
Nortel

3500 Carling Avenue
Ottawa, ON, K2H 8E9 (Canada)
{cwlh,hananebe}@nortel.com

Daniel Amyot
SITE, University of Ottawa

800 King Edward
Ottawa, ON, K1N 6N5 (Canada)

damyot@site.uottawa.ca

Abstract

In a Service-Oriented Architecture (SOA), services pub-
lish descriptions to permit their composition into larger ser-
vices. There are however serious gaps in the semantics of
such service descriptions and these hinder the adoption of
SOAs in mission-critical applications. This paper identi-
fies some of these lacunae and proposes a foundation for
resolving one of them—service failure. The technique of
crash-only failure is proposed as a useful first step and we
illustrate how it is particularly applicable to web services
in a SOA.

Keywords: Failure Semantics, Crash-Only, Orchestration,
Runtime Governance, Semantics, SOA, Web Service.

1. Introduction

This paper addresses a problem associated with the tech-
nique, common in Service-Oriented Architectures (SOAs),
of creating new services by orchestrating existing ones. The
problem of interest here is one of failure semantics and is
presented in section 1.2. The technique of crash-only fail-
ure is proposed as a useful first step to solving this prob-
lem. Section 2 contains a very short précis of the crash-only
paradigm and section 3 illustrates how it is particularly ap-
plicable to web services in a SOA. Section 4 describes the
failure semantics of such software and section 5 addresses
briefly the related question of service availability.

1.1. A Note on Terminology

The terms for components of a SOA used in this paper
are taken from the OASIS SOA Reference Model [9]. This
means in particular that, rather than a client requesting ser-
vice from a server, this paper speaks of a consumer request-
ing service from a provider.

The major components of a SOA are illustrated in simpli-
fied form in Figure 1: a provider offers some form of service

and advertises its interface and behavioural and contractual
properties by storing a service description in a registry. For
the purposes of this paper, the registry may be as formal as a
computer system running a protocol such as Universal De-
scription, Discovery and Integration (UDDI) or as informal
as an email sent from service provider to consumer. A po-
tential consumer retrieves the information from the registry
and invokes the service. Runtime governance, which forms
an important part of the proposal in this paper, is installed
between the consumer and the provider to perform common
functions—see section 3.1.

1.2. The Problem

Within a Service-Oriented Architecture (SOA), new ser-
vices are typically created by orchestrating existing ones.
Figure 2 illustrates a particularly simple case wherein two
underlying services, X and Y, are orchestrated in some way
to produce a new one, Z. In the general case, X and Y will
not be owned by the developer of Z, each being a service
exposed by other service providers.

To determine Z’s characteristics, so that service-level
guarantees can be offered to customers, it is necessary to
combine the characteristics of X and Y with those of the
additional logic provided by Z. Although the SOA specifi-
cations make provision for X and Y to advertise their inter-
face syntax, their behaviour and their contracts, no method
has been proposed for defining many of the other necessary
characteristics. Sanders et al. have proposed semantic inter-
faces that capture behavioral contracts in more details than
interfaces based on signatures [10], but non-functional as-
pects are still not addressed. For instance, the performance,
scaling, management, security, privacy, resource (see sec-
tion 3.2), availability, reliability1 and many other models of
X and Y need to be published so that they can be used by
the developer of Z to determine the corresponding charac-
teristics of Z.

1We distinguish between availability (is an answer received?) and reli-
ability (is the received answer correct?)



Registry
1. Registration of
service description

Provider
Consumer

2. Query
3. Response

4. Invocation

5. Response

Runtime
Governance

Policy

Figure 1. SOA Components

Service
X

Service
Y

Orchestration

Service Z

Figure 2. Service Orchestration

As a simple example, consider privacy: X, Y and Z may
be implemented in countries with different laws regarding
privacy and security of data. For the developer of Z to en-
sure that that service complies with the local regulations and
to be able to offer reassurances to customers about the pri-
vacy of their data, the privacy policies of X and Y need to
be available.

Each of the models listed above, and others, are needed
but this paper addresses one in particular: the failure model.
If the failure model of Z is to be calculated, the failure
modes of X and Y have to be known. It may be, for ex-
ample, that X detects faults before they become failures and
rolls back to a state stored before the interaction, guarantee-
ing that it returns to a sane state but putting the responsi-
bility for re-submission of inputs onto the consumer (Z). Y,
on the other hand, may buffer information and the precise
state of an interaction may be difficult to determine when a
failure occurs.

To permit Z to determine necessary actions following the
failure of X or Y and to allow it to make claims about its
own failure modes, a failure ontology is required which can
capture X’s and Y’s (and Z’s) failure semantics. This paper
argues that the technique of “crash-only software”, intro-

duced by Candea and Fox [5], is particularly suited to the
loosely-coupled environment of SOAs, providing particu-
larly simple behaviour that can be described and advertised
in a formal manner. It is unrealistic to expect all services to
comply with this failure paradigm but it is proposed that it
form the basis of the failure semantics for web services.

2. Crash-Only Software

2.1. Fault Tolerance

Studies (some dating back to 1986—see the work of
Gray [7]) and anecdotal evidence support the view that fail-
ures in deployed software are mainly caused by Heisen-
bugs, i.e. bugs caused by subtle timing interactions be-
tween threads and tasks. These prove impervious to con-
ventional debugging, being non-reproducible and sensitive
to tracing and other observation. Reproducible bugs, the
so-called Bohrbugs, are easier to detect and fix during de-
velopment and beta-deployment and can largely be removed
before shipment of a final product. It must be accepted that,
in any software-based system, Heisenbugs exist and failures
will occur.

Telecommunications and other high-availability systems
are built using the techniques of fault-tolerant comput-
ing (e.g., see [12]). From its early days with Recovery
Blocks [1], fault-tolerant computing has been concerned
with intercepting faults before they become errors and er-
rors before they become failures. At each level the principle
is to save as much state as possible, gracefully shut down
the offending task and other affected components (defined
by a failure tree), take whatever recovery action is required
and then restart the affected components. This process re-

2



quire complex logic, some of which has to run in the fail-
ing module. Errors, for example in the programming by
contract paradigm, are detected by checking invariants and
pre- and post-conditions, typically by the code itself. Re-
covery for some high-availability techniques such as virtual
synchrony (see [2]) can be very sophisticated, involving the
execution of protocols to expel the failing server from the
process group and resynchronise it on recovery.

2.2. Crash-Only

The technique of crash-only, which builds on the foun-
dations laid by fail-stop techniques (see, for example, [11]),
argues that the sophistication described above is not only
unnecessary but, in many cases, counter-productive. Con-
sumers of a service, it is argued, must anticipate that their
provider will, from time to time, crash cleanly without
the opportunity for sophisticated failure handling (perhaps
because of a loss of power to the computer running the
provider). Consumers must therefore already have the capa-
bility of handling such a crash. If this is the case, then rely
on it and always crash the component whenever any fault is
detected or failure occurs.

This crash-only semantics has several advantages:

• it defines simpler macroscopic behaviour with fewer
externally-visible states.

• it reduces the outage time of the provider by removing
all shutting-down time.

• it simplifies the failure model significantly by reduc-
ing the size of the recovery state table. In particular,
crashing is stimulated from outside the software of the
provider—it therefore assumes nothing about the con-
tinued correct behaviour of the failed component. The
crash-only paradigm coerces the system into a known
state without attempting to shut down cleanly: reduc-
ing substantially the complexity of the provider code.

• it simplifies testing by reducing the failure combina-
tions that need verification.

If software is to crash cleanly more often, then it should
also be written in such a way as to restart quickly—for ex-
ample, see reference [6].

A crash manager would typically control the external
trigger for the crash (the “on/off switch”) and indicate to
the consumer that it should retry after a specified time, gen-
erating the RetryAfter(t) response. This paper argues
that SOAs already provide the necessary components to act
as crash managers.

3. Crash-Only and Web Services

3.1. The Rôle of Runtime Governance

The description of crash-only software in [5] assumes,
when recast using SOA terminology, that the providers (X
and Y in Figure 2) will exhibit crash-only failure behaviour
and that consumers, having failed to obtain timely or correct
service, can initiate the crash. This may be acceptable when
the consumer and provider, although loosely-coupled, are
within one trust domain. This is clearly not generally the
situation with web services.

Runtime governance (sometimes misleadingly called
“management” in the literature) is a layer inserted by the
service provider in front of services to perform common,
policy-driven, functions such as load-balancing, encryp-
tion/decryption, consumer authentication and the monitor-
ing of service-level agreements—see, for example, [3] and
Figure 1. This layer is made possible in a SOA environ-
ment by having access to the service description of the in-
voked service, being in a position to intercept and decode
all incoming requests and responses and by the common
underlying encodings (XML, HTTP).

One common function of this software layer is to moni-
tor response times from the service to ensure that the con-
sumer is getting the level of service guaranteed in the ser-
vice level agreement (e.g., over any 1 hour period, 90% of
all requests will be responded to within 30 ms). This type
of monitoring is typically specific to a particular service and
consumer and provides the perfect location for invocation
of the “power-off” switch provided by the crash-only soft-
ware. That switch is external to the service, relying in no
way on continued correct operation of the service code it-
self, and its operation is idempotent meaning that the deci-
sion to kill the server does not require the knowledge of its
internal state.

Deliberately induced crashes are also a useful technique
for software rejuvenation (see [13]) and this requires detec-
tion or prediction of periods of low usage of the service and,
if necessary, buffering of requests. Again, runtime gover-
nance is an obvious candidate for recognising such periods,
performing the buffering and causing the restarts.

3.2. Mapping Crash-Only to Web Services

The previous section argues that, if services are built in
accordance with a crash-only paradigm, SOA components
are available to handle the on/off switch. This section ar-
gues further that the crash-only paradigm is also particu-
larly suited to web services. Fox and Patterson [5] list the
properties required of a crash-only system and these can be
abstracted remarkably well to match those of web services
as described in [9]:

3



• Components have externally enforced boundaries.
This is an implementation recommendation supported
by the virtual machine concept used on many web ser-
vice systems.

• All interactions between components have a time-
out. While the web service standards provide support
for asynchronous invocations protected by a timeout,
they are not universally used. Where an interaction is
not asynchronous, it can be made so by the runtime
governance layer offering a synchronous interface to
the consumer and invoking an asynchronous interface
to the provider.

• All resources are leased to the service rather than
being permanently allocated. This technique is par-
ticularly useful in avoiding another of the problems
associated with service orchestration: resource con-
tention. Understanding resource usage in underlying
services is essential for avoiding deadlocks—Z needs
to be aware if X and Y make use of a common resource
and, when invoked with some particular timing, may
deadlock. For resources completely internal to X and
Y this is not likely but, in practice, X and Y are them-
selves likely to be composed of subservices, some of
which may be common (Figure 3). This problem is im-
possible to avoid but leasing resources for time-limited
periods provides a possibility of escape from the re-
sulting deadlock.

• Requests are entirely self-describing. For crash-only
services, requests must carry information about idem-
potency and time-to-live. In a SOA environment, it
is unreasonable (and dangerous) to expect the con-
sumer to provide this information. Again runtime gov-
ernance, equipped with the understanding of the re-
quest from the service description (see Figure 1) and
the associated service- and consumer-related policies,
can step into the breach and provide this information.
Note that Candea and Fox [5] map the generation of
idempotency and time-to-live to a REST-like2 environ-
ment but the comments are equally applicable to a true
SOAP-defined3 web service.

• All important non-volatile state is managed by ded-
icated state stores. Many interactions require that
some state be held and the crash-only semantics re-
quires that this be held externally to the provider and
defines the characteristic required of a state store. It
is very common in web service applications to have a
“back-end” database which can provide this function-
ality.

2REST: Representational State Transfer
3SOAP: originally “Simple Object Access Protocol”

Figure 3. Common Resources

The major observation in this section is the strategic po-
sitioning of runtime governance and its rôle of intermediary
between the consumer and provider of services. In this po-
sition it has the necessary information to:

• add idempotency and subscriber-dependent time-to-
live information to requests to the provider.

• monitor the provider for anomalous behaviour.

• be the trusted source of crash commands for the
provider, both as a result of delayed or insane response
or as a result of a need for rejuvenation.

• protect the provider, Z, while its crash recovery is in
progress, holding off or rejecting incoming requests
until recovery is complete.

• generate RetryAfter() instructions to consumers.

4. Crash Semantics

Software failure models are normally large and diffi-
cult to combine, typically consisting of a Markov or semi-
Markov chain (see, for example, [8]) expressed in a format
proprietary to the tool used by the analyst.

As a foundation for the taxonomy of failure models, this
paper proposes the crash-only semantic. As more complex
models are required, they can be added but, where applica-
ble, developers should be encouraged to build idempotent
services with the crash-only failure semantic.

The published service description will then contain three
properties:

1. the failure and recovery type—in this case crash-only

2. whether the service is idempotent or not

3. the anticipated (modelled or measured) failure distri-
bution

Note that, if the service is not idempotent then all respon-
sibility for determining the state of a recovered server lies
with the consumer.

4



5. Availability and Crash-Only

One possible criticism of a crash-only architecture is a
potential reduction in availability: the crash-only paradigm
effectively removes layers of sophistication built using
fault-tolerant techniques and trades Mean Time to Repair
(MTTR) for Mean Time to Failure (MTTF). As Bev Little-
wood famously said in [8]:

Availability is maximised by maximising the
mean time between failures and minimising the
mean time to repair or recovery. . .

The actual availability required of a service depends on
the system of which it is a part but the fabled “five nines”
(99.999%) can be taken as an example. This availability
allows a maximum downtime of about 5 minutes 16 sec-
onds per year but does not specify how that downtime is
distributed: if the MTTR is low, then the MTTF may also be
correspondingly low. The technique of crash-only software
is based on the assumption that it is often simpler and more
effective to reduce MTTR than increase MTTF. Crash-only
techniques provide a low MTTR and it is interesting to cal-
culate the corresponding MTTF for a “five nines” service.

Candea et al. [6] cite experiments using an eBay-like
auction system known as eBid. This is a complex Java
application programmed using the crash-only and micro-
reboot paradigms. Running on 3GHz Pentium machines
with Linux operating systems and J2EE 1.3.1, this appli-
cation was subject to a number of different fault types, and
outage times (MTTRs) were between 411 and 601 msecs.

To achieve 99.999% availability, this permits between
526 and 769 outages per year: an outage every 11 to 17
hours (MTTF).

In conjunction with the simpler recovery actions when
the underlying software is known to support a simple crash-
only paradigm, and the possibilities of averting failure
through micro-rejuvenation during periods of low usage,
the availability targets do not seem difficult to meet. Fox
and Patterson [4] analyse this tradeoff between MTTR and
MTTF more fully.

Whether 769 failures per year, each of 411 msecs, are
better than a single failure of just over 5 minutes depends
on the application—it is easy to think of examples where
each would be inappropriate.

6. Conclusions

For a developer to build service Z (Figure 2) orchestrat-
ing sub-services and offer service-level agreements on Z,
the underlying services, X and Y, must publish information
defining their behaviour in various areas including perfor-
mance, failure, scaling, management, security, privacy, re-
source, availability and reliability.

Proposals are being created for some of these areas (e.g.,
management models within the Distributed Management
Task Force’s (DMTF’s) Telecommunications Work Group4)
but it is not clear what semantics could be applied to many
of the other areas.

In the area of failure, this paper proposes a baseline and
first category—crash-only. While not adequate for all web
services, it appears to be a failure mode particularly suit-
able for a SOA environment and its semantic expression is
relatively simple.

Future work will involve (1) the inclusion of failure in-
formation in service interfaces and (2) the study of other
categories of failures and their validation and formal com-
paraison in different application domains, including SOA
and web services.

References

[1] T. Anderson and R. Kerr. Recovery blocks in action: A sys-
tem supporting high reliability. In ICSE ’76: Proceedings
of the 2nd international conference on Software engineer-
ing, pages 447–457, Los Alamitos, CA, USA, 1976. IEEE
Computer Society Press.

[2] K. Birman and T. Joseph. Exploiting virtual synchrony
in distributed systems. In SOSP ’87: Proceedings of the
eleventh ACM Symposium on Operating systems principles,
pages 123–138, New York, NY, USA, 1987. ACM Press.

[3] G. Cuomo. IBM SOA ”on the edge”. In SIGMOD ’05:
Proceedings of the 2005 ACM SIGMOD international con-
ference on Management of data, pages 840–843, New York,
NY, USA, 2005. ACM Press.

[4] A. Fox and D. Patterson. When does fast recovery trump
high reliability? In 2nd Workshop on Evaluating and Archi-
tecting Systems for Dependability (EASY), San Jose, USA,
2002.

[5] G. Candea and A. Fox. Crash-only software. In 9th Work-
shop on Hot Topics in Operating Systems, San Jose, USA,
2003.

[6] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman and A.
Fox. Microreboot—a technique for cheap recovery. In Pro-
ceedings of the 6th Symposium on Operating Systems De-
sign and Implementation, 2004.

[7] J. Gray. Why do computers stop and what can be done about
it? In Symposium on Reliability in Distributed Software and
Database Systems, pages 3–12, 1986.

[8] B. Littlewood. A reliability model for markov structured
software. In Proceedings of the international conference
on Reliable software, pages 204–207, New York, NY, USA,
1975. ACM Press.

[9] OASIS SOA Reference Model TC. Reference model for
service-oriented architecture 1.0. Technical report, OASIS,
2006.

[10] R.T. Sanders, R. Braek, G. Bochmann, and D. Amyot. Ser-
vice discovery and component reuse with semantic inter-
faces. In 12th SDL Forum (SDL 2005), LNCS 3530, pages
85–102. Springer, 2005.

4DTMF: http://www.dmtf.org/

5



[11] R. D. Schlichting and F. B. Schneider. Fail-stop processors:
an approach to designing fault-tolerant computing systems.
ACM Trans. Comput. Syst., 1(3):222–238, 1983.

[12] M. Treaster. A survey of fault-tolerance and fault-recovery
techniques in parallel systems. ACM Computing Research
Repository (CoRR), 2005.

[13] K. Vaidyanathan, R. E. Harper, S. W. Hunter, and K. S.
Trivedi. Analysis and implementation of software rejuvena-
tion in cluster systems. In SIGMETRICS ’01: Proceedings
of the 2001 ACM SIGMETRICS international conference on
Measurement and modeling of computer systems, pages 62–
71, New York, NY, USA, 2001. ACM Press.

6


