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Abstract

Timethreads are a new notation for visual description of the different causality paths of a system.
They illustrate causality sequences of activities through systems. A design process based on the
use of timethreads has already been defined.

The Formal Description Technique LOTOS (Language Of Temporal Ordering Specification) is a
specification language based on the temporal ordering of observational behaviour.

This thesis aims at the integration of formal methods in the design of real-time and distributed

systems by presenting a LOTOS interpretation of timethreads. With the help of a timethread

grammar and a suite of techniques, LOTOS specifications are derived from timethread maps. The
designer can then ‘play’ with the design by validating the specifications during the early stages of

requirements capture and analysis.
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CHAPTER 1 Introduction

1.1 Motivation

This thesis is part of an ongoing project from the Formal Methods in Design (FMD) research
group. This project aims at defining a framework for the integration and support of formal
methods in the timethread-centered design process. For that purpose, one of the first steps definec
was to show that LOTOS specifications could be generated from timethread designs. This thesis
addresses this issue.

Formal Methods in the Design Process

Formal methods in software engineering intend to provide a mathematical foundation to the
process of software design, transformation, and validation. Many such methods were developed
in the last decade. Their integration in the design process may indeed prove very profitable, if this
is done in an appealing and cost-effective way for use in the industrial environment. Nevertheless,
industrial developers are not inclined to integrate these new methods in their design processes.
Some of the main reasons concern the relative complexity of formal languages, and the new ways
of thinking they impose on designers.

Formalization of Timethreads Using LOTOS 1



Introduction

A certain degree of informality is essential in early stages of the development process. Designers
in industry regularly use a variety of notations in a partially informal manner to capture
requirements and candidate solutions. These notations, although informal, are useful as thinking
tools. However, one cannot proceed from the informal to the formal by formal means. We cannot
go automatically from these informal diagrams and sketches to a complete formal specification. It
is also almost impossible to capture the requirements correctly by using formal methods directly.
Design decisions have to be made, and many intermediate steps are often required.

We need a less painful way of creating formal specifications in industry. We want a method where
designers could use the power of formal techniques through a user-friendly interface. One of the
purposes of our work is to be able to capture the requirements and then to do high-level
requirement testing in early stages of development. This is very important since the further errors
are detected in a product’s development, the more costly it is to fix them [Pro 92]: “Fixing a
problem in the requirements costs 1% as much as fixing the resulting code” [Pfl 92].

Problem Definition

We believe that formal methods do not intend to replace the whole design process, but their
integration in the development process could lead to solutions with fewer errors in a shorter time
period. The real question then becontesy should formal methods be integrated in the design
process of real-time and distributed systems in an appealing way for industrial engineers?

We think that the integration of formal methods is best achieved when designers do not have to
change their way of thinking and communicating. The following requirements, already discussed
in [BBO 94], present the main issues from our point of view:

R1) Designers should be allowed to use whichever design description model offers them
the expressiveness and flexibility they need to design real-time and distributed
systems. The way people actually work does not have to be radically changed.

R2) Designers can use different formal methods to analyze different aspects of these
systems. One formal method is not expressive enough to capture the whole design. It
is only a projection. A multi-formalism approach has many advantages over a single-
formalism approach.

R3) Designers do not have to be experts in a specific formal language to use it. A formal
method should be transparent to the user while its strengths are being used.

2 Formalization of Timethreads Using LOTOS
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R4) Since visual notations are more expressive and easier to conceptualize at a high level
of abstraction than textual descriptions, they should be used to capture the major
concepts and basic scenarios from the requirements.

R5) Tools must be available to help the designer go from the informal to the formal. Tools
specialized for a formal method can be used afterwards on the formal description.

Many problems arise from such general requirements. This thesis proposes a solution based on
the Timethread notation and the formal description technique LOTOS.

1.2 Objectives

This thesis aims at providing elements for the integration of the formal technique LOTOS in a
timethread-centered design process while conforming to the five requirements enumerated in the
previous section.

We define four main objectives in this context:
O1)To demonstrate that we can manually generate LOTOS specifications from
timethread maps

02) To show that these specifications are meaningful and that they can be used to execute
the design. This is also referredpay the design

03) To show that tools could eventually support the transformation from timethreads to
LOTOS.

O4) To discuss resulting problems, difficulties, and new research issues.

To satisfy these objectives, we will use an approach based on formal interpretation methods.
Chapter 3 presents more deeply this approach and the different contributions of the thesis.

1.3 Organization

The seven remaining chapters will cover the following issues:

CHAPTER 2: Background
We review the Timethread visual notation, the formal language LOTOS, and the LARG model for
architectural graphs. Several terminology definitions are also given.

Formalization of Timethreads Using LOTOS 3
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HAPTER 3: The Approach and th ntribution
We present the approach taken by the FMD research group for the integration of formal methods
in the design process. This approach is based on formal interpretation methods. Four sub-methods
(map decomposition, LAEG, mapping, and composition) are introduced. Then, the contributions
of the thesis are enumerated w.r.t. the objectives of the previous section. Finally, we present an
ongoing case study: thgavelersystem.

CHAPTER 4: From Timethreads to LOTOS

This chapter presents the LOTOS semantics given to the Timethread notation. It enumerates a few
basic concerns and according solutions, and then discusses a new timethread grammar. Single
timethreads, simple interactions, and special timethread symbols are developed using this
grammar, for which mapping rules are given for the generation of LOTOS specifications.
Examples inspired from thBavelersystem are given all along the chapter.

CHAPTER 5: Elements of a Life-Cycle Methodology

We firstly present a short overview of a timethread-oriented life-cycle methodology, and then
different techniques related to this methodology are discussed. We present the complete mapping
procedure of th@ravelertimethread map onto LOTOS, followed by a discussion about a few
transformation techniques. Finally, we apply LOTOS-based validation techniques to our
timethread-oriented specification.

The methods and techniques introduced in the previous chapters are applied to a more realistic
real-time and distributed system: the multimedia applicafielepresenceWe present two
timethread maps where one is a transformation of the other. The first one is constructed from
basic use cases, mapped onto LOTOS, and then validated against the requirements. The second
timethread map is a transformation (factoring) of the first one that preserves path equivalence.
Again, a LOTOS specification is generated and validated using different simulation and testing
techniques.

This chapter discusses several issues encountered in the research work of this thesis. We chose to
emphasize four main issues related to: the first architecture, the STDL grammar, validation in
general, and a few ideas on possible tools.

4 Formalization of Timethreads Using LOTOS



Organization

HAPTER 8: nclusion and Future Work

This last chapter concludes the thesis. It reviews the contributions with respect to the thesis
objectives. Then, short-term and long-term research issues are identified.
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CHAPTER 2 Background

2.1 The Timethread Notation

“A timethread is gathfor the flow of causality from atimulusat the start (indicated by a filled
circle), through a progression of responsibilities (shown as labelled points along the path),
culminating in aresponsga “T’-junction at the end). The name (timethreads) comes from the
fact thattimeincreases along them and they look likeeads [BuC 94a]. Timethreads are useful

for design discovery and system reasoning at a global and high-level perspective. They express
cause-to-effect relationships by linking activities performed by the system, resulting from some
stimulus (cause) and terminating with some eventual response (effect).

This notation is considered intuitive and appealing by many engineers. At a very abstract level,
timethreads leave intentionally many details unresolved. Refinement permits to clarify many of
these details. We use timethreads to focus on the end-to-end behaviour of the system we want to
design. Timethreads are alewample-orientedmeaning that they are used to show examples of
representative scenarios. They are not intended to show complete behaviours, but they can clearly
specify possible causality paths in the system.

Formalization of Timethreads Using LOTOS 7
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Timethreads are also different than threads of control, making them more appropriate for
understanding macroscopic behaviours [BuC @2lusality flowshould be interpreted neither as
data flownor ascontrol flow Timethreads are in fact more relatecus® caseflac 91] as they

both represent the start and end points of causal flow paths [BCP 93].

“The flow model of timethreads is easy to understand in terms of mtwkeg$ [BuC 94b]. We

can think of instances of a timethread as tokens going along its path. A token placed at the start of
the path is moved along this path from responsibility to responsibility, to explain what will happen
as a result of a stimulus. This token is removed when it reaches the end of the timethread. We will
refer to this model as we explain how the different timethread constructors work.

Being still in evolution and not completely formal, the Timethread notation presents many open-
ended issues yet it offers much flexibility to the designer.

2.1.1 Basic Timethread Set

The Timethread notation includes very few basic symbols [BuC 94a, BuC 94b, and Buh 93].
Figure 1 shows the basic notation elements of timethreads. A typical timethread starts with a
waiting place(triggering event) and ends withjanction point(resulting event). Théody on

which activitiesare placed, links the triggering event to its resulting event(s).

/\/—Bpﬂy

On which activities are placed.

" I
. At the beginning of body, for a start triggering event.
Along a body, for a triggering event from another timethread
or from the environment.

I Junction point
At the end of body, for a resulting event.
Along a body, for synchronization between concurrent timethrgads.

Figure 1: Basic notation elements

More complex timethreads are also composed of these symbols. Notions such as choice,
parallelism, and synchronization can also easily be expressed. Figure 2 describes the usual ways
of forking and joining timethread paths. In this figure, we assume a timethread flow from left to
right:

8 Formalization of Timethreads Using LOTOS



(a) OR-Fork:

(b) OR-Join:

(c) AND-Fork:

(d) AND-Join:

The Timethread Notation

An exclusive choice between two paths is given. A token along the
entering path will follow only one of the exiting paths.

Two paths merge into one, without any synchronization. A token along
any of the entering paths will follow the single exiting path.

A path forks into two concurrent paths. A single token along the
entering path will split into clones that follow each exiting path
concurrently.

Two paths synchronize together and only one path results. One token
from each entering path will wait one from each other path. They
combine afterwards in a single token to follow the exiting path.

—

(a) OR-Fork

~ 4= I

(b) OR-Join (c) AND-Fork (d) AND-Join

Figure 2: Forks and joins

Note here that there is no constraint on the number of paths involved. We may join more than two
paths at once, and they could come from the same timethread or different ones. The same
reasoning applies to the fork operations.

2.1.2 Timethreads Interactions

Synchronous and asynchronous interactions, implying two or more timethreads, are easily
expressed without adding any new notation. Interactions may occur on waiting places and
junction points. The most common types of interaction are presented in figure 3.

(a) Concatenation: An ending timethread triggers another one. A token at the end of its

path is removed and a new one is placed at the beginning of the
second timethread and follows it.

Formalization of Timethreads Using LOTOS 9
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(b) In-passing: Asynchronous interaction where the timethread on the left triggers the
one on the right, without stopping, and then continues. A new token is
placed at the beginning of the timethread on the right when the token
from the timethread on the left passes the start point. After that, the
two tokens progress concurrently down the two separate paths.

(c) OR-Start: A timethread is triggered by one or the other ending timethread. A
token at the end of either ending path is removed and a new one is
immediately placed at the beginning of the starting timethread and
follows it.

(d) AND-Start: Two timethreads synchronize together and trigger another one. One
token from each ending path will wait for all others an then they allow
a new token to go on the next timethread path.

(a) Concatenation (b) In-passing (c) OR-Start ¢) AND-Start

Figure 3: Typical interactions

Note that the number of interacting timethreads is not restricted to two or three. In the general
case, we can compose these types of interactions to build more complex ones involving many
more timethreads. Also, interactions can occur at any waiting place along a timethread, not only at
the starting event (see figures 40 and 41). This approach is flexible and yet powerful.

2.1.3 Other Symbols

Special-purpose symbols can be added at the designer’s convenience to increase the expressive-
ness of the Timethread notation. In the literature [BuC 94b], many such symbols have been
introduced, especially to highlight issues associated with robustness, real-time, and concurrent
behaviour that need to be resolved in the architecture. Because of their usefulness in many
situations, some of these symbols will receive special attention in chapter 4. They are presented
here in figure 4:

(a) Timer: A special waiting-place that is used to express delay, time-outs, watch-
dogs, etc.

10 Formalization of Timethreads Using LOTOS



The Timethread Notation

(b) Stub: A collapsed timethread that is to be defined (or refined) at a later stage.
Details are hidden intentionally at this level of abstraction. Stubs may
also have other uses.

(c) Abort: Destroys the instances of another timethread (or the tokens along the
timethread).

(d) Loss: This ‘ground’ symbol indicates the loss of a token along the timethread
path. It is used to express robustness concerns.

© ¢ el e
(a) Timer (b) Stub (c) Abort (d) Loss

Figure 4: Other symbols

2.1.4 Timethreads Refinement and Transformations

Different timethreads refinement and transformations have been used in the literature. They help

the designer to manipulate a timethread map. Although they are not completly formalized yet, the

most important ones are presented here in a general way (see [BoL 94] for further information):

» Activity refinement An activity is considered as lalack box which can itself be

decomposed as a sequence of activities.

» Stub refinemenMore general case where a black box (timethread stub or path stub) is

replaced by a more complex and complete timethread or path.

» Functionality extensianAddition of details to a path (concurrent or alternative path,

new activities, etc).

» Timethread cuttingA timethread is split into two or more independent timethreads.

» Timethread mergingindependent timethreads are merged together to form only one

timethread. Parts of paths from different timethreads can also be merged.

» Timethreads compositiolddition of an interaction between several timethreads.

» Timethreads decompositioRemoval of an interaction between several timethreads.

Formalization of Timethreads Using LOTOS 11
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2.2 LOTOS

In this section, we recall the origin of LOTOS as a formal technique, and then present its main
operators, transformation and validation concepts, and a few tools used in our research. For a
more complete description of the language and its different uses, refer to [BoB 87, LFH 91,
Sch 93, and Tur 92].

2.2.1 Formal Methods

Formal methods, in particular process algebras, proved their usefulness in capturing descriptions
of complex, concurrent, and communicating systems. LOTOS (Language Of Temporal Ordering
Specification) is an algebraic specification language and a Formal Description Technique (FDT).

It was especially developed for the formal description of the OSI architecture (interfaces, services
and protocols), although it is applicable to distributed and concurrent systems in general. Today,
people try to extend its field of action on hardware, telephony [Bou 91], operating systems,
embedded systems and real-time systems. LOTOS has been an ISO Standard (8807) since 1989
[ISO 88].

The basic idea of LOTOS is to describe a system by defining the temporal relations along the
interactions that constitutes the system’s externally observable behaviour. The process part of
LOTOS (known adBasic LOTO¥is based on ideas found in CCS [Mil 80] and CSP [Hoa 85].
The data part of LOTOS (included kull LOTOS is based on the theory of abstract data types
and comes from the language ACT ONE [EhM 85].

2.2.2 Operators

In LOTOS, systems are described in termgficessesA process is viewed as a black box
interacting with itsenvironmentvia its observablegates (figure 5). Its internal actions are
unobservable by the environment. Thehaviour expressiofs built by combining LOTOS
actions by means of operators and possibly instantiations of other processes.

The basic element of a behaviour expression isatti®n which represents a synchronization
between processes, between a process and its environment, or both. An action consists of a gate
name, a list (possibly empty) of value experiment offers (value offers or interaction parameters),
and possibly a predicate that imposes conditions on the event to be accepted. Acatormiare

in a sense that they occur instantaneously, without consuming time.

12 Formalization of Timethreads Using LOTOS



LOTOS

Gate2 Gate3

Environment

ateb
Gatel Processl |2 Process2 Gate4

System

Figure 5: Representation of a system specified in LOTOS

In figure 5, the system is composed of two processes that interact with each other on the hidden
gateGate5 (interaction point). In LOTOS terms, we say tRatcessl is synchronized with
Process2 onGate5 . LOTOS synchronization is based on a multi-way rendezvous concept.

The partial LOTOS specification 1, corresponding to the system presented in figure 5, is given
here (reserved words arelinld):

specification System [Gatel, Gate2, Gate3, Gate4] : noexit
behaviour
hide Gate5 in
Processl[Gatel, Gate2, Gate5]
[[Gate5]|
Process2[Gate3, Gate4, Gate5]

where
process Processl[Gatel, Gate2, Gate5] : noexit =
(* ... Behaviour of Processl *)
endproc
process Process2[Gate3, Gate4, Gateb] : noexit =
(* ... Behaviour of Process2 *)
endproc
endspec

Specification 1: System example

Formalization of Timethreads Using LOTOS 13
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The main LOTOS constructors are recalled in figure 6, whergean actionB; are behaviour
expressionsy; are gates, an@is a predicate:

Name Behaviour Expression Comment
g " Inaction stop Cannot engage in any interaction (deadlock).
S C
% .% Successful exit Indicates that a process has sucessfully per-
% 8 Termination formed all its actions.
m 2
© | Process ProcName[g 4, ..., 0 n] | Creates an instance of a process.
& W | Instantiation
28]
»n | Action Prefix | a; B Used to prefix a behaviour expressiBmwith an
o § actiona. There exists a special action, calied|
'g © that a process can execute independently.
]
0 8‘ Choice B, [ By Allows the user to define different alternativps
for a given process.
© Enabling B, >>B, Used to sequence two behaviour expressiBpg
C .
c 2 has toexit for B, to be executed.
o=
£ 3 | Disabling B, > B> Used to express situations whelfg can be
-% g interrupted byB, during normal functionning.
c
Ll
Parallel Com- | B; |[ 91, ...,9n 1l B | Composition in whichB; andB, behave inde
S position pendently, except for the galg§,_ . g n
= whereB,; andB, must synchronize.
7
S Interleaving BL Il B> Composition in whichB, andB, behave inde
g pendently (the synchronization set is empty).
O Full Synchro- | By || B, Composition in whichB; andB, are synchro{
nization nized on all their gates.
%) Hiding hide g4, ... 0 n in B Used to hide actiongyg, ..., 9 n) Which
o are internal to a system. These actions cafinot
© synchronize with the environment.
(]
8‘ Guarded [Pl]-> B B can be executed R is true.
» Behaviour
2
5 Local Defini- | let x:s=E in B Substitutes a value expressidf) py a variable|
tion identifier (X) of sorts in B.

Figure 6: Main LOTOS constructors

More operators existkoice andpar ) but they are not used in this thesis. Also, the construction
and the use of abstract data types in LOTOS are not discussed in the current section, but they are
fully described in [ISO 88].

14 Formalization of Timethreads Using LOTOS
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2.2.3 Transformations and Validation

LOTOS provides formal means to manipulate, combine, factor, and transform behaviour
expressions in various ways. Properties can also be verified and tested by the available tools. We
present here the terminology used in the LOTOS community.

Transformations

“The termtransformationis often used to cover all forms of refinement and reformulation of a
specification” [Tur 91]. For instance, a high-level abstract specification can be transformed into a
more concrete and deterministic one. This is usually referredlepsvise refinementOTOS

allows many types of transformations from whi€lorrectness Preserving Transformations

[CPT 92], orCPTs are the most interesting ones. There exist many CPTs such as functionality
decomposition, behaviour expansion, action refinement, processes splitting and regrouping, gates
rearrangement, inverse expansion, multi-way to two-way synchronization, etc. Transformations
from a specification written in one LOTOS style to a specification in another style also exist
[VSS 91]. Equivalence, reduction and extension relations are used to assess the correctness of the
transformations.

Validation

Demonstration of design compliance with stated and unstated user requirements [LOT 92].
Validationis a generic term that includes testing and verification techniques. It is mostly used to
check properties such as conformance, absence of deadlocks, liveness, and completeness.

Testing

Checking of the real behaviour of the system by the application of test cases [LOT 92]. Practical
testing (which is not exhaustive), is confined to the detection of certain types of problems or

particular instances of inconsistencies. A testing theory for LOTOS is presented in [Bri 88]. It

includes notions of canonical testers, conformance testing and test cases derivation.

Simulation

LOTOS specifications are executablieteractive simulatioris therefore a validation technique
often used, mainly in the early stages of the design process.

Formalization of Timethreads Using LOTOS 15
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Verification

“Demonstration of consistency between two designs” [LOT 92]. The algebraic properties of
LOTOS provide a theoretical foundation that supports some formal reasoning about the
specification, callederification Behavioral specifications can be verified using relations such as

bisimulation, testing equivalence, and trace equivalence. Desirable properties for the system,
expressed in terms of temporal logic formulas, can be verified using model checking [Grh 92].

These definitions of validation and verification slightly differ from the ones now generally used
by the software engineering community. In [Pre 87] for instance, verification is defined as “Are
we building the product right?”, and validation as “Are we building the right product?”. The
terminology used in the thesis is based on the definitions given in the previous paragraphs.

2.2.4 Tools

LOTOS tools for various stages of the development cycle are developed by many groups around
the world [GLO 91 and Sch 93]. From the tools available to us, two are particularly useful for
step-by-step execution of specifications:

ELUDO

ELUDO (Environnement_DTOS de ['Lhiversité DQttawa) is a toolkit regrouping many
previous tools (such as ISLA and SELA) with a new interface. An X-Windows interface also
exists (XELUDO). We will use ELUDO for validation purposes in the upcoming case studies.

LOLA
LOLA (LOTOS LAboratory) is a tool developed at the Universidad Politécnica de Madrid. It also

allows the simulation and expansion of LOTOS specifications.

Other tools, such aSMILE, CAESAR and TOPQ, also possess the functionalities required to
‘animate’ the specifications, just as it is needed in the case studies.

16 Formalization of Timethreads Using LOTOS



LARG

2.3 LARG

2.3.1 The LARG Model

The LARG (LOTOS Architectural Representation Graph) model has been developed to serve as
the intermediate structural model in the LOTOS interpretation method for architecture-based
design [Bor 93 and BBO 94]. An example of a LARG, in which the different types of components
are identified, is given in figure 7. The structural components of the LARG model are called
processs. Interactions between processes are realized by means of multi-way rendezvous on
gates

The initial LARG model has been developed in such a way that the LARG artifacts (processes
and gates) can directly be mapped onto LOTOS structural constructs. Finally, for the purpose of
the LAEG (LOTOS Architectural Expression Generation) method, both a Grouping algorithm and
an UnGrouping algorithm have been defined on LARGs. The LARG model, the Grouping
algorithm and the UnGrouping algorithm are all formally defined in [Bor 93].

Process identifier Gate
p 4 (‘b,c.d)
Hidden gate set—st hide ain | N
Label set
a Db (a, b, g//(lnterface)

P1 P2

3-way interaction
gate set

Process bog
/ (&, ¢, d (c,d)

Grouping/ P3 / \ P3
/

Link 2-way interaction
gate set

Figure 7: Example of a LARG

2.3.2 LAEG Method

The LAEG method aims at generating LOTOS structural expressions from LARGs. It is
conducted in two distinct phases:
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* LARG analysis
* Generation of LOTOS structural expressions.

LARG Analysis
This phase aims at detecting architectural errors and non-determinism. In the case of timethreads

interpretation, the LARG analysis phase can be reduced to a structural ambiguity identification
(callednon-deterministic interaction-choiée [BoA 93]).

We say that a gatgis the source of structural ambiguity in a LARGfT:

» gis contained in more than one gate set (G®) in

» Every GS containing is linked on one side to a constant set of processes, called the
root process sedf the structural ambiguity, and on the other side to distinct processes,
i.e. processes which are linked to only one GS contamieglled thechoice process
setof the structural ambiguity.

Thus, every process which possesses gadeeither linked to every GS containiggor to one
and only one GS containirgy

In figure 8, an example of such structural ambiguity is given. In this LARG, @asethe
ambiguous gate. We observe tRdtcan interact with eithelP2 or P3 on the 2-way interaction
gatea. We also observe th&2 andP3 do not interact together. Therefore, in order to have an
interaction on gate, we need to havel ready to interact oa and eithelP2 or P3 also ready to
interact ora.

4 a ) 4 a ]
(a)
P1 &/ P2
4 a N
P3

Figure 8: Structural ambiguity in a LARG
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Generation of LOTOS Structural Expressions

The second phase consists in generating LOTOS structural expressions from LARGs. This phase
is essential since LOTOS possesses binary operators only. It involves successive applications of
the Grouping algorithm. The algorithm is applied until we obtain a binary grouped LARG which

is equivalent to the former one.

An illustration of LARG binary grouping is given in figure 9. Figure 9(b) gives an equivalent
binary grouping LARG which has been obtained by successive applications of the Grouping
algorithm. The grouping sequence used in figure 9 has been arbitrarily chosen, and is only one of
many possible solutions.

a, e ) —~ [ d, e )
P1 ® P5 — S—
(2. &) D
P1 P4
D, C )
<D . ) @ -H p3 |- @
P2 P4

r a, b Y 4 d, e N
(5. ¢ P2 P5
P3

(@) (b)

Figure 9: Binary grouping of a LARG

The tree representation of the LARG of figure 9(b) and its associated LOTOS structural
expression are given in figure 10. We see from these two figures that the generation of a LOTOS
structural expression from a binary grouped LARG is straightforward.:

|[c, ell

|[b]] |[d]]

P4/ \PS

|[all P3

7N

P1 P2
((P1[a, e] |[a]| P2[a, b]) |[b]| P3[b, c]) I[c, e]| (P4[c, d] |[d]| P5[d, e])
Figure 10: Tree representation and LOTOS A.E. of the linearized LARG
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tructural Ambiguities in LAR

Grouping an ambiguous LARG might be problematic because, in some cases, groupings violate
the interaction semantics of the LARG. For example figure 11(a) and 11(b) represent two different
groupings derived from figure 8. We observe that these two groupings lead to two non-equivalent
LARGsSs. In the first casais a 2-way interaction while in the second casgea 3-way interaction.

The LARG of figure 11(a) corresponds to a correct interpretation of figure 8, while figure 11(b)
corresponds to an incorrect one.

To eliminate ambiguities from such LARGS, a technique caltedactural ambiguity grouping

(also callednon-deterministic interaction-choice grouping [Bor 93]) was defined. In this
technique, we group together all processes contained in the choice process set (refer to [Bor 93]
for more details on grouping techniques). Figure 11(a) illustrates an example of the application of
this technique.

2 ) a_ ) ~ [ a )
P2 P1 @) P2
(2 )
pr —@®— O %D
4 a N
(2 _J P3
P3
(a) Structural ambiguity grouping (b) Incorrect grouping
P1[a] [[a]| (P2[a] ||| P3[a]) P3[a] [[a]| (P1[a] |[a]| P2[a])

Figure 11: Grouping an ambiguous LARG
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2.4 Definitions

Since LOTOS and the Timethread notation use common terminology, we define here the specific
terminology that will be used in the remaining chapters:

Triggering event
Resulting event
Process

Interaction

Synchronization

Activity.

Event

Action

Starting event of a timethread.
Ending event, termination of a timethread.
A LOTOS behaviour abstraction, unless cited otherwise.

General relation of observation between the environment and a triggering
or resulting event, or between many timethreads on a waiting place.

Special case of interaction, usually artificial and internal, within one
timethread. Multiway synchronization refers however to the LOTOS
concept.

Action or event along a timethread.

Activity on which there is interaction. Events are of three kinds: triggering,
resulting or synchronization events.

Activity on which no timethread interaction is allowed. An action
corresponds to a certain functionality within the system.

In the thesis, new words or concepts, as well as references to timethreads and LOT@8! code

beitalicized.
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CHAPTER 3 The Approach and the
Contributions

Five requirements (referred R4 to RS have been defined in section 1.1. Many problems might
arise from such general requirements. The following sections present a solution based on the
Timethread notation, the formal description technique LOTOS, and formal interpretation
methods. Then, the contributions are introduced with respect to the thesis objectives.

3.1 The Approach

A solution to our problem is introduced in [Bor 93 and BBO 94], where the concéminl
interpretation methods presented. Such a method allows the interpretation of a given design in
terms of a given formal semantic model. We think we can apply this idea to the Timethread
notation.

Timethreads are an intuitive visual notation that can be used as a design model to capture the
requirementsR4 in 81.1). They can also lead to a first architecture expressed in any design
description model useful to designelRl). This introduction of timethreads in the design process
(figure 12) is simple and yet very helpful for designers since they already use most of these
concepts, often in an ad-hoc way. Such integration facilitates the transition from the problem
domain to the solution domain.
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Requirements Requirements

'

C Timethreads)
' '

First First
Architecture Architecture

Figure 12: Timethreads in the design process

Being still informal, timethreads open the door to the introduction of formal methods in the design
process. We can create iaterpretation methodor timethreads, allowing their interpretation in
one or more formal languagd?3).

LOTOS is the first formal method that has been chosen as a formal basis for our Timethread
notation. Previous work has been done on other approaches. In [ViB 91] and [Vig 92], the authors
presented a technique that can be used to support an effective process for generating the design of
concurrent systems, with the help of timethreads (caleegs at that time) and LOTOS. In

[LaB 92], the authors try to see whether or not two different approaches of a design conception,
ObjecTime and LOTOS, could be used in a complementary way in order to add timethreads
concepts to the ObjecTime tool. The approach presented in our research differs considerably from
these two, but the experience gained helped in getting a better understanding of timethreads.

Other formal methods, such as Petri nets [BDC 92] and event structures [Roz 92], can be
considered as other options as a formal basis for the Timethread notation. In [FCB 93], the authors
introduced a Petri net interpretation of timethreads. As a first step, we decided to use LOTOS. Its
expressiveness (especially w.r.t. communication), its transformation and validation methods, and
the numerous available tools are among the main reasons why we chose this particular language.
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In order to integrate LOTOS in the timethread-centered design process, the first step consisted in
defining an interpretation method that allows the generation of LOTOS specifications from
timethread maps which are collections of interacting timethreads. The idea of formal
interpretation method presented in [Bor 93] has been adapted to timethreads and LOTOS by
F. Bordeleau in [BoA 93]. We present this method in figure 13 where the grey box represents the
main contributions of this thesis.

Timethreads Timethread ma
Model i

\J

Map
decomposition————
method
Y

LOTOS _ IﬁonFfjce;I Grammar
Interpretation Thesis
Method ' ; Contribution

LAEG Mapping

method melthod

LOTOS
structural
expressiong

LOTOS
behavioral
expressiong

Composition of
complete specification
method

Figure 13: LOTOS interpretation method for timethreads

This LOTOS interpretation method for timethreadscomposed of four methods, which are
enumerated here:

Map decomposition method
In our view, timethreads are considered as entities in their own right. This leads to a decompo-
sition method consisting of two steps:

* Mapping of the topology of interacting timethreads (from the map) onto a LARG. This
is mostly discussed in section 4.4.

» Description of the paths of individual timethreads using a timetlgeadmar
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The LARG and the grammar are considered part of the internal representation of the timethread
map. Therefore, this thesis will take the LARG and the grammar as starting points for the
generation of a specification. The grammar will be discussed in chapters 4 and 7.

LAEG Method
The LAEG (LOTOS Architectural_Epression_@®neration) method aims at generating LOTOS
structural expressions from LARGS. It is conducted in two distinct phases:

* LARG analysis, where potential structural ambiguities are detected and fixed.

* Generation of LOTOS structural expressions.

This method was presented in §2.3.2.

Mapping Method

The mapping method is a compilation from the grammar representation to a LOTOS behaviour
expression. In the next chapter, this compilation process is shortly introduced, and many examples
and rules are developed, but no complete algorithm will be given. This is still work to be done.

ition of f | ficat hod

The composition of the complete specification method consists in combining both the LOTOS
structural expression (which expresses the way timethreads interact in the timethread map) and
the different LOTOS behavioral expressions (each of which expresses the activity sequence in a
single timethread) in a global LOTOS specification. The resulting LOTOS specification reflects
the path behaviour of the complete timethread map and can be used as an input to validation tools.

3.2 Contributions of the Thesis

The major contributions of this thesis related to the thesis objectd&d$o(O4 in §1.2) are
enumerated here.

: f Timet |
A LOTOS interpretation method famdividual timethreads is developed. It allows the generation

of LOTOS processes from single timethread. This interpretation provides a formal semantics to
the Timethread notation, with LOTOS as an underlying model. This contribution intends to
satisfy the objectiv®©1 which relates to the generation of LOTOS specifications from timethread
maps.
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Timethr rammar

A grammar for single timethreads description is presented. This context-free grammar is an
internal representation that defines the single timethreads in a map, and allows the generation of
specifications in formal languages such as LOTOS. ObjediNesndO3 (support of tools) are

aimed by the creation of this grammar.

Techniques
Techniques for the transformation of timethread maps are introduced, and validation techniques
are discussed. They are mostly based on LOTOS transformations and validation techniques, and

on different LOTOS tools. These techniques should help designers to play the design (objective
02).

Case Study

A multimedia case study, thelepresencsystem, is developed in chapter 6. The interpretation
method is applied to the timethread map in order to get a LOTOS specifications. We also make
use of the transformation and validation techniques on this example. This complex case study also
attempts to satisfy all four objectives.

Of course, for each contribution, we will point out resulting problems, difficulties, and research
issues (objectiv®4). Other minor contributions will be identified along the remaining chapters.

We believe that the approach we propose will help in capturing and testing system requirements.
Also, once user-friendly timethread interfaces are available, our method could lead to fast
production of formal specifications in industry, thus allowing designers to use the power of formal
techniques.

3.3 Ongoing Case Study for Chapters 4 and 5

An ongoing case study is used in chapters 4 and 5 in order to relate methods and concepts to a
concrete and simple example. For this purpose, we uskdkieler systemman example adapted

from [BuC 93] and [BuC 94b]. A complete LOTOS specification will be derived from the
timethread map of the traveler system using the LOTOS interpretation method for timethreads
described in this thesis (see also [BoA 93]).
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The traveler system, shown in figure 15, is not a computer system in a literal sense. This example
depicts a familiar situation from everyday life which is easy enough to illustrate properties similar

to common computer systems. We can think of the travelers, the taxis, the planes, etc., as
components analog to computer-based subsystems, processes, or objects. Therefore, the traveler
system will help us thinking about distributed systems in the large without committing to any
architectural concerns.

Note that this is naheonly way of using timethreads for design. For instance, timethreads have
been used in association with role-architectures in object-oriented design [BuC 94b].

3.3.1 Informal Description of the Traveler System

Travelers use #&raveler systento get to a certain destination. The timethread map of figure 14
shows ause casdJaA 92] delimiting the system (black box) and its environment. We consider

this a use case because it expresses a sequence of transactions in a dialogue between the user and
the system.

To transform this black box into a grey box showing how a traveler gets to its destination, we need
a more complete description. The latter will be our starting point for the development of the
interpretation method.

New Traveler

( Traveler syste

Destination<

Figure 14: Use case of the traveler system

Suppose that the traveler system is composed of a taxi company, where a dispatcher receives
requirements from the travelers and then dispatches a taxi, and an airline. Different components
are defined: traveler, dispatcher, cab, and plane. They collaborate to get travelers to their
destination without the intervention of a master controller to direct their individual activities and
without themselves necessarily having individual knowledge of how they fit into the whole
[BuC 93]. This can be considered a distributed system.
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Here is the path description of each component (fig. 15), with corresponding activities along the
path. When a new traveler comds€w, she phones the dispatcher for a cgthpneD, goes to

a rendezvous point, gets in the cabé€tinQ, has a taxi rideT(Cride), gets out the calf getoutQ,

and goes to the airportdirport). Then, she waits for a plane, gets on the plagetpnh, flights

to another airportT(Pflight), gets off the planergetoffB, and finally gets to the final destination
(Tdes}.

The dispatcher comes to the offid2irf), waits for a request from a traveld@pponeD, looks for
an available cabDJookforC), asks for a cabD@askQ, fills internal statistics Dfillstats), and
leaves the officel§in) or gets ready for the next travel&réady).

A taxi driver gets in the calC{n), waits for a request from the dispatcheagkQ, waits for the
traveler to get in at a rendezvous poifgétinQ, gives a ride to the travelefCride), leaves the
traveler (and gets paid!)r¢getoutQ, and gets ready for a new requeSggD) or goes to the
garage Cgaragg and gets out the taxtoud.

At the airport, when an airline plane is rea@ygady), it waits for a traveler to get ofigetonB,
flies to the next airporflPflight), leaves the travelellgetoffH and goes to a hang&hangaj.

3.3.2 Timethread Map of the Traveler System

Following the complete description of the last section, the simple use case presented in figure 14
can be refined, using a timethread-centered design process [BuC 93], into a detailed path
description: the timethread map of figure 15.
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Dispatcher Cab Plane

Traveler Pready
Tnew
TgetonP
TPflight
DlookforC
TgetoffP
—
TCride
TgetinC TgetoutC Phangar

Tdest

Figure 15: Timethread map of the traveler system

The refinement process is not presented here. This diagram is considered as a first “design” and a
LOTOS specification can therefore be derived. A few things have to be noted here:

» The refined grey box description of the system under design (SUD) still has the same
environment as the black box description (fig 14). Every activities in the SUD could be
“hidden” from a LOTOS point of view.

» Atimethread is neither a component, an agent, nor an object, as the map could suggest.
Timethreadsspancomponents, and they are not necessarily related on a 1-to-1 basis
with components. Therefore, the fact that we have four timethreads here and that we
assumed we have four components is a coincidence.

» Different shadings are used here to differentiate timethreads, to give them a different
identity. The identity of a timethread’s segment is not yet clarified in the notation.
Shadings, colours, and identifiers can be used for this purpose.
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CHAPTER 4 From Timethreads to LOTOS

The Timethread notation includes a basic set of timethreads symbols, symbols to denote different
types of interactions between timethreads, and special symbols. This chapter presents the LOTOS
semantics given to this notation.

4.1 Basic Concerns

4.1.1 Guiding Rules

We need a few guiding rules to help us giving a semantics to timethreads:

* We consider timethreads as entities in their own right. One way to represent this fact is
to associate one LOTOS process to one timethread. This solution is preferable to the
one where each section of a timethread path is mapped onto a LOTOS process. The
latter solution leads to many processes and hidden interactions that destroy the
timethreads structure.

* Waiting places and junction points are represented as LOTOS gates on which
interaction with the environment or with other timethreads will occur. They can be
hidden to represent abstraction levels or internal interactions.
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» The body will only represent sequencing of activities. No special semantics is given to
empty paths, although some underlying machinery may be refined from these paths at a
later stage. Because we cannot specify what is not explicitly drawn on a timethread
map, we assume no behaviour.

* Timethreads are not a front-end for LOTOS-based design. LOTOS is the formal
underlying model that supports timethread design. Therefore, we do not intend to
generate LOTOS in any traditional specification style [VSS 9lim&thread-oriented
style which reflects the timethread structure of the system under design but not its final
architecture, will result from the mapping.

With these ideas in mind, we can now proceed in giving a semantics to the Timethread notation.

4.1.2 Levels of Specifications

PQ/\A./"

Figure 16: Basic timethread

Figure 16 representshkasictimethread or a cause-to-effect relationship. It is intuitive to think

about this behaviour in a sequential way and to define its LOTOS equivalgheefas stop ,

whereA represents a sequenceacfivities A timethread’s activity can identify future fragments

of sequential code: an abstract sequence of actions, a function, a procedure, a method, or parts of
processes. Timethread activities are mapped onto LOTOS gates: gates without interaction (from
the environment or other timethreads) for actions, and gates on which there is interaction for
events (refer to 82.4 for the terminology).

We should also consider the start point and the end point as LOTOS gates. The start point has a
triggering event, calledrigger, coming from the environment or from another timethread. The

end point has a resulting event called Hesult Thus, a unique instance of this timethread could

be represented as follows (we deliberately omit the gate parameters for conciseness although they
should be all present in each definition and instantiation):
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process PJ..]: noexit =
TriggerP; A; ResultP; stop
endproc (* process P, level 1 without recursion *)

Nevertheless, since we deal with reactive systems, our timethread’s representation must be able to
react to more than one initial stimulus from its environment. We would like this process to be
executed as often as the environment desires to, i.e., more than one token can go along the path
Hence, recursion can be included in the process definition:

process PJ..]: noexit =
TriggerP; A; ResultP; PJ...]
endproc (* process P, level 1 with recursion *)

We also need these instances to execute concurrently (or the tokens to go concurrently), which is
not the case in the last definition. LOTOS parallelism needs to be introduced and unbounded
recursion should be avoided, as in the following process:

process PJ...]: noexit =
TriggerP; (A; ResultP; stop ||| PL...])
endproc (* process P, level 3 *)

A could be an empty sequence of activities. In this case, the timethread will simply represent the
cause-effect relationship betweenggerP andResultP Besides, since the first actiofrjggerP,

is observable (or synchronized with other timethreads, as it will be explained later), unguarded
recursion is avoidéd

For execution purposes, we may prefer not to have an unbounded number of instances of a
timethread at once in a system. Hence we could parametrize the maximum number of instances
using, for example, thdumberinstanceabstract data type:

type Numberlnstances is NaturalNumber
opns Pred: Nat-> Nat

eqns
forall  x:Nat
ofsort  Nat
Pred(Succ(x)) = x;
endtype
1. A first attempt in defining this kind of recursion w&s:= (A; stop ||| i ; P ). Although

recursion is guarded, this process introduces infinite sequences of internal events. This type of recursion
makes validation and execution of LOTOS specifications more difficult.
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This parametrized number of concurrent instances could be handled, for example, using recursion
and selection predicates in the following way:

process PJ...] (n:Nat): noexit =
(* n > 0 is the maximal number of instances *)
TriggerP; (

A; ResultP; PJ...] (Succ(0))

Il
[n ne Succ(0)] -> PI...](Pred(n))

)

endproc (* process P, level 2 with recursion and *)
(* with concurrent execution *)

The guard[n ne Succ(0)Jtogether with the parametrized recursiB(Pred(n)) instantiatesn
instances of proced® as in a countdown, namely froR(n) to P(Succ(0)) Then, no other
concurrent process will be created. Tail recursi(®(cc(0)) will keep the number of instances
to nin the system.

Another possibility would be to instantiate an absolute maximumooturrences of proceBsn
parallel, without any tail recursion. Therefore, omlyconcurrent instances will exist and
terminate:

process PJ...] (n:Nat): noexit =
(* n > 0 is the maximal number of instances *)
TriggerP; (

A; ResultP; stop

Il
[n ne Succ(0)] -> PJ...](Pred(n))

)

endproc (* process P, level 2 without recursion and *)
(* with concurrent execution *)

The last possibility is a parametrization where we have a bounded numbar iQstances,
executed sequentially:
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process PJ...] (n:Nat): noexit =
(* n > 0 is the maximal number of instances *)
TriggerP; (
A; ResultP;
([n ne Succ(0)] -> P[...](Pred(n)) )

)

endproc (* process P, level 2 with sequential *)
(* execution *)

Thus, several different types of behaviours can be associated with a timethread. Depending on
what exact behaviour we want to simulate, different levels of abstractions can be defined.

Figure 17 presents a summary @ftions associated to our levels of specification. A short
example (without gate parameters) is given for each:

Level Options Example
L1: Without tail process P: noexit =
Single instance | recursion TriggerP; A; ResultP; stop
endproc
With tail process P: noexit =
recursion TriggerP; A; ResultP; P
endproc
L2: With process P (n:nat) : noexit =
Parametrized | sequential TriggerP;(
b f . A; ResultP;
number o execution ([ ne Succ(0)] -> P(Pred(n)) ) )
instances endproc
Without tall process P (n:nat): noexit =
recursion, TriggerP;(
A; ResultP; stop
Concurrent M
execution [n ne Succ(0)] -> P(Pred(n)))
endproc
With tail process P (n:nat) : noexit =
recursion, TriggerP;(
A; ResultP; P(Succ(0))
Concurrent Il
execution [n ne Succ(0)] -> P(Pred(n)) )
endproc
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Level Options Example
L3: None process P: noexit =
Unbounded TriggerP;(
A; ResultP; stop
number of i
instances P)
endproc

Figure 17: Levels of abstraction and their options.

Depending on what type of questions we want to ask of a generated specification, and on how
much detail we want to consider, we may prefer to use different levels. For example, if we wish to
quickly test some behaviours pliay some easy scenarios in early stages of the design process, a
level 1 (1) specification is rapidly generated and tested. For more complex and realistic
scenarios (including concurrency, robustness, cycles, etc...) or for the generation of test cases for
the implementation, a level 2 specification could be used. The last IS8)eis(like a level 2
specification where there is no commitment to a specific number of instances. NoltS)t eas(
semantics nearly equivalent to the Petri nets presented in [FCB 93], ihiléeeé&ds to more
workable and understandable LOTOS code.

Of course, a natural extension of this concept would be to atlixed-levels specificationse.,

each timethread would independently have its own level and options. These specifications could
simulate the behaviour of a final system in a very realistic way and would be more
implementation-oriented than pur8, L2 or L1.

Our interpretation of timethreads often results in a new style of LOTOS code, i.e., with a lot of
concurrent instances and many resulttup processes. Thismethread-oriented styleeflects

the timethread structure of the system under design but not its final architecture. We are
concerned here with a behavioral interpretation of the path specification, without architectural
considerations (at least at this abstraction level).

By using such concurrent and recursive interpretation, the execution of our specification will
result in a large number efop processes interleaving with the rest of the behaviour. Although
this type of resulting behaviour is usually unwanted, it does not really lead to any problem, even
for simulation tools (such as XELUDO or LITE). What is really dangerous is the recursion in
parallelism (levels 2 and 3), which is not accepted by some tools (for instance, the tool CAESAR).
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One way to avoid problems arising from recursion in parallelism might be to add a macro
command in a meta-language (or a tool control language) to manage the number of instances of a
process. No option would be needed with such an operator: a single level of specification could
always be used for any simulation. This feature is not implemented in any known tool yet, and
therefore we have to simulate it directly in the specification.

In this thesis, we mostly use level 1 specifications, because they are the most simple and useful
ones. Level 3 specifications are discussed sometimes, but level 2 specifications are put aside
because they introduce a high level of complexity in LOTOS specifications for a very little gain.

4.1.3 Tag Mechanism

In the previous section, we mentioned that each timethread instance, or token, has an implicit
state. This state could determine which path will be followed when a choice occurs. We may or

may not know this state during early stages of the design process. But at some point in time, we
want to capture it to give a more specific picture of behaviour.

Timethreads are path specifications, not complete behaviour specifications. Although the
intention is not to specify the complete behaviour, if we can be accurate on what path can be
taken, based on an instance’s internal state, then we should use this information in the diagram to
derive the specification accordingly. The notation may need to thgeendguardsfor adding

such detalils.

By attaching guards to paths at an OR-fork junction (when needed), we can solve most of the non-
determinism problems associated to choices and unfeasible paths. One of the different alternatives
would be chosen according to previous information set by tags.

These tags and guards should not be mandatory. They should be used only when required on
specific paths. Non-determinism can still be present, if we do not have the information to solve it.
In this way, a map can be incrementally extended if desired, without changing what is already
there.

Formalization of Timethreads Using LOTOS 37



From Timethreads to LOTOS

We give a simple example with tags and guards in figure 18. When a token takes (in a non-
deterministic way) the upper path at the first OR-fork, altégset to the valub&p. Then, at the

second OR-fork, it is forced to take the upper path again because a guard constrains the lower path
to tagsT different from the valuélp. If the token follows the lower path at the first OR-fork, the

tagT become®own and the token can take either path at the second OR-fork, because it satisfies
the guard of the lower path and there is no constraint associated to the upper path.

T=Up
T=Down [T<>Up]

Figure 18: Use of tags and guards

This mechanism is implementable in LOTOS using an abstract datdagpgbat enumerates
possible tags and defines equality and inequality operations. Assignation of a value to a tag is
done using the LOTOft construct, and the guards are mapped onto LOTOS guards. A more
complete description of the mapping is presented in section 4.5.5.

A timethread tool could implement many facilities to create and manipulate tags, in a user-
friendly way. Such tool could also have the options to show or hide guards and/or tags to make the
diagram simpler.

4.1.4 Tag Flow

The choice of a specific timethread path can influence the choice of another timethread path as an
effect. Tags and interactions between these two timethreads are needed. There are only two ways
of indicating inter-timethread interactions: preconditions and explicit interactions. Most
timethread patterns are handled clearly by one or the other method. However, data has to flow at
an interaction point for tag information to be transferred from one timethread to another. This can
be implemented bgnessage passirg@ byglobal variables

Timethreads allow the use of both message passing and global variables. Since we are designing
distributed systems, often without shared memory to manage such variables, global variables
could be considered useless or dangerous to use. However, at a high level of abstraction, they can
help designers delaying many decisions related to implementation while making the big picture
clearer.
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In this thesis, we formalize message passing only, because this way of handling data relates more
closely to distributed systems in general. LOTOS offers the powerful mechanism of multi-way
synchronization, to allow message passing (ADTSs) at interaction points. Timethreads interactions
can be mapped onto LOTOS multi-way synchronizations, and tag information can then flow from
one timethread to another, or from the environment to a timethread.

In figure 19, there are three tags (LOTOS value identifi€s), andP. There is a flow of
information going from the environment ©, as expressed by an arrow going towards the
timethread (incoming arrow). This information is associated to a token which takes a path
according to the guards. Théns set and passed to the next timethread (outgoing arrow), which
accepts this value in a local tBgincoming arrow). FinallyP is used to determine which path is

to be taken in the second timethread.

[c=1] T=Up [P=Up]
[C<>1] ™ T—pown To—=P [P<>Up]

Figure 19: Flow of information

The tag flow symbol ¢ ) is not part of the traditional Timethread notation, although an
equivalent data flow symbol has been used in the literature. There is a trade-off between capturing
every detail and making the big picture clear. Too much notation clutters the picture.
Nevertheless, we consider the tag flow notation to be simple and clear, and we will use it in this
thesis to express flow of information between timethreads. We also use one type dagdata (
only, in order for the mapping to be simple. At the abstraction level that interests us, timethread
maps do not contain other types of data.
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4.2 STDL Grammar

We use &ingle-Timethread Description Langua&DTL), expressed asgtammar,to describe

valid single timethreads. We use STDL to map timethreads onto formal languages such as
LOTOS. It is a step towards a general description model that is expected to become the internal
representation of timethread maps in a design tool.

The decomposition method of a timethread map (83.1) would output a LARG description of the
interactions and also the description of each individual timethread in STDL. Then a “compiler”
would take these descriptions and output a LOTOS process for each timethread. In section 3.1,
this was called the mapping method.

4.2.1 Requirements

In order to have the functionality expressed above, the grammar should:

G1)

G2)

G3)

G4)

G5)

G6)

G7)

G8)

Be general enough for the generation of LOTOS processes, while being independent.
Other formalisms, such as Petri nets, could be used as output languages of other
mapping methods.

Reflect a complete single timethread instead of segments, since these are less
meaningful and do not fully express a timethread’s intentions.

Produce readable descriptions, so that people can actually read them. This helps in the
design, debugging and implementation of a tool. This grammar almost becomes a
language by itself.

Ease timethread-to-timethread transformations.
Support tags and data flow.

Be adaptable, i.e., it should be easily modified or extended in order to suit special
needs or special notations.

Avoid redundant constructors while keeping the intentions of the timethread.

Possibly be integrated in a more general description model where timethread
interactions and visual details are also supported.
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4.2.2 Achievements

The STDL grammar presented in the next section achieves most of the goals mentioned:

G1) LOTOS code can be generated from SDTL (this is the topic of the next section).
However, mapping methods for other formalisms (such as Petri nets) are still untested.

G2) SDTL generally reflects a complete timethread and its intentions, not only some of its
paths or segments.

G3) SDTL descriptions are easy to read and understand.

G4) This has not been verified yet, although we give a taste of transformations in the next
chapter.

G5) Tags, guards and message passing are supported by SDTL.

G6) We can adapt SDTL in order to include new special symbols or constructs, mostly by
modifying the<Seg>, <GenOptions >, and<WPOptions> rewrite rules.

G7) Only a few constructors can be considered as redundantafhdAndFork , Choice
andOrFork ), and this trade-off aims at preserving timethread intentions.

G8) SDTL can be associated to LARGs to cover interactions (84.4). The integration of
composition rules and visual informations to complete map description and
representation is still work to be done.

4.2.3 SDTL Grammar in EBNF

The following context-free grammar represents the Single-Timethread Description Language. We
use an Extended Backus-Naur Form where:

» Reuwrite rules are of the form Left-Hand Side = Right-Hand side

* Non-terminal symbols are delimited byand> as in<kName>

» Terminal symbols are in bold-italic ashtame

» Alternative rules are separated by vertical bar$ &s in<Delayed> | <Time>

* Optional items are enclosed in square bracket(l] ) as in[<RecTagValues>]
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» Optional lists, possibly empty, are enclosed by bréacasd} as in{<Seg>}
(*) is added to indicate non-empty lists ag<ieg>}* .
* Enumerations are expressed withas ina.. z

 Comments are betwe¢n and~) .

(* STDL, June 9, 1994 *)

(* Single-timethread definition. We separate stubs from complete timethread for future use. *)
<Timethread> = Timethread <TTld> [s <StubOrTT> EndTT
<StubOrTT> = <Stub> | <GenOptions> [<Internals>] <Trigger> <FirstPath>

(* Stub definition. No general options nor segments. They represent timethread stubs *)
<Stub> = Stub <Trigger> <Result> EndStub

(* General options available to timethreads; can be extended. At the moment, there are two *)
(* non-exclusive options available for aborted and constrained timethreads. *)

<GenOptions> = [<Aborted>] [<Constrained>]
<Aborted> = AbortedOn ( <Eventld> )
<Constrained> = Constrained

(* A list of activities can be internal, i.e. hidden from the timethread’s environment. *)
<Internals> = Internal  <l|dentifier> { , <ldentifier>}

(* A trigger has access to waiting places options and it might receive tag values. *)
<Trigger> = Trigger <WPOptions> ( <Triggerld> [<RecTagValues>] )

(* The first path of a timethread does not need the keywords Path and EndPath to be clear. *)
<FirstPath> = {<Seg>} <Result>

(* A result can send tag values to the environment or other interacting timethreads. *)
<Result> = Result ( <Resultld> [<SendTagValues>] )

(* Waiting places options available; the list can be extended. At the moment, we consider two *)
(* exclusive options. *)

<WPOQptions> = [<Delayed> | <Timed>]
<Delayed> = Delayed
<Time> = Time

(* Types of segments available; the list can be extended *)

<Seg> = <Abort> |
<Action> |
<AndFork> |
<Async> |
<Choice> |
<Loop> |
<Loss> |
<OrFork> |
<Par> |
<SegStub> |
<Sync> |
<Tag> |
<Waiting>

(* This event aborts another timethread. *)
<Abort> = Abort ( <Eventld> )

(* Indicates an action and its identifier. *)
<Action> = Action ( <Actionld> )

. A star
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(* Asynchronous/syncronous waiting places. Async can send tag values in passing, and Sync can *)
(* receive them. *)

<Async> = Async ( <Eventld> [<SendTagValues>] )

<Sync> = Sync ( <Eventld> [<RecTagValues>] )

(* Choice (OR-Fork & OR-Join) and OR-Fork (no join) segments. The Choice has at least two *)

(* optional list of segments, and the OrFork as a choice between the continuation of the *)

(* original path and at least one new path. Guards are optional. *)

<Choice> = Choice [<Guard>] {<Seg>}{ Or [<Guard>] {<Seg>} }* EndChoice
<OrFork> = OrFork [<Guard>] Continue { Or [<Guard>] <Path>}* EndOrFork

(* A new path is a list of segments with a result. *)
<Path> = Path {<Seg>} <Result> EndPath

(* A Loop is composed of two sections, Compulsory and Optional, indicated by their coresponding *)
(* keywords (they can be abbreviated by Comp and Opt). Guards are optional. *)

<Loop> = Loop <LoopComp> <LoopOpt>  EndLoop
<LoopComp> = <CompSymb> [<Guard>] {<Seg>}
<LoopOpt> = <OptSymb> [<Guard>] {<Seg>}
<CompSymb> = Comp| Compulsory

<OptSymb> = Opt | Optional

(* Loss of an instance or token. Can be guarded. *)
<Loss> = Loss ( [<Guard>] <Lossld> )

(* Par (AND-Fork & AND-Join) and AND-Fork (no join) segments. The Par has at least two *)
(* optional list of segments, and the AndFork adds at least one concurrent path. *)

(* Guards are forbidden (it is not a choice). *)

<Par> = Par {<Seg>}{ And {<Seg>}}* EndPar

<AndFork> = AndFork <Path>{ And<Path>} EndAndFork

(* Segment stub definition. They represent path stubs. *)
<SegStub> = SegStub ( <SegStubld> )

(* Waiting place that waits for an environment stimulus. *)
<Waiting> = Wait <WPOptions> ( <Eventld> [<RecTagValues>] )

(* Tags definition and tags passing (send and receive). *)

<Tag> = Tag ( <Tagld> =<Valueld> )
<RecTagValues> = ? <Tagld> [<RecTagValues>]
<SendTagValues> = ! <Tagld> [<SendTagValues>]

(* Guard expressions. The list of equation operators and boolean operators can be extended. *)
(* These operators are currently based on LOTOS boolean and natural ADTSs. *)
<Guard> = Guard ( <GuardExpr> )
<GuardExpr> = <Tagld> <EqOp> <Valueld> |
not ( <GuardExpr> ) |
( <GuardExpr> ) <BoolOp> ( <GuardExpr> )
<EQqOp> = eq| ne
<BoolOp> = and| or | xor | implies | iff

(* Different identifiers used. They all start with a letter, except Valueld. *)

<Actionld> = <ldentifier>
<Eventld> = <ldentifier>
<Lossld> = <ldentifier>
<Resultld> = <ldentifier>
<SegStubld> = <ldentifier>
<Tagld> = <ldentifier>
<Triggerld> = <ldentifier>

<TTId> = <ldentifier>
<Valueld> = {<Alphanum>}*
<ldentifier> = <Letter> {<Alphanum>}
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<Alphanum> = <Digit> | <Letter>
<Digit> = 0.. 9
<Letter> = a. z| A. . Z

Appendix A presents the syntax diagrams of the STDL grammar. Rewrite rules are in rectangles
and terminal symbols are in ellipses. Section 4.6 also presents the mappings from STDL to
LOTOS according to these rules.

We believe SDTL is a step towards the automated generation of LOTOS specifications from
timethread maps. Section 7.2 discusses more in depth the utility and advantages of this grammar.
The next section presents most common cases of mapping from single timethreads to SDTL to
LOTOS processes.

4.3 Single Timethreads in LOTOS

We present here the mapping method that generates LOTOS from single timethreads expressed in
STDL. We mostly use level 1 specifications, although level 3 specifications are sometimes
discussed. We also refer to theaveler Systenmtroduced in section 3.3 to illustrate pertinent
examples.

Section 4.3.1 presents basic timethread combinations, i.e. unconstrained and constrained starts,
and the loop constructor. Section 4.3.2 shows the use of concurrent and alternate segments within
a given timethread. In the upcoming examples, we present the timethread map, the corresponding
STDL code, and then the resulting LOTOS process. We use a simpler LOTOS syntax (without
gate parameters and process identification) in order to simplify the behaviour expressions
generated. The complete LOTOS syntax is however respected in the appendices specifications.

Note that for some instances of basic combinations (e.g., constrained start and loop), the trans-
lation is not straightforward. However, we believe that it could be formally defined and auto-
mated, and this is why section 4.6 reviews most of the general mappings from STDL to LOTOS.

4.3.1 Basic Combinations

Sequence

The basic timethread of figure 20 has been already discussed in 84.1s2dlileaces a very
common pattern that can be found in the Traveler System (timethneagderandPlang. In the
following example, we consider the timethreRthne alone, without any interaction with
Traveler We obviously see that events and actions are directly mapped onto LOTOS gates.
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Timethread Plane s Plane :=
Trigger (Pready) Pready;
Plane (
Action (TgetonP) TgetonP;
TgetonP TgetoffP Action  (TPflight) TPflight;

TPflight Action (TgetoffP) TgetoffP;

Result (Phangar) Phangar; stop
Pread
y Phangar | EndTT ) (*L1%)

Figure 20: Example of sequence

To get a level 1 specification with recursion, we replsiop with the process instantiation
Plane[gates...] . A level 3 specification is obtained by addinfj Plane[gates...]

afterstop . Generally, these are the only modifications needed to get a specification at a specific
level. This is easily manageable for a tool or a compiler.

Internal Actions
In the previous timethread (fig. 20), we can observe all activities since nothing is declared

internal. We defined events to be activities on which the environment or other timethreads

interact, so they cannot be hidden or abstracted within a timethread, although whole interactions
could be hidden at a higher level in a timethread map (see 85.2.1). Actions however can be
internal to a timethread, and the STDL grammar allows this witmtls@al  construct.

For instance, we can make actidrgetonPandTgetoffPinternal to the timethread (fig. 20). All
actions declared internal is mapped onto a LOTOS hidden gate.

Timethread Plane is Plane :=
Internal hide TgetonP,TgetoffP in
TgetonP,TgetoffP
Trigger (Pready) Pready;
(
Action (TgetonP) TgetonP;
Action (TPflight) TPflight;
Action (TgetoffP) TgetoffP;
Result (Phangar) Phangar; stop
EndTT ) (*L1%)

Figure 21: Example of sequence with internal actions

A tool could allow a designer to select which actions should be internal to their respective
timethreads. Note that we will not use internal actions in the remaining examples of this chapter.
TheTravelerandTelepresencsystems will however use this very useful notion.
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Constrained Start
Timethread Dispatcher is Dispatcher :=
i Constrained
Dispatcher Dout Trigger  (Din) Din;
(
Din Action (DlookforC) DlookforC;
Action (DaskC) DaskC;
Action (Dfillstats) Dfillstats;
Dfillstats Result  (Dout) Dout; stop
EndTT ) (*L1¥)

DaskC
DlookforC

Figure 22 presents theonstrained starttimethreadDispatcher without the loop and the
interactions found in the original timethread map. The system allows only one instance (or one
token) of timethreadispatcherat a time, i.e.Dispatcherhas to terminate for a new instance to

start. For level 1 specifications (with or without recursion), there is no difference between a
constrained start and a sequence, because there is at most one instance at a given time in both
cases. However, we would like the triggering event not to be refused for level 3 specifications
while an instance is executed. Those triggering events have to be accumulated in some way. For
that purpose, the start waiting place needs internal machinery to manage the incoming of possibly

Figure 22: Example of constrained start

many triggering event®in, while allowing only one token to go at a time.

The constrained start timethre®ispatcher including a waiting place with necessary internal

machinery, is specified at level 3 in specification 2:

Dispatcher :=
hide SyncCS in (* hidden gate *)
WP_CS [[SyncCS]| DispatcherSub
where
WP_CS = (* Waiting Place Machinery *)
Din; (SyncCS; stop (* Allows one token to go *)

11l
WP_CS) (* Accumulation of Din *)

DispatcherSub := (* Rest of the timethread *)
SyncCS;
DlookforC;
DaskC;
Dfillstats;
Dout; DispatcherSub (* L3 *)
(* Ready for the next token *)

Specification 2: Level 3 constrained start

46
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We need two sub-processes, one for the waiting pMde _CS and one for the rest of the
timethread DispatcherSup to represent the constrained start. These processes are synchronized
on a hidden gate call&giyncCSWe discuss waiting places with internal machinery in chapter 7.

Loop

The timethreadispatcherincludes doop to indicate that someone can dispatch more than one
cab. Figure 23 shows this loop, but we still ignore interactions for the moment. In the LOTOS
representation of a loop, we have to define a sub-processlueng corresponding to the loop

part and the rest of the timethread. For this purpose, we defined, in STDhinpalsorysegment
Compulsory (must be executed at least once) and@ional segmenDptional  (may or may

not be executed).

Timethread Dispatcher is Dispatcher :=
H Constrained Din; (Dloop)
Dispatc her Dout Trigger (Din) where
Loop Dloop :=
ﬂ Compulsory (* Compulsory Seg *)
Action  (DlookforC) DlookforC;
Dready Action  (DaskC) DaskC;
Dfillstats Action (Dfillstats) Dfillstats;
Optional (
Action (Dready) (* Optional Seg *)
DaskC EndLoop Dready; Dloop
DlookforC Result (Dout) 1l
EndTT (* Exit loop *)
Dout; stop
) (*L17%)

Figure 23: Example of loop

Again, recursion can be added to this process if necessary. Level 3 specifications are also
possible: we simply repladein; Dloop  with Din; (Dloop ||| Dispatcher) . Lastly,
guards can be attached to determine whether we loop again or not.

4.3.2 Concurrent and Alternate Sgments

TheTraveler Systerdoes not have any of the four types of concurrent and alternate segments (see
§2.1.1). We will present short examples adapted fronTtaeelertimethread to illustrate these
segments.

Formalization of Timethreads Using LOTOS 47



From Timethreads to LOTOS

OR-Fork
Suppose the traveler has a choice between going to its destination and stayingrstaybey

that particular morning. These are two exclusive paths that will never join. Figure 26 presents
such a (simplified) timethread. The LOTOS choice opergioy i used in the interpretation of
the OR-Fork.

(* Continued segment *)
Continue

Timethread Traveler is Traveler :=
Traveler Trigger  (Tnew) Tnew;
Tstaybed Action (Twakeup) (
Tnew  Twakeup OrFork Twakeup;

(

(* Continued seg *)

Or Tairport;
. Tdest (* New path *) Tdest; stop
Tairport Path 0
Result (Tstaybed) (* New path *)
EndPath Tstaybed; stop
EndOrFork )
Action (Tairport) ) (*L17%)
Result (Tdest)
EndTT

Figure 24: Example of OR-Fork

In STDL, the choice construct allows multiple alternatives (more than two options) and this is
reflected in the LOTOS code accordingly. WhenGork occurs, we choose between the
continuation of the timethrea@¢ntinue ) and new path segment®ath ). The latter have their

own resulting events. As expressed in the STDL grammar, at least one new segment is needed in
the OrFork construct. We also have the possibility to add guards to the all segments. Finally, we
generate recursive specifications by modifying thep of each alternative, and level 3

specifications by addingj Traveler before the last parenthesis, as in the previous section.

Choice
Thechoiceis the combination of an OR-Fork with an OR-Join. It indicates that a token can follow
one of many different paths for a while, but all these paths merge in a common path later. For

instance, our traveler still wants to get to the airport, but she now has a choice between a taxi
(Ttaxi) and a busTbug. This case is presented in figure 25.
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Traveler

Tnew

Ttaxi

o—<_~ |

Tbus Tairport

Timethread Traveler is
Trigger (Tnew)

Choice

Action
Or
Action
EndChoice

(Ttaxi)

(Tbus)

Result
EndTT

(Tairport)

Traveler :=
Tnew;

(

(

Ttaxi; SyncOR; stop
0

Tbus; SyncOR,; stop
)
[[SyncOR]|
SyncOR;
Tairport; stop

) (FL1Y)

hide SyncOR in

Figure 25: Example of choice (OR-Fork & OR-Join)

Again, we have added a hidden g&tecORo synchronize the end of the choice with the rest of
the timethread. Multiple choices are supported by STDL and LOTOS, and guards can be added.

AND-Fork

The traveler is able to do many things concurrently. In the next example (fig. 26), the traveler has
a report to read. After she phones the dispatcher, she can read thisTheafthefore her taxi

ride, before getting to the airport, before or after the arrival to the destination. This is represented
with two concurrent paths after a AND-Fork.

Traveler

Tnew

TphoneD

Tread TrepOK

TCride
Tairport

Tdest

Timethread Traveler is
Trigger (Tnew)
Action (TphoneD)
AndFork
(* New path *)
Path
Action
Result
EndPath
EndAndFork
(* Continued segment *)
Action (TCride)
Action (Tairport)
Result (Tdest)
EndTT

(Tread)
(TrepOK)

Traveler :=
Tnew;
(
TphoneD;
(
(* New path *)
Tread
TrepOK; stop
Il
(* Continued seg *)
TCride;
Tairport;
Tdest; stop
)
) (*L17)

Figure 26: Example of AND-Fork

The LOTOS interleaving operator is used here to represent that two tokens follow the two paths
concurrently. ThéndFork adds new concurrent path segments, and we may have more than two
exiting paths (thus at least one neasth segment), without guards.
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Par
Sometimes, we do not care in what order some activities occur, or we want to represent them as

occurring concurrently. A constructor nameak, which is an AND-Fork followed by a AND-

Join, is used in figure 27 to express such a concept. In this example, the traveler has to read her
report after she phones the dispatcher and before she arrives at the airport. However, she can read
it before or after her taxi ride (or during her ride, if we interpret the interleaving as true
concurrency).

The STDL Par construct is mapped onto the LOTOS parallel composition operator. The
synchronization between all concurrent paths occurs on a hiddenSyaeA(ND. As for the

other constructors, we can specify more than two concurrent paths, and we can generate recursive
or level 3 specifications.

Timethread Traveler is Traveler :=
Trigger (Tnew) Tnew;
Action (TphoneD) (
TphoneD;
(* Concurrent segs *) (
Traveler Pa;‘ ' hide SyncAND in
ction (Tread) (
Thew Tread And Tread,;
Tairport Action (TCride) SyncAND; stop
EndPar SyncAnd
.?OneD\O_§\I-rdest |[T)éride; !
TCride (* Rest of Traveler *) SyncAND; stop
Action (Tairport) )
Result (Tdest) |[SyncAnd]|
EndTT SyncAnd,
Tairport;
Tdest; stop
)
) (FL17)

Figure 27: Example of par (AND-Fork & AND-Join)

The reason for using a hidden gate instead oetite followed by the enable operater) to
synchronize concurrent segment is to preserve consistency with other types of interactions (see
84.4.1).

4.4 Timethread Interactions

A timethread map is a collection of interacting timethreads. We can differentiate two types of
interactions: timethread starting (84.4.1), where one or many timethreads start one or many other
timethreads, and synchronous/asynchronous interactions along timethread paths (84.4.2). The
structural part of these interactions will be obtained using the timethread decomposition method
and the LAEG method [Bor 93].
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The decomposition method aims at mapping the topology of interacting timethreads onto a LARG
and generating descriptions of individual timethreads in STDL. Section 4.3 showed how STDL

descriptions are obtained from individual timethread. The current sections covers the mapping of
timethread maps onto LARGSs, and the generation of LOTOS structural expressions using the
LAEG method.

4.4.1 Starting Concurrent Timethreads

This section proposes several basic scenarios, related Toatreler Systemwhere timethreads
are started. Their goal is to present interactions constructors, which are represented as
juxtapositions of basic symbols (refer to §2.1.2).

Concatenation
The concatenationis probably the most simple interaction, and several basic options are

discussed here. In the example of figure 28, the dispatcher receives a phone call and asks for a
cab. This enables a cab to go and get a travetpst().

Dispatcher Cab
TphoneD DaskC

Dispatcher [Din, TphoneD, DaskC]
|[DaskC]|
@ DisGates ) [DaskC,CgetTD Cab [DaskC, CgetT]

N\ / N

where
Dispatcher Cab (* Process definitions *)

whereDisGates isDin, TphoneD, DaskC

Figure 28: Example of concatenation

The mapping onto a LARG is given. There are two processes, one for each timethread,
synchronized on gateaskC This gate could be potentially hidden at a higher lever of abstraction
(see 85.2.1 for further explanations on internal events). The LAEG method generates the
corresponding LOTOS structural expression. The analysis step does not find any ambiguity in the
LARG, and the expression shown in the figure is directly generated.

Formalization of Timethreads Using LOTOS 51



From Timethreads to LOTOS

The process definitions are given below (fig. 30). They correspond to two sequences where the
result of the first timethreadD(spatchej is the same event as the triggering event of the second
one Cab). The synchronization occurs on that specific evPaskQ.

Timethread Dispatcher is Dispatcher := Timethread Taxi is Taxi :=
Trigger (Din) Din; Trigger (DaskC) DaskC;
Action (TphoneD) ( Result (CgetT) (
Result (DaskC) TphoneD; EndTT CgetT,; stop
EndTT DaskC; stop ) (*L17%)
) (*L17)

Figure 29: Level 1 process definitions of figure 28

We can use different levels of specification for these two processes. In figure 30, we used level 3
specifications as process definitions.

Dispatcher := Taxi :=

Din; DaskC;

( (
TphoneD; CgetT; stop
DaskC; stop 1
N Dispatcher
Dispatcher ) (*L3 %)

) (FL3%)

Figure 30: Level 3 process definitions of figure 28

Gate Synchronization vs Enable Operator

In figure 28, we used synchronization on an explicit gate instead of the LOTOS enable operator
(>>) in order to avoid problems associated to levels of specification. An instance of such
problems is given in figure 31, where a timethr€ad concatenated to the end of a timethriéad

Py ./\/'I .’\/‘I" NI
P, ./'\/-l\Ql ."\/1—» Nl
Ps N‘l? ./'\/I ./\/'l _» .’\/"I
P O ~——1 NI —>./\/|
(a) Wrong behaviour usingexit (b) Good behaviour using a hidden gate

Figure 31: LOTOS synchronization on a concatenation
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With a level 3 specification, we cannot use the LOTOS enable operaiptd describe the
interaction because all instancesRfalthough they are executed in parallel, would have to
synchronize orexit beforeQ starts (see fig. 31a). This is impossible because there would be an
infinite number of instances d?. By using synchronization on a potentially hidden gate, an
instance of proce<3 is created every time an instance of proéesminates (fig. 31b), whitout

any problem.

We considered thgeneralized terminatioit>e;>), presented in [QUA 92], as an alternative to
synchronization on potentially hidden gates. However, although the problem of the standard
enable operator is solved, the new operator was found to act like a disabling (all instadhces of
would be destroyed after an enabling). Also, the extension of [QUA 92] needs some changes in the
underlying model of LOTOS (a new compound event), and their proposal is not standardized yet.
Because of these reasons, this option was rejected.

The use of potentially hidden gates leaves us with fewer LOTOS operators to consider. This
satisfies one of the guiding rules presented in 84.1.1.

In-Passing Start

We adapt here the previous example. The concatenation is replaced wiHpassing startand
the dispatcher fills his statistics at the end (see fig. 32).

Dfillstats

Dispatcher

Din CgetT

TphoneD DaskC

Dispatcher [Din,TphoneD,DaskC,Dfillstats]
|[DaskC]|
Cab [DaskC, CgetT]

DisGates ) [DaskC,CgetT )
/ _

N

where
Dispatcher Cab (* Process definitions *)

whereDisGates is Din, TphoneD, DaskC, Dfillstats

a
N

Figure 32: Example of in-passing start
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This interaction is asynchronous, ilRispatcherdoes not wait at the interaction point, &b

does. The LARG model expresses synchronous interactions only, and thus the “asynchronous”
part must be simulated in the processes themselves. We decided to express it in the description of
the non-waiting timethreadispatcheras shown in figure 33:

Timethread Dispatcher
Trigger (Din)

Action (TphoneD)
(* Async event *)
Async  (DaskC)

(* Rest of the path *)
Result (Dfillstats)

EndTT

is

Dispatcher :=
Din;
(
TphoneD;
(
DaskC;
Il
Dfillstats;
stop
)
) (FL17)

stop

Timethread Cab is

Trigger (DaskC)
Result (CgetT)
EndTT

Cab :=
DaskC;

CgetT,;
) (FL17)

stop

Figure 33: Process definitions of figure 32

We prefer this way of simulating asynchronous interactions to the insertion of a buffer between
two processes. The latter option causes another process to be created and the asynchronous event
to be split PaskCwould becomeédaskCSendnd DaskCReceive Our option is much simpler

and only one event is necessary.

OR-Start

Many-to-one timethread interactions are possible. In this example (fig. 34), we suppose that either
aDispatcheror aTravelercan ask for £ah.
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Dispatcher

Din

CgetT
Traveler

Tnew

(
Dispatcher [Din, AskC]
( Din,AskC ) @skC,CgetT\ Il
N ]

@ Traveler [Tnew, AskC]
—‘— )
Dispatcher Cab [[AskC]|

Cab [AskC, CgetT]

( Tnew,AskC ) where
| — (* Process definitions *)

Traveler

Figure 34: Example of OR-Start

The LAEG method findsOR-Startsto lead to structural ambiguities. LOTOS structural
expressions cannot be directly derived from such LARGs. However, as explained in section 2.3.2,
we apply thestructural ambiguity groupingto solve this problem. The resulting LOTOS
structural expression is presented in figure 34.

Process definitions are derived in the same way as the concatenation (thus, directly from the
map). Different levels of specification lead however to different global behaviours. For instance,
if the three processes involved are specified using level 1 without recursion, theGadritas

been triggered by one incoming timethread, the other timethread will deadlddkGhecause

we only have one instance G&b. If we use recursion, then the second incoming timethread has

to wait for Cabto finish before synchronizing okskC There are no such problem at a level 3:
AskCis always available to as many instances of incoming timethreads as possible. This is a big
advantage of level 3 specifications over level 1 specifications, because we do not have to consider
the non-availability oAskCwhile validating the map.
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AND-Start
Suppose we need a token from a timethréadeler and one fromCab to create a token on a

timethreadRide as in figure 35. The LARG representation of tAlND-Startis a three-way
rendezvous between the three processes. The LOTOS structural expression is easily generated
from the LARG, and process definitions are generated as usual.

Cab
Cin .
Ride
./\/__I ToutC
Traveler
Tnew TinC
Ride [TinC, ToutC]
|[TinC]|
¢ Cin,TinC ) (
N
Cab [Cin, TinC]
|[TinC]|
Cab TinC,ToutC Traveler [Tnew, TinC]
inc) )
Tnew, TinC Ride where
(* Process definitions *)
Traveler

Figure 35: Example of AND-Start

We saw that one-to-one starts and many-to-one starts can be mapped onto LOTOS. Any starting
of timethreads, including one-to-many and many-to-many starts, are obtained by the same
construction. We generate the LOTOS structural expressions in a similar way.

4.4.2 Synchronous / Asynchronous Interactions AlapPaths

This section deals with different kinds of shared paths, synchronizations and triggering events
between timethreads. Waiting places along timethreads will be used.

Synchronous Join-Fork
A traveler and a cab have to synchronize during their ride to the airport. They wait for each other
on TgetinG go together TCride), and then go their separate ways aftgretoutC This

synchronous Join-For&f timethreadJravelerandCabis shown in figure 36:
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Cab
Cin
. Cgarage
TCride garag
Traveler
Tnew
Tairport
Cab [Cin, TinC, TCride, ToutC, Cgarage]
|[TinC, TCride, ToutC]|
(" CabGates ) ( TravGates ) Traveler [Tnew, TinC, TCride, ToutC,
N\ y N Tairport]
Cab Traveler where e
(* Process definitions *)
whereCabGates is Cin, TinC, TCride, ToutC, Cgarage
and TravGates is Tnew, TinC, TCride, ToutC, Tairport

Figure 36: Example of synchronous Join-Fork

All activities on the common segment are put in the gate set linking the two processes. Therefore,
these two processes are synchronized on all activities on this path segment. Since interactions
occur all along this segment, actions cannot be hidden locally. In fact, actions Ji@tdasare

more than actions; they are also interactions. The current interpretation results in identical copies
of the common segment in the two timethreads description. However, a timethread tool user

should not be bothered with such problem.

Identical copies lead to potential problems. One can be encountered in the case of modifications,
which will have to be applied consistently to all copies. A second one relates to some well-known
problems due to non-deterministic choices in the LOTOS world. We know that the composition of
a processd with itself is not always equivalent & Figure 37 shows an example of a non-
deterministic proced8 and the compositioR || P whereP:= a; b; stop [] a;c; stop .
Deadlocks can result in the composition prode$sP after the actiom.

P PP
Figure 37: LTSs of P and P||P
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Could such problem occur between two synchronizing timethreads? We believe it could not.

Timethreads have unique identifiers for their activities, so a choice between identical actions is

impossible. Also, because internal actions are not allowed in a synchronized segment (all actions
have to be observable to synchronize), there will never be a non-deterministic choice due to
internal actions. Therefore, we think these are sufficient conditions to avoid most problems with

synchronized timethreads.

There is another way of formalizing the synchronous Join-Fork, presented in [Amy 93], that
avoids all the problem due to identical copies (fig. 38). We introduce a new process called
SyncThreadthat represents the common synchronized segment {F@rele). It is almost
considered a timethread by itself, and could be specified at different levels. The processes
synchronization is done on the firgi{C) and last eventJoutQ.

Cab [Cin, TinC, ToutC, Cgarage]
|[TinC, ToutC]|
(" CabGates ) ( TravGates ) SyncThread [TinC, TCride, ToutC]
N N ([TinC, ToutC]|
TinC, Traveler [Tnew, TinC, ToutC, Tairport]
Cab ToutC Traveler
where
SyncThread :=
TinC; (* First event *)
(
(SyncGates\ TCride;  (* Sync. segment *)
N ToutC; stop  (* Last event *)
)
SyncThread (* Process definitions of Cab and *)
(* Traveler, without TCride. *)
whereCabGates is Cin, TinC, ToutC, Cgarage
andSyncGates isTinC, TCride, ToutC
and TravGates is Tnew, TinC, ToutC, Tairport

Figure 38: Second interpretation of synchronous Join-Fork

This interpretation, similar to semaphores in LOTOS, could facilitate timethread transformations
by eliminating the consistency checking between synchronizing processes. Also, we are able to
hide internal actions iByncThreadwhile this was impossible in the previous alternative because

all actions had to be observable to synchronize. However, the cost is a supplementary process,
which is not consistent with the one-to-one relation between timethreads and LOTOS processes,
and increased complexity w.r.t. tag flow. In this thesis, we prefer to use the solution without
additional processes to this alternate solution.
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Asynchronous Join-Fork
The following example (fig. 39) presents a case whem@sgnchronous Join-Foris required. A

Busand aCab possess both the ability to perform fRiele action, without any synchronization.
This simple example shows that the asynchronous Join-Fork is more a visual hint than an
interaction between timethreads. This is why the gate set is empty.

Cab
Cin
Ride Cout
Bus
Bin
Bout
Cab [Cin, Ride, Cout]
Il
(" CabGates ) (" BusGates ) Bus [Bin, Ride, Bout]
N N
/\ where
Cab U Bus (* Process definitions *)
whereCabGates is Cin, Ride, Cout
andBusGates is Bin, Ride, Bout

Figure 39: Example of asynchronous Join-fork

The interpretation is simply reduced to two interleaving processes having both tRedgate

End-Trigger

This example slightly differs from the concatenation (see fig. 28). In figureCdb, starts
independently fronDispatcher but it has to wait fobaskCbefore continuing. SincBaskCis
the resulting event ddispatcher anend-triggeris required.
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Dispatcher

Din CgetT
TphoneD DaskC
Dispatcher [Din, TphoneD, DaskC]
|[DaskC]|
@ DisGates ) @ CabGates ) Cab [Cin, DaskC, C
) , CgetT]
N / N y

where
Dispatcher Cab (* Process definitions *)

whereDisGates isDin, TphoneD, DaskC
andCabGates is Cin, Ride, CgetT

Figure 40: Example of end-trigger

In STDL, the waiting plac®askCis represented with @Sync> segment. Tags can flow from
Dispatcherto Cah.

In-Passing-Trigger
We modify the previous example to insert iarpassing-trigger The dispatcher, after having

asked for a cab, does not wait for anything to happen and fills his statistics. Figure 41 illustrates

this asynchronous interaction.

Dfillstats

Dispatcher

Din CgetT

TphoneD

DaskC

Dispatcher [Din, DaskC, Dfillstats]
|[DaskC]|

DisGates C CabGates ) Cab [Cin, DaskC, CgetT]

where
Dispatcher Cab (* Process definitions *)

whereDisGates isDin, DaskC, Dfillstats
andCabGates is Cin, DaskC, CgetT

N/

a
N

Figure 41: Example of in-passing-trigger
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In STDL, the interaction poinDaskC is represented aasync (DaskC) in Dispatcher and
Sync (DaskC) in Cahb. The resulting process definitions are similar to the ones in figure 33.

Other Interactions
Complex interactions, involving more than two timethreads, are described using the same

approach. A separate architectural approach (such as the LARG model) combined with single
timethread description (in STDL) gives us the LOTOS architecture required to represent the most
complex timethreads interactions.

4.5 Special Symbols

In this section, we give a LOTOS interpretation to a selection of timethread special symbols
(see 82.1.3). In order to keep the mappings simple, LARG representations and LOTOS structures
are not given when they can be easily derived from the previous sections.

45.1 Timers

Delays

A timer symbol, used as delayed waiting placériggering a timethread, expresseseayed

start In figure 42, the dispatcher waits for a certain time before asking for a cab. In STDL, the
keywordDelayed , an option in the grammax\WPOptions> ), is used to express such waiting
places. This delay is interpreted in LOTOS as the internal dottay.

Timethread Dispatcher is Dispatcher :=
Traveler Dispatcher Delayed hide Delay in
TphoneD Trigger (TphoneD) Delay;
Result (DaskC) TphoneD;
Tnew EndTT (
DaskC; stop
) (FL17)

DaskC

Figure 42: Example of delayed start

Time is an abstract notion in LOTOS. We think that an internal action is sufficient to clearly
express a delay, and therefore no time extension is needed. In fact, strictly speaking, even an
internal action is not necessary because, in LOTOS, every action implies arbitrary delay.
However, an explicit internal action makes the specification clearer and more meaningful.
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A delayed waiting place can also be used alone along a timethread path. It is interpreted in the
same way, i.e, with an internal actiDelay.

Timeouts
We also use timer symbols to exprésse waiting placesAssume a cab is waiting for the

dispatcher’s orders. After a certain period of tifiengOu}, if the cab does not receive anything,
it can decide to continue its way to get a traveler by his own. In figure 42, we use the STDL
waiting place optiofTime to indicate such a time waiting place.

Timethread Cab is Cab =
Trigger (Cin) Cin;
Sync Time (DaskC) (
Result (CgetT) hide TimeOut, SyncTO in
Dispatcher Cab EndTT ( .
; ; TimeOut;
Din Cin SyncTO! TOut;
stop
0
TphoneD DaskC DaskC;
CgetT SyncTO! OK,;
stop
)
|[SyncTO]|
SyncTO ?ResultTO:Tag;
CgetT, stop
) (*L1%)

Figure 43: Example of time waiting-place

We mapTime onto a LOTOS hidden gafemeOut A cab has a choice between waiting an order

or continuing afterTimeOut Both choice lead to the internal eve®yncTO for internal
synchronization with the rest of the path. Note that we use a speciResgtl Q that represents

the state of an instance (or a token). This tag, with a vali®ator OK, can be used later to
constrain alternatives with guards (see 84.5.5 for tags use). Also, time waiting places can be used
as triggering events.

4.5.2 Stubs

Stubsrepresent abstract paths or timethreads. We distinguish two types of stubs:

» Timethread stubghey represent an abstract complete timethread, including a trigerring
event and a resulting event. They however do not include any segment. Timethread
stubs usually interact with other timethreads. In STDL, we define them with the
keywordStub (see 8§84.2.3).
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» Path stubsthey represent a missing or abstract path along a timethread. They are
located directly on the body of a timethread. In STDL, we define them using the
segmentegStub .

As a timethread stub example, tBéspatcherstub of figure 44 provides thBaskC event
necessary fo€abto continue. The triggering event of this stulbig, and nothing else is said

aboutDispatcher

Timethread Cab is Cab =
Cab Trigger (Cin) Cin;
cin Sync  (DaskC) (
Result (CgetT) DaskC;
Dis p atchern EndTT CgetT,; stop
) ) (FL1%)
Din DaskC
CgetT
NameDispatcher is Dispatcher :=
7 S [~ ~ Stub Din;
\DlsGates ) kCabGazl‘es ) Trigger (Din) (
Result (DaskC) DaskC; stop
. EndStub ) (*L1%)
Dispatcher Cab EndTT
whereDisGates is Din, DaskC
andCabGates is Cin, DaskC, CgetT

Figure 44: Example of a timethread stub

The timethread stub is mapped onto a LOTOS process with only one triggering and one resulting
event. As shown in the LARG, they can interact with other timethreads as if they were
timethreads themselves.

Figure 44 presents an example of a timethread were the patBtatthndGoabstracts a more
complex path were the cab driver might check the fuel, start the car, go to work, etc .

Cab
Cin

StartAndGo

CgetT

Timethread Cab is Cab =
Trigger (Cin) Cin;
SegStub  (StartAndGo) (
Result (CgetT) StartAndGo;
EndTT CgetT,;
) (*L17)

stop

Figure 45: Example of a path stub
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The path stub is simply mapped onto a LOTOS gate, in the same way as ordinary actions. We
forbid any interaction on these stubs.

Stubs are mostly used ase visual cues for the moment. Eventually, they will be part of a model
(and a tool) where they will be refined and will represent different levels of abstraction in a
timethread map.

45.3 Abort

The abort operator and its LOTOS interpretation are presented in figure 46. Sudptosm a
timethread that destroySdestroy all instances oPlane wherever they are. In STDL, the option
AbortedOn shows that a timethread can be aborted, and the constarct shows the aborting

event.

Timethread Plane is Plane :=
AbortedOn  (Sdestroy) (
Plane TPflight Trigger (Pready) Pready;
Pready Phangar | Action (TPflight)
Result (Phangar) TPflight;
EndTT Phangar; stop
Storm )
) )
Sbegin -I Sstop [> Sdestroy; stop (*L1%)
Sdestroy
Timethread Storm is Storm :=
[~ N [~ N Trigger (Sbegin) Sbegin
 Placates ) [ StoGates ) Abort  (Sdestroy) (
Result (Sstop) Sdestroy;
EndTT Sstop; stop
Plane Storm
) (*L1%)
wherePlaGates is
Pready, TPflight, Phangar, Sdestroy
andStoGates is
Sbegin, Sdestroy, Sstop

Figure 46: Example of an abort

We map the abort onto the LOTOS disabling operdtoy, (and the aborting evensdestroy
becomes an interaction point between the two timethread. In this way, an abort really kills all
instances of a timethread until a new instance is triggered. This special symbol must therefore be
used with special care.
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4.5.4 Loss

When we want to consider robustness in a timethread map, we oftehasssyambol to express
that a token can be lost along a timethread path. In figure 46, a cab can get lost (forever) after
being asked by the dispatcher to take a traveler.

Timethread Cab is Cab =
Trigger (Cin) Cin;
Cab Action (DaskC) (
. DaskC Loss (Caccident) DaskC;
Cin CgetT Result  (CgetT) (
EndTT hide Caccident in
Caccident; stop
== Caccident 0
— CgetT; stop
)
) (*L17%)

Figure 47: Example of a loss

The STDLLoss segment becomes an alternate path with a hidden gateCgesigleny followed
by stop .

4.5.5 Tags

The following examples deal with the tag mechanism introduced in sections 4.1.3 and 4.1.4. In
figure 46, the timethreatraveleris an adaptation of the timethread presented in figure 18. Here,
we see that if a traveler does not phone a dispatcher, teliagomes equal Busand then the
traveler cannot take a calbcéb to get to the airport.

Traveler M=Bus Tbus
O

Tnew Tairport

TphoneD~o Tcab

Figure 48: Example of tags

The STDL Tag and Guard constructs are used to express assignations to tags and guarded
alternatives (fig. 46).
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Timethread Traveler is Traveler :=
Thnew;
Trigger (Tnew) (
Choice hide SyncOrl in
Tag (M =Bus) (
Or ( let M:Tag = Bus in SyncOrl ! M; stop )
Action (TphoneD) 1l
Tag (M = Cab) TphoneD;
EndChoice ( let M:Tag = Cab in SyncOrl ! M; stop )
)
Action (Tgo) [[SyncOr1]|
SyncOrl ? M:Tag;
Choice Tgo;
Action (Tbus) (
Or hide SyncOr2 in
Guard (M ne Bus) (
Action (Tcab) (Tbus; SyncOr2 ! M; stop )
EndChoice 11
(IM ne Bus]-> Tcab; SyncOr2!M; stop )
Result  (Tairport) )
|[SyncOr2]|
EndTT SyncOr2 ? M:Tag;
Tairport; stop
)
)

Figure 49: Example of tags in STDL and LOTOS

Assignations of values to tags are done via the LOEOSoperator. Mechanisms to transfer tags

on synchronization point$SyncOrlandSyncOr2 are essential to maintain the availability of tags

all along a timethread path. We also interpret STDL guards as LOTOS guards without any
transformation. During the mapping process, the Tggds created:

type Tag is Boolean, NaturalNumber

sorts Tag
opns Bus,
Cab : ->Tag
N : Tag -> Nat (* Tag-to-natural mapping operator *)
_eq_,
_ne_: Tag, Tag -> Bool (* Tag equivalence operators *)
eqns forall X, y: Tag
ofsort Nat
N(Bus) = 0; (* Bus is mapped onto 0 *)
N(Cab) = Succ(N(Bus)); (* Cab is mapped onto 1 *)
ofsort  Bool

x eqy = N(x) eq N(y);
X ney = not(x eq y);
endtype

This abstract data type provides construct@ss(and Cab) and natural-based equivalence
operations€gandne). Boolean operations are also supportet,(and or, xor, implies andiff).
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Tag flow is interpreted in the same way. In figure 46, we modify the previous example in order to
get two separate timethreadsaveler and Transportation The tagM is passed to the second
timethread at the synchronization poliglo and then becomes the t@g

Traveler Transportation
M=Bus Tbus
O Tgo

Tnew Tairport

TphoneD

M=Cabh Mo—s-C Tcab

Figure 50: Example of tag flow

The STDL descriptions and LOTOS mapping are very similar to the previous example, except

that there are two timethreads now synchronizing onTgeThis mechanism is simple and yet
powerful.

Timethread Traveler is Traveler :=
Tnew;
Trigger (Tnew) (
Choice hide SyncOrl in
Tag (M = Bus) (
Or ( let M: Tag = Bus in SyncOrl ! M; stop )
Action (TphoneD) 1l
Tag (M = Cab) TphoneD;
EndChoice ( let M:Tag = Cab in SyncOrl! M; stop )
Result (Tgo ' M) )
|[[SyncOr1]|
EndTT SyncOrl ? M:Tag;
Tgo ! M; stop
)
Timethread Transportation is Transportation :=
Tgo ? C:Tag;
Trigger (Tgo ? C:Tag) (
Choice hide SyncOr2 in
( (
Action (Tbus) (Tbus; SyncOr2 ! C; stop )
Or 0
Guard (C ne Bus) ([C ne Bus] -> Tcab; SyncOr2 ! C; stop )
Action (Tcab)
) |[SyncOr2]|
Result (Tairport) SyncOr2 ? C:Tag;
Tairport; stop
EndTT )

Figure 51: Example of tag flow: STDL and LOTOS

Formalization of Timethreads Using LOTOS 67



From Timethreads to LOTOS

4.6 Mappings

The question that could be raised at this point is whether the process of translating STDL
constructs into LOTOS could be defined precisely. Since showing this completely would require
considerable space, we will limit ourselves to providing a simple mapping table (fig. 52) which
should show that this can be done, without entering into details. Only the rewrite rules that affect
the LOTOS code are enumerated. These mappings are part of the mapping method that is to be
implemented by a compiler.

How to Read this Table
» The left side shows STDL constructs and their context while the right side presents the
corresponding LOTOS code generated.

» Characters ibold indicate code input from the STDL source or code output to the
LOTOS destination.

» Characters initalic ~ represent grammar rules that are copied &®m STDL input
to LOTOS output. No special mappings are necessary for these rules.

* Rules between bracketsRule> ) refer to the grammar rulesROP>is however not a
grammar rule, but it refers to the®_G Path, which usually i$<Seg>} <Result>

» These mappings generate level 1 specifications without recursion. We present and
identify other levels (level 1 with recursion and level 3) for pertinent rules only. Level 2
is not considered in this table.

» Optional rules are betwe¢nand] , and list of rules are betweérand} .
« Comments are betwe¢n and*) .

» Lists of LOTOS gates (such @ateList ) are computed from the list of activities

found in a timethread description. We do not tell how they are computed here.
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Example
As a short example, we can take a look aki#sync> rule:
(* Rule <Async> *) (
Async ( Eventld [ SendTagValues ]) <ROP> Eventld [ SendTagValues 1] ; stop
Il
<ROP>
)
If part of the STDL code (with rules) is
Async (DaskC ! Tagl ! Tag2) <Seg 1> <Seg ,> <Result>
Then the LOTOS code generated is:
(
DaskC ! Tagl ! Tag2 ; stop
Il
<Seg 1> <Seg ,> <Result>
)

An then<Seg;> <Seg ,> and<Result> are replaced with their own corresponding LOTOS
code.

Input STDL Code Output LOTOS Code
(* Rule <Timethread> *)
Timethread TTid Is process TTid [ GateList ]: noexit:=
<StubOrTT> <StubOrTT>
EndTT endproc
(* Rule <Stub> *) <Trigger> ( <Result> )
Stub
<Trigger> or, at a level 3:
<Result>
EndStub <Trigger>
(
<Result>
Il
TTid [ GateList ] (*refersto <Timethread> *)
)
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(* Rule <Aborted> *)
AbortedOn ( Eventld )
[<Internals>] <Trigger> <FirstPath>

hide Eventld in
(

[<Internals>] <Trigger> <FirstPath>

)
[> Eventld ; stop

. .

hide Eventld in

(

[<Internals>] <Trigger> <FirstPath>

)

[> Eventld ;

TTld [ GateList ] (*refersto <Timethread> *)

(* Rule <Constrained> *)
Constrained
[<Internals>] <Trigger> {<Seg>} <Result>

At level 1, it has no impact. At level 3 we find:

hide SyncCS in
[<Internals>]
WP_CS [ GatelList ]
[[SyncCS]|
TTIld Sub [ GateList ]

where

process WP_CS [
<Trigger>
( SyncCS; stop
1l
WP_CS [
endproc

GateList ] : noexit ;=

Gatelist] )

process TTld Sub [ GateList ]: noexit:=
SyncCS;
{<Seg>}
TTid Sub [ GateList ]
endproc

(* Rule <Internal> *)
Internal Identifier { , Identifier }

hide Identifier { , Identifier }in

(* Rule <Trigger> *)
Trigger  ( Triggerld [ RecTagValues ])

Triggerld [ RecTagValues ] ;

(* Rule <FirstPath> *)
<FirstPath>

( {<Seg>} <Result> )
or, atlevel 3

(
{<Seg>} <Result>

Il
TTid [ GateList ]

)

(* Rule <Result> *)
Result (Resultld [ SendTagValues ])

Resultld [ SendTagValues ] ; stop
) .

Resultld [ SendTagValues ]; TTid [ GatelList

]
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(* Rule <Delayed> used with Wait *)
(* Similar approach for Trigger *)
Wait Delayed ( Eventld [ RecTagValues 1) <ROP>

(
hide Delay in
Delay;
Eventld [ RecTagValues 1];
<ROP>

)

(* Rule <Time> used with Wait *)
(* Similar approach for Trigger *)
Wait Time ( Eventld [ RecTagValues 1) <ROP>

(
hide TimeOut, SyncTO in

(
TimeOut;
SyncTO! TOut; stop
1}
Eventld [ RecTagValues ];
SyncTO! OK; stop
)

[[SyncTQ]|
SyncTO ?ResultTO:Tag;
<ROP>
)
(* Rule <Abort> *)
Abort ( Eventld ) Eventld ;
(* Rule <Action> *)
Action  (Actionld ) Actionld
(* Rule <Async> *) (
Async ( Eventld [ SendTagValues 1) <ROP> Eventld [ SendTagValues ] ; stop
Il
<ROP>

)

(* Rule <Sync> *)
Sync ( Eventld [ RecTagValues ])

Eventld [ RecTagValues 1];

(* Rule <Choice> *)

Choice

[<Guard  one>] {<Seg one™}

{ Or [<Guard eyt >] {<Seg  next >} }*
EndChoice
<ROP>

(
hide SyncOR in

( [<Guard one>] {<Seg one>} SyncOR,; stop
{ [ [<Guard next>]{<Sey next>} SyncOR;stop }*
)
[[SyncOR]|
SyncOR;
<ROP>
)

(* Rule <OrFork> *)

OrFork

[<Guard  cont>] Continue

{ Or[<Guard pext >] <Path>}*
EndOrFork
<ROP>

[<Guard cgnt>] <ROP>
{ 0 [<Guard ey >] <Path>}*

(* Rule <Path> *)

Path {<Seg>} <Result> EndPath

{<Seg>} <Result>
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(* Rule <Loop> *)

Loop
<CompSymb>
[Guard comd {<Sed  comp}
<OptSymb>
[Guard opt] {<Seg opt>}
EndLoop
<ROP>

Loop [ GateList ]
(* Closing parenthesis, if any *)
where
process Loop [ GateList ]: noexit :=
{<Seg comp’}
(
[Guard optl {<Seg  opt>}
Loop [ GateList ]
1
[<Guard comp] <ROP>
)

endproc

(* Rule <Loss> *)
Loss ( [<Guard>] Lossld ) <ROP>

(
hide Lossld in

[Guard] Lossld ; stop

I
<ROP>

)

(* Rule <Par> *)
Par
{<Seg one}

(
hide  SyncAND in
( {<Seg one>} SyncAND; stop

{ And{<Seg yex>}}* { l[SyncAnd]l ~ {<Seg nex>} SYncAND;stop }*
EndPar )
<ROP> |[SyncAND]|
SyncAND;
<ROP>
)
(* Rule <AndFork> *) (
AndFork <Path gpe>
<Path  one> { Il <Path Neyt>1}
{ And <Path eyt >} |
EndAndFork <ROP>
<ROP> )
(* Rule <SegStub> *)
SegStub ( SegStubid ) SegStubld

(* Rule <Wait> *)
Wait ( Eventld [ RecTagValues ])

Eventld [ RecTagValues 1];

(* Rule <Tag> *)
Tag ( Tagld = Valueld ) <ROP>

(let Tagld :Tag= Valueld in <ROP3y

(* Rule <Guard> *)
Guard ( GuardExpr ) <ROP>

([ GuardExpr 1-> <ROP>)

Figure 52: Mappings from STDL to LOTOS
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CHAPTER 5 Elements of a Life-CyCIe
Methodology

5.1 Introduction

The previous chapters introduced the LOTOS interpretation method for timethreads. We now
relate this method to real-time and distributed (RTD) systems design. To do so, we first present a
short overview of a timethread-oriented life-cycle methodology (85.1.1). Then, different
techniques related to this methodology are discussed. Section 5.2 presents the complete mapping
procedure of a timethread map onto LOTOS. We usdridneeler Systenmtroduced in section

3.3 to generate two specifications (level 1 and level 3). We shortly discuss a few transformation
techniques in section 5.3. Finally, we present validation techniques in section 5.4. Our
transformation and validation techniques are based on LOTOS techniques and tools for
simulation, testing, and verification.

5.1.1 Overview of a Life-Cycle Methodolgy

We can design RTD systems with timethreads in many different ways. Figure 53 presents an
instance of a partial life-cycle (from requirements to the implementation) oriented towards
timethreads. We used a timethread to show the sequence of activities in this approach.
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Figure 53: Elements of a timethread-oriented life-cycle

In [BuC 93], the authors discussed the timethread-centered design of RTD systems. We relate it
here to the previous figure:

[0 Requirements They are usually expressed in natural language (English). They
describe the functionalities of a system to be built.

[0 Requirements CaptureDifferent scenarios are generated in order to discover the
functionalities to be expressed with timethreads.

# Composition The different timethreads are composed together to form a timethread
map which presents end-to-end causality paths within the system (the big picture). This
process usually involves several timethread transformations. Different techniques to
get a formal specification, to support transformations, and to validate the resulting map
against the requirements (or previous maps) can be used.

0 Components DiscoveryComponents are associated to timethread activities. They can
be given in the requirements or discovered along the design process. The output is
called atimethread-role map A role notation is proposed in [BuC 93], where
architectural components are of three typastiers, workers andteams

[0 Collaboration From the constraints expressed in the causality flow of the timethread-
role map, we derive a more detailsahtrol flowbetween components. In the resulting
collaboration graph containing architectural components and control paths drawn as
arrows, timethreads are no longer needed.
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O Implementation This is the final, working system. Of course, many intermediate steps,
such as the components design and the overall validation, are here left absent between
the collaboration({) and the implementatioril). This is because timethreads are less
useful when we get closer to the implementation, so we concentrate on the early steps
of the life-cycle.

This life-cycle is one among the many possible ones that can use timethreads for RTD system
design. We adopted this one because it concentrates first on the functionalities and the end-to-end
causality paths, and then on the architectural components. In this way, we enhance the usefulness
of timethreads.

In this thesis, we do not attack architectural problems. This is a complex topic that will have to be
discussed in other theses. Therefore, the mapping, transformation and validation techniques of the
current chapter are related to the phases that concern timethreadsasdy §.

5.1.2 Limitations of the Proposed Techniques

The mapping, transformation, and validation techniques we propose in the current chapter are not
unique nor perfect, although they represent a few ideas that could be developed much further.
Most of them are not formally defined and have not been thoroughly tested yet. Proving in any
way that such methods work properly and efficiently is in fact a very complex task for anyone.
Because this is only preliminary work, we present these techniques using simple examples related
to theTraveler System

5.2 Mapping Techniques

Section 3.1 presented our solution to the timethread-map-to-LOTOS mapping.radMeter
Systentan help us illustrate this mapping. The following four subsections use four methods (map
decomposition, LAEG, timethread mapping, and composition) for the generation of a LOTOS
specification corresponding to tieaveler Systertimethread map. Note that we do not develop
further the timethread mapping method introduced in chapter 4. In order to do so, we would have
to write a compiler, and this still represent a large amount of work.
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5.2.1 Map Decomposition

The map decomposition method generates a LARG representing timethreads interactions, and the
SDTL representation of the timethreads included in the map. We also decide here which activities
are to be hidden from a LOTOS viewpoint.

Hiding

The hiding of activities defines the interface of systems and processes. This is usually a designer’s
decision, mostly related to a topology of components in an architecture. However, we propose
here two simple hiding rules for timethread maps which do not have any commitment to a specific

architecture yet. We suppose that a system is representetboxsoa which we superimpose
timethreads:

» Activities within the box (system’s boundaries) are globally hidden.
» Actions along a timethread path are locally hidden. We consider them as internal.

In the Traveler Systengfig. 15), we consider that all activities are internal (globally hidden),
except forTnewandTdestwhich represent the interface of the system. Actions suClyasage

Dready and Tairport are locally hidden within the LOTOS processes corresponding to their
respective timethreads. Note tA&ride andTPflight, although interpreted asction in STDL,

are considered as events because timethreads have to synchronize on these gates. Therefore, we
cannot hide them locally; these actions are part of the interface of their respective timethreads.

These rules could be modified in a tool. LOTOS offers much flexibility w.r.t. gate hiding, and the
LOTOS interpretation method for timethreads is still valid w.r.t. whichever choices are made.

LARG

The first step of the map decomposition method is the generation of a LARG representing the
topology of interacting timethreads. Figure 54 shows the LARG of the traveler system. There are
four processes corresponding to the four timethreads in the map. These processes interact on
different events which are included in the gate sets. We observe that the interface of the system
Traveler_Examplas composed of two event§newand Tdest All other activities are hidden
globally. Due to a lack of space, we do not show all activities in the LARG, but we use italicized
label sets that enumerate them below the diagram.
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Traveler_Example ( Tnew, Tdest )
hide GSHiddenGlobalin |

—
( GSPlane (_GSDisp)
TphoneD ]
Plane Dispatcher

<
TgetonP, ( GSTrav TgetinC, QGSCab
TPflight, TCride,

TgetoffP Traveler TgetoutC Cab

Figure 54: LARG of the Traveler System

The italicized label sets correspond to the following gates:

» GSHiddenGlobalis TphoneD, TgetinC, TCride, TgetoutC, TgetonP,
TPFlight, TgetoffP, Pready, Phangar, Din, DaskC, Dout, Cin, Cout
» GSPlanes Pready, TgetonP, TPFlight, TgetoffP, Phangar

e GSTravis Tnew, TphoneD, TgetinC, TCride, TgetoutC, TgetonP,
TPFlight, TgetoffP, Tdest

e GSDispis Din, TphoneD, DaskC, Dout
e GSCabis Cin, DaskC, TgetinC, TCride, TgetoutC, Cout

The actions locally hidden within timethreads (not shown in the diagram) are:
» Plane No action is hidden.
» Traveler. Tairport
» Dispatcher DlookforC, Dfillstats, Dready
e Cab CgoD, Cgarage
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STDL

The second step consists in describing the paths of individual timethreads in
descriptions are needed, one for each timethread (fig. 55).

STDL. Four

Timethread Traveler is
Internal  Tairport

Trigger (Tnew)
Async  (TphoneD)
Sync (TgetinC)
Action (TCride)
Sync  (TgetoutC)
Action (Tairport)
Sync (TgetonP)
Action (TPflight)
Sync  (TgetoffP)
Result (Tdest)

EndTT

Timethread Dispatcher is
Constrained
Internal DlookforC
Trigger (Din)
Loop
Compulsory
Sync (TphoneD)
Action (DlookforC)
Async (DaskC)
Action (Dfillstats)
Optional
Action (Dready)
EndLoop
Result (Dout)
EndTT

Dfillstats , Dready

Timethread Cab is

Constrained
Internal CgoD, Cgarage
Trigger (Cin)
Loop
Compulsory
Sync (DaskC)
Sync (TgetinC)
Action (TCride)
Sync (TgetoutC)
Optional
Action (CgoD)
EndLoop

Action (Cgarage)
Result (Cout)
EndTT

Timethread Plane is
Trigger (Pready)
Sync (TgetonP)
Action (TPflight)
Sync  (TgetoffP)
Result (Phangar)

EndTT

Figure 55: STDL descriptions of timethreads in the Traveler System

These descriptions follow the rules and examples presented in the previous chapter.

5.2.2 Application of LAEG Method

In order to generate LOTOS structural expressions from LARGSs, we have to analyze the LARG
and transform it into a binary grouped one. A binary grouped LARG allows a direct mapping onto

LOTOS.
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Mapping Techniques

By applying the LARG analysis defined in [Bor 93], we find no structural ambiguity (see §2.3.2).
Therefore, we can use the Grouping algorithm to generate a binary grouped LARG equivalent to

the LARG of figure 54.

Many different groupings can result from this algorithm. Design decisions such as performance

and location of components and/or processes should indicate which grouping is the best.

However, no such metrics have been defined yet. Since we think that we should not be concerned

with such problems at a timethread level, any grouping that preserves the semantics or the original

LARG is valid for execution and validation. Figure 56 shows one possible grouping.

Traveler_Example

( Tnew, Tdest/

hide GSHiddenGlobain

( GSPlane

( GSTrav\

Traveler

TphoneD, TgetinC,

TCride, TgetoutC, TgetonP,

TPflight, TgetoffP

( GSDisp)

Plane

)
—/

/\ (" Gscab)
DaskC

Dispatcher|

a
\_/ Cab

Figure 56: Binary grouped LARG of the Traveler System

In this equivalent LARG, hidden gates (global and local to timethreads) and interfaces have not
been modified in the processes and the original semantics is preserved. Note that an empty gate

set, such as the one linkedR@ne means that the processes involved are interleaving.
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Generation LOTOS Structural Expression

From the binary grouped LARG, we can derive the structural section, baledioursection in

LOTOS, of the LOTOS specification (see [Bor 93] for more details). Note that a grouping is
represented in LOTOS as parenthesis. Specification 3 presents the interfaces of the system and
processes (with hidden activities), and the interacting processes. Line numbers are not part of
specifications; they are used for referencing the code.

1 (* Traveler_Example; Daniel Amyot, March 29, 1994 *)

2 (* Level 1 specification of the Traveler system *)

3

4 specification Traveler_Example[Tnew (* New traveler wants to travel *),
5 Tdest (* Traveler arrives to destination *) ] : noexit
6

7 behaviour (* Structure obtained from the LARG *)

8

9 hide (* hidden interactions GSHiddenGlobal *)
10 TphoneD, (* Traveler phones Dispatcher for a cab *)
11 TgetinC, (* Traveler gets in the cab *)

12 TCride, (* Traveler and cab ride *)

13 TgetoutC, (* Traveler gets out the cab *)

14 TgetonP, (* Traveler gets on the plane *)

15 TPflight, (* Traveler and plane flight *)

16 TgetoffP, (* Traveler gets off the plane *)

17 Din, (* Dispatcher is in the office *)

18 DaskC, (* Dispatcher asks for a cab *)

19 Dout, (* Dispatcher is not in the office *)

20 Cin, (* Taxi driver in the cab *)

21 Cout, (* Taxi driver not in the cab *)

22 Pready, (* Plane is ready *)

23 Phangar (* Plane goes to the hangar *)

24

25 in

26

27 Traveler[Tnew, TphoneD, TgetinC, TCride, TgetoutC, TgetonP, TPflight, TgetoffP, Tdest]
28 |[TphoneD, TgetinC, TCride, TgetoutC, TgetonP, TPflight, TgetoffP]|
29 (

30 Plane[Pready, TgetonP, TPflight, TgetoffP, Phangar]
31 Il

32 (

33 Dispatcher[Din, TphoneD, DaskC, Dout]

34 |[DaskC]|

35 Cabl[Cin, DaskC, TgetinC, TCride, TgetoutC, Cout]
36 )

37 )

38

39  where

40

41  (* Local hidden actions: *)

42 (F e )

43  (* Traveler: Tairport *)

44  (* Plane: *)

45  (* Dispatcher: DlookforC, Dfillstats, Dready *)

46 (* Cab: CgoD, Cgarage *)

47

48  (* Process definitions have to be included here *)
49 endspec (* Specification Traveler_Example *)

Specification 3: Structure obtained from figure 56
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For the specification to be complete, process definitions generated from STDL descriptions have
to be included between lines 47 and 49.

5.2.3 Generation of Behaviour Expressions

To generate the missing processes in specification 3, we generate LOTOS behaviour expressions
from the STDL descriptions of figure 55. We use here the mapping method introduced in section
4.3 to generate four processes corresponding to the four timethreads Tiratkéer System
(specifications 4 to 7).

It must be understood that we dot not, at present time, have a complete algorithm to translate
SDTL descriptions into LOTOS processes. Such an algorithm is the object of further research.
However, by using the principles developed in chapter 4, a manual and intuitive translation

process (similar to the process of obtaining code from a flowchart) is possible. We also believe
that a compiler could automate this translation process. For instance, such compiler would have
to:

* Implement lexical and semantical analysis.

* Manage gate parameters.

» Manage Abstract Data Types (féagy: type definition, message passing, tags
availability, consistency...

» Generate the structure from the interaction part ofL ARG description. This was
already introduced in thHeAEG method.

» Generate LOTOS processes corresponding to single timethreads.

* Manage unique names for additional internal synchronization gates.

» Etc.

By manually translating SDTL to LOTOS, we get the four following processes:

Timethread Traveler

This process is straightforward to generate. We simply have a sequence of activities. The only
difficulty resides in the asynchronous evéphoneD

50 (* Timethread Traveler *)
51 process Traveler[Tnew, TphoneD, TgetinC, TCride, TgetoutC, TgetonP, TPflight, TgetoffP,
52 Tdest] : noexit =
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53 hide Tairport in (* hidden action *)
54 Tnew;

55 (

56 TphoneD; stop (* in-passing interaction *)
57 1Y

58 (

59 TgetinC; (* rest of the path *)

60 TCride;

61 TgetoutC,;

62 Tairport;

63 TgetonP;

64 TPflight;

65 TgetoffP;

66 Tdest; stop

67 )

68 )

69 endproc (* Traveler *)

70

71 (* *)

Specification 4: Process Traveler

Timethread Dispatcher

A sub-proces®ispatcherLoops needed here to simulate the loop part of the timethread. Also,
we have the asynchronous evBraiskCwhich complicates the process generation.

72  (* Timethread Dispatcher *)

73 process Dispatcher[Din, TphoneD, DaskC, Dout] : noexit =
74 (* hidden actions *)

75 hide

76 DlookforC, (* Dispatcher looks for a cab *)

77 Dfillstats, (* Dispatcher fills statistics *)

78 Dready (* Dispatcher is ready for next traveler *)

79 in

80 Din; DispatcherLoop[TphoneD, DlookforC, DaskC, Dfillstats, Dready, Dout]
81 where

82

83 process DispatcherLoop[TphoneD, DlookforC, DaskC, Dfillstats, Dready, Dout]: noexit =
84 (* Compulsory segment *)

85 TphoneD;

86 DlookforC;

87 (

88 DaskC; stop (* in-passing interaction *)

89 If

90 Dfillstats;

91 (

92 (* Optional segment *)

93 Dready; DispatcherLoop[TphoneD,DlookforC, DaskC,Dfillstats, Dready, Dout]
94 0

95 (* Exit Loop *)

96 Dout; stop

97 )

98 )

99 endproc (* DispatcherLoop *)

100 endproc (* Dispatcher *)

101

102 (* )

Specification 5: Process Dispatcher
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Timethread Cab

This process needs a sub-proc&ablLoop to manage the loop part of its corresponding
timethread.

103 (* Timethread Cab *)

104 process Cab|[Cin, DaskC, TgetinC, TCride, TgetoutC, Cout] : noexit =
105 (* hidden actions *)

106 hide

107 CgoD, (* Cab goes to wait the dispatcher *)

108 Cgarage (* Cab goes to the garage *)

109 in

110 Cin; CabLoop[DaskC, TgetinC, TCride, TgetoutC, CgoD, Cgarage, Cout]

111 where

112

113 process CabLoop[DaskC, TgetinC, TCride, TgetoutC, CgoD, Cgarage, Cout] : noexit =
114 (* Compulsory segment *)

115 DaskC;

116 TgetinC;

117 TCride;

118 TgetoutC,;

119 (

120 (* Optional segment *)

121 CgoD; CabLoop[DaskC, TgetinC, TCride, TgetoutC, CgoD, Cgarage, Cout]
122 1l

123 (* Exit Loop *)

124 Cgarage;

125 Cout; stop

126 )

127 endproc (* CabLoop *)

128 endproc (* Cab *)

129

130 (* )

Specification 6: Process Cab
Timethread Plane

This is the easiest process of the four. We simply have a sequence of activities which is interpreted
in the following way:

131 (* Timethread Plane *)

132 process Plane[Pready, TgetonP, TPflight, TgetoffP, Phangar] : noexit =
133 (* no hidden action in the timethread *)

134 Pready;

135 (

136 TgetonP;

137 TPflight;

138 TgetoffP;

139 Phangar; stop

140 )

141 endproc (* Plane *)

Specification 7: Process Plane
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5.2.4 Composition of the Complete Specification

The complete specification is obtained simply by adding the process definitions to the end of the
LOTOS structure generated from the LARG. If a timethread map contains tags, an abstract data
type Tag must also be added. This ADT could be automatically generated from the timethreads

STDL descriptions.

The specification developed here is at a level 1 (84.1.2). Other levels can be used. The
specification in appendix Bltaveler_LevelBis the level 3 interpretation of teaveler System

The modifications brought to the current level 1 specification to transform it to a level 3
specification areitalicized The transformation of processeFaveler and Plane are
straightforward, but processBsspatcherandCab need to have a more complex mechanism to
manage constrained-start timethread in a recursive environment. The structure of this
specification is kept unchanged.

5.3 Transformation Techniques

The purpose of this section is to give a short overview of several simple timethread
transformations (see 82.1.4). The categorization of these transformations, their impact, and their
enumeration is still an ongoing research topic (see [BoL 94]). Nevertheless, we introduce here a
few transformation techniques and their impact on SDTL and LARG descriptions, and on the
resulting LOTOS specification. We also relate these transformations to LOTOS equivalence and
extension relations. Two short examples, which we reuse in chapter 6 (ifel¢presence
system), will help us illustrate a few concepts, techniques, and new issues.

5.3.1 Equivalence Relations

The concept of transformation brings about some notions of relations (equivalence, extension,
reduction, and conformance, as presented in [Led 91 and BSS 86]) because obviously timethreads
that are one transformation of the other must be related in some sense.

Equivalence is by far the most interesting relation. LOTOS proposes many levels of equivalence
between two specifications. These equivalence relations are found in many semantic models,
including Labeled Transition Systen(isTS), the underlying model of LOTOS. Among the most
popular relations related to LTS (see [BoB 87] and [CPT 92]), we find, from the weakest to the
strongest relation:
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» Trace equivalence

» Testing equivalence

» Weak bisimulation equivalence
» Strong bisimulation equivalence
* Equality

Many other equivalence relations (other bisimulations, congruences) have been defined over the
years, but it is not our goal to discuss them here. The point is that they all mestsaveour
equivalencei.e., whether or not two specifications behave in the same way according to some
criteria.

Timethreads do not fundamentally intend to express the behaviour of a system, but its causality
paths. Hence, this difference leads to a concept that we coulgathllequivalencewhich
measures that two timethreads (or perhaps timethread maps) have equivalent causality paths. Patl
equivalence will remain informally defined here, as it is still an open issue. However, in our first
example, we attempt to relate it to LOTOS equivalence relations.

5.3.2 First Example: Splitting a Sequence

One of the simplest timethreads is the sequence. We will use one derived frdnavbler
example: the timethredélaneof figure 57. Its LARG, SDTL, and LOTOS descriptions are also
presented in order to observe the complete impact of a transformation on this sequence.

LARG:
Plane ( GSPlang)
TgetonP TgetoffP
Plane
TPflight
Pready Phangar whereGSPlands: _
Pready, TgetonP, TPflight,
TgetoffP, Phangar
Timethread Plane is Plane :=
Trigger (Pready) Pready;
Path (
Action (TgetonP) TgetonP;
Action (TPflight) TPflight;
Action (TgetoffP) TgetoffP;
Result (Phangar) Phangar; stop
EndPath ) (*L1%)
EndTT

Figure 57: Timethread Plane and its LARG, SDTL, and LOTOS descriptions
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The transformation which interests us here is a timethread cutting followed by the composition of
the two resulting parts. We would like the resulting map (composed of two interacting
timethreads) to be equivalent in some way to the original sequence.

Assume we want to split our sequence in two interacting timethreads between the actions
TgetonP andTPflight . We first cut the timethreaelane into a newPlane and a timethread

Flight . Then, we compose them on a new inteawlonTPLeave to form the map shown in
figure 58.

LARG:
Plane Flight ( GSPlane) GSFlight
TgetonP TgetoffP TPLeave
: Plane
.—Ihl'gﬂﬁwt\w
Pready TPLeave Phangar whereGSPlands: Pready, TgetonP, TPLeave
and GSFlight is:. TPLeave, TPflight, TgetoffP,
Phangar
Timethread Plane is hide TPLeave in
Trigger (Pready) Plane |[TPLeave]| Flight
Path where
Action (TgetonP)
Result (TPLeave) Plane :=
EndPath Pready;
EndTT (
TgetonP;
Timethread Flight is TPLeave; stop
Trigger (TPLeave) ) (*L1%)
Path
Action (TPflight) Flight :=
Action (TgetoffP) TPLeave;
Result (Phangar) (
EndPath TPflight;
EndTT TgetoffP;
Phangar; stop
) (*L17)

Figure 58: Transformation applied to the sequence of fig. 57

Such transformation has a profound impact on the SDTL and LARG descriptions. A new
timethread is created, and so are a new process and a new interaction. The resulting LOTOS code
is also different, although the resulting behaviour is strongly similar to the behaviour of the
original specification.
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With relation to the discussion on equivalence concepts (85.3.1), the first question to ask here is
whether or not this transformation preserves the original path, i.e., whether those two maps are
path equivalenbr not. Although we do not have a formal definition of path equivalence, the maps
of figures 57 and 58 seem equivalent from a timethread viewpoint. A token origineRiegadt

in either map will follow the same path, lead to the same activities in the same order (except for
the new activityTPLeave which is internal and therefore of no concern to us), and then give the
same result without being able to go anywhere else.

Now, to relate this to LOTOS equivalence relations, we show the LTS of each map (level 1
without recursion) in figure 59:

Original Map Transformed Map
Pready Pready
TgetonP TgetonP
TPflight i (TPLeave)
TgetoffP TPflight
Phangar TgetoffP

Phangar

Figure 59: LTSs of maps of fig. 57 and fig. 58

In this case we observe a weak bisimulation equivalence between the two maps, i.e., the two
systems behave in the same way to any external observer. This is known as process splitting in
[CPT 92] and [Lan 90]. However, if we have a level 1 specification with recyraiencannot

relate the resulting LTSs to any existing LOTOS equivalence relation. The reason is that in the
second map, as soon as TiRteave is reached ifPlane , a new token can be placedrready ,

while the timethrea@lane of the first map needs to wait urihangar is reached before a new

token is allowed to be placed @neady . Therefore, an accumulation of tokens may occur on
TPflight  in the second map while this was impossible in the first map. The existing equivalence
relations based on behaviour do not cover such concepts yet. Also, if we consider level 2 and 3
specifications, LTSs become more complex and other problems may arise.

This timethread transformation leads to a reorganization of SDTL and LARG descriptions,
resulting in a path equivalent LOTOS specification. Of course, dL@ENDS path equivalenge

to be defined according to our needs, but this is still a complex research issue. A tool could
manage this type of technique by allowing transformations which are “assumed” to preserve path
equivalence. It could also generate automatically the new SDTL and LARG descriptions.
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5.3.3 Second Example: Extending a Sequence

The second example is concerned with other types of relation ealledsionsThese relations

do not preserve equivalence between an original specification and a transformed one. They are
related to functionality extension, as presented in [CPT 92]. In timethread terms, we say that we
add alternative paths to a timethread.

Assume the shorfraveler sequence presented in figure 60, where we also find the SDTL and
LOTOS descriptions. The LARG is not given since the extension will not affect it.

Traveler
TCride
Tnew Tdest
Timethread Traveler is Traveler :=
Trigger (Tnew) Tnew;
Path (
Action (TCride) TCride;
Result (Tdest) Tdest; stop
EndPath ) (*L1%)
EndTT

Figure 60: Timethread Traveler and its SDTL and LOTOS descriptions

Now, suppose we want to extend the system by allowing the traveler to either take the cab, as
usual, or the busTBusRide ). To do so, we use a OR-Fork/OR-Join (SDJMloice construct)

where one branch has actiorCride and the other branch haeBusRide . After the
transformation, we get the timethread, SDTL description, and LOTOS process shown in
figure 61.
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TCride
Tnew Tdest
Timethread Traveler is Traveler :=
Trigger (Tnew) Tnew;
Path (
Choice hide SyncOr in
Action (TBusRide) (
Or TBusRide;
Action (TCride) SyncOr; stop
EndChoice 0
Result (Tdest) TCride;
EndPath SyncOr; stop
EndTT )
|[SyncOr]|
SyncOr;
Tdest; stop
) (*L17)

Figure 61: Extension applied to the sequence of fig. 60

The resulting SDTL description sees its previous actionde replaced with a choice between
TBusRide andTCride . The gaterBusRide is also obviously added to the LARG interface (not
shown here). Now, can we say that the resulting LOTOS process is related in any way to the
original one? To answer this question, we can develop their LTSs (fig. 62).

Original Map Transformed Map
Tnew Tnew
TCride TBusRide TCride
Tdest i (SyncOr) i (SyncOr)
Tdest Tdest

Figure 62: LTSs of processes of fig. 60 and fig. 61

At a level 1 (without recursion), such transformation leads a specification whkiehdsthe
original specification. The LOTOS extension relatext is formally defined in [BSS 87 and
Led 91]. Intuitively,S1extS2means thablhas more traces (due to additional paths) Szbut

it deadlocks less often in an environment whose traces are limited to tHf88eTberefore, this
timethread transformation can be related to a LOTOS relation again.
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Most timethread transformations could be related in one way or another to LOTOS conformance,
equivalence, extension, and reduction relations. Although relations such as path equivalence have
to be defined, we think that many LOTOS CPTs and relations could be adapted in order to define
Timethread Correctness Preserving Transformati@@GPTs). These TCPTs could form the basis

of transformations allowed in a timethread design tool. This is however an open issue we will not
discuss further in this thesis.

5.4 Validation Techniques

Techniques to validate a design against given requirements are desirable. In the LOTOS world,
such validation techniques have many aspects, and many tools exist to apply them. In the
timethreads world, validation is still a research topic. What is to be validated and how this should
be done is an open issue. However, we think we can apply some of the LOTOS validation
techniques to a timethread map to get meaningful results.

Different aspects of a timethread map and its corresponding LOTOS specification can be
analyzed or validated:

* We canplay the design to see whether we captured all the pertinent information in the
requirements. This can be done by executing the specification.

* We can discover concurrency, non-determinism, collision, and race problems that
would have to be solved at a later stage when the design gets closer to the architecture.

» The executability of LOTOS can help us understand problems related to the ordering of
events and to interactions between timethreads.

» Properties such as the absence of unwanted deadlocks can be verified in a system’s
design.

» We can verify whether or not a refined design conforms to a previous design, in order
not to introduce or remove functionalities inadvertently, or to check consistency
between successive designs.

» Test cases derived from previous designs can be used to validate new designs.

This enumeration is not exhaustive. Other validation aspects exist, but we consider the ones
mentioned to be among the most important ones for LOTOS. In a multi-formalism approach,
other validation aspects, such as performance requirements, could be added. However, we would
need other formalisms suitable for these new aspects (e.g., Petri nets) and corresponding
interpretation methods.
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We consider that LOTOS specifications generated from timethread maps are not full behaviour
specifications. In a complefigaveler Systemmit is unlikely that a cab or a plane will accept one

and only one traveler at a time. This illustrates a major difference betwgah apecification

and abehaviour specificatian/Ve do not consider every detail at the timethread abstraction level.
Behaviour issues are usually solved later at the architecture level (not discussed in this thesis), and
then the validation strategies are changed accordingly.

A timethread is a scenario or a path description. It is not intended to be a simulation or a
prediction model. However, it is still useful to simulate the path behaviour described by a
timethread. We can test, for example, that a sequence of ealises will cause the effed; and

the rest of the timethread path.

In order to validate a timethread map, LOTOS provides us interesting facilities such as:

» The capacity to focus on single timethreads or on a topology of interacting timethreads,

» The use of different levels of specifications,

* The availability of three major validation techniques: simulation, testing and
verification.

We must recall here that what we really validate is the LOTOS specification, which is a projection
of a timethread map. Because of the semantic gap between timethreads and LOTOS, we cannot
validate every aspect of a timethread map.

Diagnostics are here based onamesin the map. We preserve the identifiers of timethreads
(processes), activities (gates), tags (value identifiers), and values (ADT) in the mapping
procedure. Therefore, a problem found using LOTOS validation tools can be related directly to its
corresponding problem in the timethread map, simply because the names correspond.

5.4.1 Interactive Simulation

We consider the specificatiofraveler Examplgspec. 3) to be useful mostly because of its
executability. Simulating such a LOTOS specification helps the designer to ensure that the
timethread map corresponds to the functionality defined in the requirements, or to detect possible
problems which will have to be solved during later stages of the design. An interactive simulation
can effectively lead to some questions that the designer will have to answer at a later stage.
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Many tools ELUDO, LOLA, SMILE and CAESAR allow the simulation of LOTOS
specifications. During our research, we concentrated okLthd®O-XELUDOandLOLA tools.
The next three examples present the usefulness of the simulation in early stages of the design

process.

Simulation of a Complete Specification Using XELUDO

=) HISTORY !

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
zzzzzzzzzzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzzzzzzzzzzzzzzz
\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\

zzzzzzzzzzzzzzzzzzzzzzzzzzzz

hidden Pready;

hidden Cin;

hidden Din;

hidden TphoneD;

hidden Dlookfort; |

hidden Daski;

hidden Dfillstats; |

hidden Tgetoutc;l

hidden Tairpnrt;|

hidden TgetonP;

hidden TPflight; |

L{hidden TgetoffE; |

hidden Phangar;

Figure 63: Simulation of Traveler_Example using XELUDO
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We can simulate a simple scenario in a level 1 complete specification by using the tool XELUDO,
an X-Windows based version of ELUDO. Figure 63 presents the history window of a
Traveler_Examplesimulation. This trace shows that a traveler got to her destination, and then no
more actions are possible (LOTOS deadlock). This level 1 specification leads to a deadlock
because there is no recursion. Simulation helps designers validate the ordering of activities and
their availability.

Simulation of a Complete Specification Using LOLA

LOLA also provides means to simulate specifications. In this example, we executed the level 3
specificationTraveler_Level3o show that we can use any level of specification, even mixed-
level specifications. The trace of figure 64 raises a few questions that cannot be raised using a
level 1 specification.

i3 € din )
i3 {* synccs *)

i3 ¢* tphoned =)
i3 ¢* dlookforc =
i; ¢ dfillstats =)
i3 (% dready =)

i3 ¢* tphoned =)
iz dlookforc =
i3 €% cin *)

i3 €* synccs *)
i; ¢* daskc =

i3 ¢* tgetinc =)
i3 €% tocride =)
i3 ¢* tgetoutc =)
i3 €% cgod =)

i; (% daskc =

i; ¢* tgetinc =)

(il el Lt Tt T T T T e T T T e T
B3 P =] b bt el PTG i e b i e i P b G
el el b et b el e el e e el e el e ] el e el

rrrrrrerrrrerrrrrrnrnl
=
~
*

<n¥.Undo.Menu Refused, Sync. . Print . Trace . Exit. 7>

CnLOLA > _

Figure 64: Simulation of Traveler_Level3 using LOLA
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From this simulation, the designer can see that the dispatcher, after receiving two requests from
two travelers tphoned ), finally finds a taxi daskc ). The designer could wonder what was his

initial intention here: how many requests can the dispatcher accumulate before he tells the
travelers he cannot take any more requests? Is there any means for the dispatcher to tell the next
travelers that they would have to call back later, when the system allows it? In the first loop of
timethreadDispatcher is it normal that the dispatcher fills his statistidfill§tats ) without

having any news from the first taxi? Also, following the semantics we gave to the timethreads, a
taxi can only take one traveler. Is that what we really intended? Should we specify a maximum
number of travelers (say 3) that a taxi can take in? Does the same thing happen with travelers and
planes? All these questions could be raised by executing a simple sequence from a timethread
diagram. These issues would have to be solved in some way during the later stages of the design
process (at the architecture level).

Simulation of a Single Process Using ELUDO

Most tools allow the simulation of single processes and compositions of processes. This
functionality provides the opportunity to simulate single timethreads and topologies of interacting
timethreads. In the next example (fig. 65), we use ELUDO to simulate a single pioesssef

level 3).

L prgv E
ACTIONS
chonel; at lineds) 53
TgetinC: at lineiz) 56
Trew: at lined{s} 51
HISTORY
Tliaueler[Tnew, Tphonel, TgetinC,. TCride. TgetoutC. TgetonP,. TPFlight, TgetoffP.
Trew 3
L TeetinC:
LTCride;
L Teetoutl:
Lhidden Tairport:
L TeetonP:
LTPflight.s
L TeetoffP:
L Tdestx
L TphoneD:
AacTIoNs B PFETrexecute,. <vriew, <hristory. <{sela. <groal. <{qduit. <|:l>pt..i.|:|r|'.s7_r

Figure 65: Simulation of process Traveler using ELUDO
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We observe (fig. 65) that the activifyphoneDoccurred aftefdest This means the dispatcher
received the phone call after the traveler arrived to her destination! What is misleading here is the
absence of two interacting timethreabBsspatcherandCab. They would have constrained (refer

to figure 15) the everfphoneDto occur befordgetinG and thus beforédest

This example shows that the simulation of single timethreads, although useful in some cases, is
less interesting than the execution of complete timethread maps because the context (other
interacting timethreads) is absent. This sometimes results in traces difficult to understand.
However, once this limitation is understood, the traces can become meaningful.

5.4.2 Testing

Different testing strategies based on LOTOS can be used to validate a timethread map (see
[Led 91] and [Mye 79] for further development). In our case, we suggest some slasigih
testingwhere we execute a high-level specification (or play the design) with the intent of finding
errors or problems. The different executions are cédlsdcases'A good test case is one that has

a high probability of detecting an as-yet undiscovered error” [Mye 79].

Although we will use design testing later on to test conformance between original and
transformed specifications, this must not be consideredrdsrmance testingrhe latter aims at
testing if an implementation conforms to a specification. This topic is not covered in this thesis.

One way to apply a design testing strategy in LOTOS is the compositiaoceptanceand
rejectiontest cases with our non-deterministic specifications.

An acceptance test represents a valid scenario that the timethread map and its corresponding
LOTOS specification have to be able to execute (without deadlock). The map and its specification
must not be able to execute rejection tests, which are invalid scenarios. These test cases can be
derived from the requirements or from previous timethread maps and specifications.

There are many similarities between this technique and another onegrajldabx testingused

to test design representations [Pro 92]. We already have a design represented as a precise
sequence of inputs, decisions, and actions in a testable form, in this case a timethread map and its
LOTOS specification. We also use a black-box testing technique (LOTOS testing based on
acceptance and rejection). Some elements are however missing in our case in order to have a
complete grey-box testing technique:
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* We need the definition of a set of test attributes for timethread maps;
* We need ways to measure design coverage;
» We need heuristics for the generation of test cases.

These three missing elements are research issues. Once the test cases are available, we can use
different LOTOS validation tools (such as LOLA or ELUDO).

Testing of a Level 1 Specification Using LOLA

For ourTraveler Systemwe can use the map of figure 14 to derive one acceptance test case and
one rejection test case (spec. 8). We assume here we will apply them to the level 1 specification
Traveler_ExampleThe testAcceptTestl expresses that the system has to accept the a new
traveler Tnew) and lead her to the destinatiordést ). This is required from the use case of
figure 14 RejectTestl  tests that, at a level 1, a traveler gets to her destination before the system
allows another new traveler.

(* Accept Test Case for level 1 *)

process AcceptTestl[Tnew, Tdest, Success] : noexit =
Tnew;

Tdest;

Success; stop

endproc (* AcceptTestl *)

* *)

(* Reject Test Case for level 1 *)
process RejectTestl[Tnew, Tdest, Success] : noexit =
Tnew;
(* There should not be a second Thew possible *)
Tnew;
Tdest;
Success; stop
endproc (* RejectTestl *)

Specification 8: Test cases for level 1 Traveler System

If we had developed intermediate designs and maps, we could have used them to derive a more
complex test suite.

In LOTOS, test cases are represented as processes. They are then composed (synchronized) with
the system. An acceptance test passes if the composition reaches the end of the test case (here, we
use the gat&uccess A rejection test passes if the composition does not reach the end of the test
case.
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LOLA implements this black box testing methodology. It follows the definitionTesting
Equivalenceof de Nicola and Hennessy, and it outputs one of the three following results:

* MUST PASS(Must test Given a specificatioh and a tesT, T is a_mustest ofL if it
terminates for every execution of the system when applied to

* MAY PASS(May tes}: Given a specificatioh and a tesT, T is a_maytest ofL if it
terminates for at least one execution of the system when applied to

* REJECT(Reject tegt Test which is neither magr must i.e., no execution terminates
successfully.

To compose these test cases with the specification, we use the LOLA coresiBdpand
TestExpand makes a complete state exploration and calculates the type of response (must, may ol
reject). It needs three arguments: the depth of search in the labeled transition system (-1 means nc
limit), the success event, and the test process. The acceptance test gives the following result:

lola> TestExpand -1 Success AcceptTestl
Composing behaviour and test :

Analysed states =12
Generated transitions = 15
Duplicated states =0
Deadlocks =0

Process Test = accepttestl
Test result = MUST PASS.

successes =4
stops =0

exits = 0
cuts by depth =0

Our acceptance test case is a must test. Therefore, our timethread map is consistent (test
equivalent) with the use case of section 3.3.1.

We can also compose our reject test case with the specification. LOLA outputs:

lola> TestExpand -1 Success RejectTestl
Composing behaviour and test :

Analysed states =8
Generated transitions = 7
Duplicated states =0
Deadlocks =4

Process Test = rejecttestl
Test result = REJECT.
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successes =0
stops =4
exits =0

cuts by depth =0

All possible traces led to deadlocks, and $wecessevent could not have been reached. The
rejection test was rejected as it was supposed to be. Therefore, our specification behaved properly.

g of | ficat .

Another test suite that assesses what the level 3 specification of our system must accept and reject
is presented in specification 9.

(* Accept Test Cases for level 3 *)

process AcceptTest1l[Tnew, Tdest, Success] : noexit =
Tnew;
Tdest;
Success; stop

endproc (* AcceptTestl *)

process AcceptTest2[Tnew, Tdest, Success] : noexit =
Tnew;

(* This time, because of the recursion, a second *)

(* traveler is allowed *)

Tnew;

Tdest;

Success; stop

endproc (* AcceptTestl *)

(* *)

(* Reject Test Case for level 3 *)
process RejectTest1l[Tnew, Tdest, Success] : noexit =
Tnew;
Tdest;

(* A traveler cannot get to her destination *)
(* before leaving! *)

Tdest;

Success; stop

endproc (* RejectTestl *)

Specification 9: Test cases for level 3 Traveler System

TestExpand performs a state exploration of the composition of the system under test with the test
case. If the number of states is infinite (this happens with level 3 specifications), then we cannot
use this command. For this reason, LOLA provides another com@aedExpaniithat executes
random traces of the composition. OneExpand has four important arguments: the depth or search,
the success event, the test process, and the seed (used for random number generation).
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Because OneExpand does not explore all possible states, we have to apply our test cases man
times, using different seeds, to insure the validity of the result. In our example, we limited to five
the number of times each of our three tests is executed. Different seeds (4, 7, 11, 13, 17) were
used.

The results of the three following sets of tests are cumulated in figure 66. Note that we limited to
100 events the depth of the search of the rejection test case. For a result from a rejection test to be
meaningful, we have to be sure the depth is high enough.

lola> OneExpand -1 Success AcceptTestl Seed
lola> OneExpand -1 Success AcceptTest2 Seed
lola> OneExpand 100 Success RejectTestl Seed

Test case Seed Result Transitiong
generated
AcceptTestl 4 SUCCESSFUL EXECUTION 48
AcceptTestl 7 SUCCESSFUL EXECUTION 37
AcceptTestl 11 SUCCESSFUL EXECUTION 54
AcceptTestl 13 SUCCESSFUL EXECUTION 65
AcceptTestl 17 SUCCESSFUL EXECUTION 57
AcceptTest2 4 SUCCESSFUL EXECUTION 44
AcceptTest2 7 SUCCESSFUL EXECUTION 82
AcceptTest2 11 SUCCESSFUL EXECUTION 55
AcceptTest2 13 SUCCESSFUL EXECUTION 82
AcceptTestl 17 SUCCESSFUL EXECUTION 82
RejectTestl 4 REJECTED EXECUTION 100
RejectTestl 7 REJECTED EXECUTION 100
RejectTestl 11 REJECTED EXECUTION 100
RejectTestl 13 REJECTED EXECUTION 100
RejectTestl 17 REJECTED EXECUTION 100

Figure 66: Results of testing (Traveler_Level3) using LOLA

From these results, we can conclude with a certain degree of confidence that the two acceptance
tests aremusttests, and the rejection test isregect test. Therefore, the designer has more
confidence in his system to be valid w.r.t. the use case and the requirements.
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Many more interesting and useful test cases could be generated for a specification where all
activities are observable. When we make an activity internal or hidden in LOTOS, we cannot test
it afterwards by using traditional LOTOS black-box testing because the test case cannot
synchronize on the corresponding gate. By making everything visible, we obtain a grey box in
which all cause-effect relations can be tested. This feature is desirable for design testing and grey-
box testing [Pro 92], and our method allows it.

5.4.3 Verification

This third validation technique aims at demonstrating consistency between two designs. It also
helps proving desirable properties of a system such as the absence of deadlock. Verification is
usually very costly (and sometimes impossible) because it implies exhaustive search in a huge
number of system states. ELUDO and LOLA are not powerful verification tools, but we can still
use them to verify a few properties.

Verification of a Level 1 Specification Using LOLA

The best verification feature of LOLA is the commaFestExpandoresented in the previous
section. TestExpand verifies the testing equivalence between two processes (or two designs).
Other equivalence relations (bisimulation, trace equivalence...) exist and can be verified with
other tools (such aSquigglg. Although what we really need is a definitionpaith equivalence

testing equivalence fills most of needs of timethread maps verification.

Another interesting feature of LOLA is the expansion funcik&pand This command calculates

the EFSM (Extended Finite State Machine) of a behaviour or a specification. This EFSM can be
used as an underlying model for model checking, with other tools. It can also help in finding
deadlocks in a specification. The following example shows that the EFSM of the level 1
specificationTraveler_Exampléas 14 deadlocks. The latter are due here to the fact that we deal
with a specification without recursion. In other words, such deadlocks were explicitely included
in the specificationsfop ) by the designer. If they occur in a recursive specification (as in a non-
stopping RTD system), then this indicates a design problem.

lola> Expand -1

Analysed states =221
Generated transitions = 539
Duplicated states =319
Deadlocks =14
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The automaton obtained can be normally checked to verify that the behaviour is as desired in all
cases. In practice, the goal can be daunting, as it can be seen from this example, where a very
large number of states and transitions were obtained from a small specification. A recursive
specification may also lead to an infinite number of states. In that case, the EFSM is truncated and
the specification is partially verified only.

Verification of Process Cab Using ELUDO

ELUDO includes a tool calle8BELA which performs the symbolic expansion of a process or a
specification. The output is a tree-like structure that shows all possible traces of events. This tree

can help the designer finding undesirable sequences of events. This process is very similar to
LOLA's expansion.

An example of symbolic tree output from SELA is shown in figure 67. The prGadsdevel 1)

has been expanded and all possible sequences are presented in the tree. Undesirable deadlocks c
be found in this way.

= Telix HH
SELA
Current behaviour...
SYMBOLIC TREE
bhA #* 1 Cin line¢s>: [188]
bhl # | 1 DaskC line(s>: [113]
bh2 # | | 1 TgetinC line{s)>: [114]
bh3 #= | | | 1 TCride line¢s>: [115]
bhd #= | | | | 1 TgetoutC line(s>: [116]
bht #*= | | |1 1 I 1 i ¢(hiding: CgoD line¢s>: [1191) == again bhl
# | 1 11 12 1i thiding: Cgarage linet¢s)>: [1221>
bhe #*= | | 1 1 I | 1 Cout lined(s>: [123]1 DEADLOCK
S ELA : “RET-grzela, <oXptions,. <srave, <gruit, <ARROW>move. <TAB>change w
Alt—Z for Help | UT182 | 57688 -N81 FDX | | | | Online BBA:39

Figure 67: Verification of process Cab using SELA
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Other Verification Methods

Large symbolic expansion graphs such as those obtained from LOLA or SELA can be inspected
automatically by using a procedure callewdel-checkingThe graph is transformed into a
Kripke structure on which we perform model checking. Properties to be checked can be expressed
using a temporal logic formuld.MC [Ghr 92] is a LOTOS model checker that can verify
properties expressed in the temporal logic language CTL. The tool CAESAR also provides a
model checker (calledLDEBARAN.

Other verification tools using goal-oriented execution, trace theory, or equivalence relations could
be integrated into a timethreads-LOTOS verification environment.

102 Formalization of Timethreads Using LOTOS



CHAPTER 6 Case StudyTelepresence
A Multimedia System Design
Example

6.1 Introduction

“Telepresence is a set of computer, audio-video and telecommunications technologies, which are
carefully integrated to enable people to work together using technology as an intermediary.
Properly deployed, telepresence conveys in users the feeling of being present in each other's
offices from remote distances. More than simple video-conferencing, telepresence attempts to
duplicate the subtle social protocols, degrees of confidentiality, intimacy and trust in everyday
relationships and interactions when remote persons are brought toggtan 93].

Telepresenceepresents a very complete multimedia system. The complexity of such real-time
and distributed system makes its design a true challenge. In this chapter, we will use our
techniques based on the Timethread notation and the formal language LOTOS to help specifying,
refining, and validating a first design.

A designed system must be reliable and reusable as much as possible. This case study mostly
deals with reliability concerns. Reusability, expressed in terms of role architectures, frameworks,
class hierarchies, and objects [Buh 93] will not be covered in order to simplify the problem.
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The Telepresencaystem presented in section 6.2 is designed from a user-centered viewpoint.
Many assumptions are made to simplify its complexity. This system is neither a complete
telepresence system nor an existing one. We only use ideas from the telepresence project to get
interesting and challenging scenarios allowing us to use our approach. In section 6.3, the LOTOS
interpretation method for timethreads is applied to the example in order to get the first path
specification from the first timethread map. Section 6.4 presents the factoring transformation
leading to a second timethread map and its corresponding LOTOS specification. We also
overview the validation and consistency of the two specifications.

6.2 The Telepresence System

6.2.1 General Telepresence System

A completeTelepresencsystem might offer many different types of services to simulate virtual
presence and other facilities:

» Electronic mail.

» \oiceMail (using a computer mail program or using the phone).

* VideoMail.

* Visual contact.

» Teleconference.

» Data exchange.

» Desk Automated Network (for instance, a group of people working on the same

document), where everything is integrated/distributed.
» Receptionist (Virtual Automated Attendant), etc.

Many hardware and software components are usually required to provide such services:
» Users’ workstations (PC, Macintosh, Sun...) with a lot of RAM,
» Color monitors (possibly more than one per user),
* Microphones (e.g., a small PZM microphone),
» Speakers (with volume control),
» Color camera unit (usually small, possibly more than one per user),
* Phones,
» Different high-speed networks,
» Servers’ workstations (Sun...),
» Audio/Video switching devices,
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* VCRs,

» Codecs (Compressors/Decompressors, Picturetel units),

* Integrated Interactive Intermedia Facility (IlIF Server, software) [Mil 92],
» Telepresence Communication Server (TCS, software) [Man 93],

» \oice Server (software) [Jac 93], etc.

We can have many different views of a telepresence system, and we will concentrate on only one
of them. A user-centered design is a viewpoint where the functions provided by the system need
to be those functions that will fulfill the communication needs of the user. This design can be
achieved by specifying, for example, the user interfabiee ‘design of the user interface serves as

the driving thrust for the development focus of Telepresence "td&fam 93]. We use this
approach in order to get a first LOTOS “prototype” allowing us to play the design (by executing
the specification) and validate it against the requirements.

The use of many simplification assumptions will help us in concentrating with the real problem,

without committing to detailed solutions too soon. We do not aim at designing a complete and real
Telepresencsystem in this chapter. A simple system is complex enough to illustrate the method

and design issues.

6.2.2 Informal Description and General Assumptions

This case study emphasizes on ¥igial contact servigewhich can be considered as a special
application of the teleconferencing capabilities of a completepresenceystem. To simplify
further, we will constrain ouffelepresencesystem, from a user’s perspective, to the basic
components (names and icons) presented in figure 68:

o @ 7

a) User b) Computer  c¢) Monitor d) Camera e€) Speakerf) Microphone

Figure 68: Basic components

In order to describe the functionalities of the system, two concepts have to be introduced:
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Initiator-Responder concepThe user who initiates a connection is calleditiigator, and the
one who is being contacted is tlesponder The system must provide the correct functionalities
to satisfy a user who can be in any (or both) of these roles.

Door concept A door is a means to protect a user’s privacy. An initiator can look into a
responder’s office only when the responder’s door is open. A responder can open or close his/her
door at anytime. This is a simplified definition of the door concept introduced in the real
telepresence project [Man 93], where a complex protocol is needed to provide flexibility in the
privacy management. In olielepresenceystem however, a user will not be allowed to lock the
door, to glance at one’s door, to select users for whom the door is always open or closed, etc.

Thevisual contact servictunctionalities can be informally described, from a user’s viewpoint, in
the following way:

Initiator : During the connection phase, an initiator sen@»atactrequest to a responder, then
he/she waits for &eporttelling whether the access was successful or denied, or if a timeout
occurred (when the request is lost somewhere in the system). If the contact is established, the
transmission phase starts and the initiator receives images on his/her monitor and his/her speakers
play the responder’s voice. The initiator CEerminatethe transmission (and the connection) at

any time after the transmission has started, and then he/she is allsddd contact another
responder. An initiator can contact only one responder at a time.

Responder At any time, a responder c@penor Closehis/her door to allow or deny access to
initiators’ connection requests. A signal appears on the responder’s monitor as long as an initiator
is looking into the responder’s office. During this transmission phase, the camera and the
microphone record images and voice to be transmitted.

Any user can be initiator and/or responder. Also, a responder can contact a third user, not
necessarily the one looking in his/her office. There is no constraint on the number of initiators
who can look into a specific responder’s office.

In section 6.3, we will describe thielepresencesystem as two different entities: an initiator
system under design (SUD) and a responder SUD. Later, the two systems will be merged into one
complete system in order to allow peer-to-peer relationship, i.e., a complete gysi@mbe

initiator and a complete systeB responder, and vice-versa. This approach is similar to the
Message Transfer Ungéxample developed in [Buh 93].
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Although we are able to describe a few properties and functionalities of the system, we do not
intend to formulate a detailed specification, neither with timethreads nor with LOTOS. We will
get a “projection” of the end-to-end paths onto LOTOS behaviour and processes, and we will
have to get as much information as possible from these specifications and diagrams.

6.3 The First Timethread Map

The approach consists of a timethread-centered design, leading to a timethread map interpreted as
a LOTOS specification for simulation, refinement, and validation. We will try to think of this
method as a CAD tool, i.e., with a timethread graphical editor, automated translation of a
timethread map into LOTOS, automated support of transformations, and other functionalities for
the validatiodt. Of course, no such integrated tool exists yet, but the design process needs this
type of tool, and therefore we think we should get used to this way of thinking.

6.3.1 General View of the Approach

We use here an approach based mostly on the timethread-centered design and on the LOTOS
interpretation method for timethreads. We intend to:
» Define the basic components (as few as possible, only pertinent ones).
» Build use cases, using timethreads, for the description of individual scenarios.
 Combine and complete those timethreads to form end-to-end paths in our first
timethread map.
» Perform the LOTOS interpretation method for timethreads in order to get the first
specification.
» Use the specification as a means to “play the pictures”, for partial validation against the
requirements.

The first step was already covered in section 6.2.2 where the basic components were identified
(see figure 68).

1. A specification is generally validated against previous specifications or the requirements.
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6.3.2 Basic Scenarios

We present here a few steps involved in the production of a first timethread map. Specific
scenarios are investigated and some design decisions must be taken. This is one of the many
possible ways leading to timethreads discovery, and the pertinence of the resulting map is outside
the scope of this thesis. However, we try to get a map as meaningful and realistic as possible for
the sake of the case study.

The following scenarios are grouped into three categories, more or less expressed in the
requirements: connection phase, transmission phase, and door management.

Connection Phase
The timethread in figure 69a shows a very simple use case [Jac 93] of the initiator’s connection

phase. This high-level scenario shows a sequence of interactions between the user in an initiator
role and thélelepresencsystem. When &€ontactrequest is sent, the resulting event Begport

Such use case, although very simple, is useful in early stages of the design process (especially
when we start from a “blank sheet”) to understand simple cause-to-effect relationships without
committing to any internal detail. Simple test cases can also be derived from such descriptions.
However, no more use cases will be shown in this chapter for space reasons.

“An initiator can contact only one responder at a time” means that a user cannot initiate more than
one telepresence session at the same time. We therefore have to constrain the number of instances
of theConnectiortimethread during the connection phase. This is expressed in figure 69b, where
the Nextevent indicates that a new connection can be established. Note that we added an AND-
Fork to indicate that the initiator can look at the report whenever he/she wants.

The requirements indicate three types of rep&@tgecessDenied andTimeOut We can use tags
to tell the initiator which internal path has been taken (fig. 69c). The addition of these alternate
paths is an instance of extension, as introduced in section 5.3.3.
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O
Rpt=Denied
--—0 O

Rpt=TimeOut

Repor Repor
Next Next
Contact Contact
Connection Connection
(b) (c)

Figure 69: Connection phase

We know that, during the connection phase, the responder’s door has to be checked. The
timethreadKnocking (fig. 70a) shows one possible sequence. Also, the resulting event (here
DoorCheckelhas to report the accessibility of the responder (tag v&loesssor Denied. We

use a tag mechanism (fig. 70b) to manage the flow of information from timetknesttingto

the timethread to which it will somehow be connected (in occurr€uamectiol. Note that this
timethread and its activities are internal to the system, i.e., hidden from the users.

DoorChecked

Rep=Access

Knock Knock
Knocking Knocking
(@) (b)
-0 Rep=Access
Repor

Contact

Connection

(Y
Knock DoorChecked

Knocking
1

(€)

Figure 70: Connection phase and Knocking sequence

KnockLost
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Figure 69c presents the complete connection phase, which is a composition of the two timethreads
already developed. L£ontactrequest will cause (in passing)Kaock event in theKnocking
timethread. The result, returneddoorCheckedwill cause a time waiting place to stop waiting,
without a timeout, and the tdgespwill be available to the guardsl to G3 (see §86.3.3 for a
description of the guards). If thenockingrequest is lost, then a timeout will occur and the
internal TimeOut(time waiting place) will be performed, causiRgportto tell the user about the
timeout. We added the€nockLostinternal event to test robustness in our design.

_ hase
The transmission phase is first represented by the sifnptesmissiortimethread of figure 71.
When an internal evefiransmitoccurs, theSignalis displayed on the responder’s monitor and
this causes the microphone to record the varecérdVoicg and, concurrently, the camera to
record the imageRecordimage The initiator’s monitor then displays the imaddafimagé
while the speaker outputs the voiddlayVoicg. Then, either the transmission continues or the
Disconnecfctivity is performed, causing the end of receptiondReg.

Playlmag Reclmage
PlayVoice Rec\oice
e ——
Disconnect

EndRec

Signal
Transmission

Transmit

Figure 71: Transmission phase

In the requirements, the initiator cdarminatethe transmission, therefore the disconnection does
not have to remain as non-deterministic as in the previous figure. In figure 72, we added a
Disconnectiortimethread managing this event. It is connected to a waiting Riacstaten the
timethreadTransmission The waiting places described in the Timethread notation do not have
any options corresponding to what we want to represent here. We do not waran$mission
timethread to always wait for an event or for a timeout.

At this point, we feel the need for a new type of waiting place that waits a synchronization event
and then outputs a corresponding tag ($&g with the valueYeg, or continues if no
synchronization occurred and then outputs the tag with another due (
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To this end, we introduce the new symk®|  to denote such a new type of waiting place, which

we callSignal
Playlmag
PlayVoice
RecState

T —

Disconnection

Terminate

[G9] Disconnect

Signal
Transmission

EndRec

Transmit

Figure 72: Transmission phase and disconnection management

The addition ofSignal as a waiting place optior\WPOptions> ) shows the extensibility power
of the STDL grammar:
<WPOptions> = [<Delayed> | <Timed> | <Signal>]

A LOTOS interpretation of a genemsegnal waiting placecould be:

(* Waiting place signal management *)
hide SyncSig in
(

EventName; SyncSig ! Yes; stop (* Synchronization *)
1
SyncSig ! No; stop (* No synchronization *)

)

[SyncSig]|

SyncSig ? Sig: Tag;

The tagSigcan then be used to constrain forthcoming choices, as with the §ifaaslGO.

Looking at the previous figure, we see a strong coupling between the information recorded and
the information played, i.e., we cannot record more than one image before it is played. We could
loosen this coupling by splitting thEransmissiortimethread into two parts, one managing the
transmission and the othdréceptiojhmanaging the reception. This is shown in figure 73, where
the two timethreads communicate via two internal evdtgseiveand SendStateNote that the
implementation of the waiting pladteceivanight require the existence of a buffer (or a queue)
betweerReceptiorandTransmissionunless decided otherwise at a later design stage, perhaps at
the architecture level.
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Reception

Playlmage
PlayVoice Receive,

RecState

Terminate [G9]
%E‘ o

Disconnection __©
[G8] Played

3S)SendState

[G6]
Sig

Disconnect
EndRec
EndSend

Transmission
Transmit

Figure 73: Transmission phase - Decoupling

Again, we used a signal waiting place to decide, with the help of gG&rdedG7, whether or
not other information has to be transmitted. Two new internal results were added to complete the
timethreadsPlayedandEndSend

Door Management
The requirements also indicate that a respondefOgemor Closehis/her door at any time. This

is expressed by the two timethreads of figure 74.

CloseDoor D=Close D o—»

DoorState
Close

OpenDoor D=Open D o—>
o— | DoorState
Open

Figure 74: Door management (Open and Close)

These timethreads both result in updating the door state either with theOmdaer with the
valueClose
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6.3.3 First End-to-end Paths Timethread Map

In the previous section, we discovered the basic functionalities detbpresenceystem from a

user interface viewpoint. We constructed our timethreads following the connection and
transmission phases, and the door management. We can compose our timethreads to form the first
timethread map representing end-to-end paths of@apresencsystem (figure 75).

S.U.D. (Initiator) S.U.D. (Responder)

I s

Playimage Reception Receive per—
PlayVoice Rec\oice
.E)RecState
<) SendState /

pa
Terminate [G9] l
é Sig~ .0 Vs

Disconnection _©
[G8] Played

Disconnect

EndRec

Rpt=Success

O
Rpt=TimeOut

O
[G1]
Resu ItT(& o |

enDoor

Knocking 1
D e Om— Close

KnockLost

Contact
Connection

Figure 75: First Telepresence timethread map (end-to-end paths)

This timethread map captures the big picture of the system. It is not concerned with details like
protocols, data, transmission of data, control of hardware, etc. Only interesting paths along
relevant components are shown here. Note that, although they are not explicitly drawn on the
diagram, we assume that the initiator SUD and the responder SUD both have cameras, speakers.
and microphones.

Many steps have been involved in the generation of this timethread map. The most important ones
are:

* The separation of the Initiator SUD from the Responder SUD.
» The connection dReceptiorandConnectioron the waiting plac&ndRec
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» The connection dknockingandTransmissioron the starting eveflfransmit

» The connection dknocking OpenDoorandCloseDooron the Memory waiting place
DoorState(see below for the definition of such waiting place).

* The creation and update of guar@4d to G9 based on the different tags. Their
definitions are:

[G8
[G9

iS[Sig eq No]
iS[Sig eq Yes]

[G1] is[ResultTO eq TOut]
[G2] is[(ResultTO eq OK) and (Resp eq Denied)]
[G3] is[(ResultTO eq OK) and (Resp eq Access)]
[G4] is[DS eq Close]
[G5] iS[DS eq Open]
[G6] is[Sig eq No]
[G7] is[Sig eq Yes]
]
]

We extended again our notation with the creation of a new type of waiting placenathedy.

This is reflected in the STDL grammar with the addition of a new waiting place option
(<WPOptions> ) also namedvemory. The purpose of anemory waiting places to act as a
variable, or a buffer, local to a waiting place. It has a default value, and it always provides its most
recent value to a tag that can be used later to determine choices along the timethread path. It can
also synchronize anytime with other timethreads, so no one really has to wait. The given LOTOS
interpretation for a memory waiting place nanvgBNames:

process TimethreadName [TTGates..., WPName] : noexit =
(* hidden memory cell for internal use *)

hide WPNameMemin
WPNameMemory [WPName, WPNameMem] (InitValue)
|[WPNameMem]|
TimethreadName2[TTGates..., WPNameMem]

where

process TimethreadName2[TTGates..., WPNameMem] : noexit =
(* Timethread interpretation using WPNameMem instead of WPName *)

endproc (* TimethreadName2 *)

process WPNameMemory [WPName, WPNameMem] (Mem: Tag): noexit :=
(* Process that can synchronize with external timethreads *)
(* or with TimethreadName2 *)
(* Get a new value *)
WPName ? NewMem: Tag; WPNameMemory [WPName, WPNameMem] (NewMem)
I
(* Provide the current value *)
WPNameMem ! Mem; WPNameMemory [WPName, WPNameMem] (Mem)
endproc (* WPNameMemory *)
endproc  (* TimethreadName *)
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Again, this is an another example of the extensibility of the notation and the STDL grammar. Due
to the modularity of the interpreted timethreads (1 timethread = 1 LOTOS process), such
extensions do not result in complex LOTOS mappings.

6.3.4 Application of the LOTOS Interpretation Method

At this point, we consider our timethread map to be interesting enough to be mapped onto
LOTOS. We therefore use the LOTOS interpretation method for timethreads.

Map Decomposition

The first step consists in deriving the LARG and the STDL descriptions from the timethread map.

In figure 85, we present the STDL descriptions of the seven timethreads found in figure 75. The

interactions between these timethreads are expressed in the LARG of figure 77. Again, we notice

the one-to-one relationship between the timethreads and the processes.

Application of the LAEG Method
As usual, the LARG generated cannot be directly mapped onto LOTOS. Therefore, we apply the

Grouping algorithm in order to get a binary grouped LARG (fig. 78). The solution we get is one
among the hundreds possible equivalent solutions, but any of them can be use for validation. The
structure generated can be found in the specification of Appendix C, lines 45 to 81.
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Timethread  Connection is
Constrained

Trigger (Contact)

Async  (Knock)

Wait Time (Doorchecked

Choice

? Resp)

Guard (ResultTO

Tag (Rpt
Or

Guard ( (ResultTO

Tag (Rpt = Denied)
Or

Guard ( (ResultTO

Wait (EndRec)

eq TOut) (*[G1] %)
= TimeOut)

eg OK) and (Resp

eq OK) and (Resp

eq Denied) ) (*[G2]*)

eq Access) ) (*[G3]*)

Tag (Rpt = Success)
EndChoice
AndFork
Path Result (Report ! Rpt) EndPath
EndAndFork
Result  (Next)
EndTT
Timethread  Transmission is Timethread Reception is
Internal Signal, Reclmage, RecVoice Internal Playlmage,PlayVoice, Disconnect
Trigger (Transmit) Trigger (Receive)
Loop Par
Comp Action (Playlmage)
Guard (Sig eq Yes) (*[G7]*) And
Action (Signal) Action (PlayVoice)
Par EndPar
Action (Reclmage) Wait Signal (RecState)
And OrFork
Action (RecVoice) Guard (Sig eq Yes) (* [G9] *)
EndPar Continue
Async (Receive) Or
Wait Signal (SendState) Guard (Sig  eq No) (*[G8]%*
Opt Path Result  (Played) EndPath
Guard (Sig eq No) (*[G6] *) EndOrFork
EndLoop Async  (SendState)
Result (EndSend) Action (Disconnect)
EndTT Result (EndRec)
EndTT
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Timethread Disconnection is Timethread (Knocking) is
Trigger (Terminate) Trigger (Knock)
Result (RecState) Loss  (KnockLost)
EndTT Wait Memory (DoorState ? DS)
Choice
Timethread (Closing) is Guard (DS eq Close) (*[G4]*)
Trigger (Close) Tag (Rep = Denied)
Tag (D = Close) or
Result (DoorState I D) Guard (DS eq Open) (*[G5]*)
EndTT Async (Transmit)
Timethread (Opening) is Tag (Rep = Access)
. EndChoice
Trigger (Open)
Result (DoorChecked ! Rep)

Tag (D =Open)
Result (DoorState ! D)
EndTT

EndTT

Figure 76: STDLdescriptions of the first Telepresence map

Telepresence (Contact, Report, Close, Open, Terminate, @ext

hide Knock, DoorState, DoorChecked, Transmit, Receive, SendState,
EndSend, RecState, Played, EndRec

[¢)

(Terminate, RecS@

Disconnectior

(" GSConn ) (" GSTrans )

. ) N\ )
.
Connection Transmission
7 Receive,
\ GSRecpt )

SendState
Reception
Knock,

DoorChecked Transmit

( > ( ) ( >
Open, DoorStat GSKnock Close, DoorStat
" \_ \

. DoorState i DoorState i
Opening Knocking Closing

Figure 77: LARG of the first Telepresence map

Some interfaces (italicized label sets) were too lengthy to put in the diagram, but they are
enumerated here:

e GSConns Contact, Knock, DoorChecked, EndRec, Report, Next
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» GSKnocks Knock, DoorState, Transmit, DoorChecked
* GSRecptis Receive, RecState, Played, SendState, EndRec
 GSTrandgs Transmit, Receive, SendState, EndSend

We find them again in the next LARG:

Telepresence (Contact, Report, Close, Open, Terminate, Npxt

hide Knock, DoorState, DoorChecked, Transmit, Receive, SendState,
EndSend, RecState, Played, EndRec

-
( GSConn j /_\ ( GSTrans J A GSKnockJ
Connection \_/ Transmissio Knocking

Receive, Knock, DoorState

SendState DoorChecke#

EndRec Transmit,
- } 4 Y J Y N
Q’ermmate, RecStat < GSRecpt ) kOpen, DoorState \CIose, DoorStats

RecState . /\ .
Disconnection Reception Opening \_/ Closing

Figure 78: Binary grouped LARG of the first Telepresence map

neration of Behaviour Expressions
LOTOS processes are then generated following the STDL descriptions. Notice that we also

interpreted the signal and memory waiting places found in the timethread map. In Appendix C,
we found the level 1 (without recursion) interpretation ofTislepresencsystem.

As mentioned in section 4.5.5, mechanisms to ensure the availability of tags all along timethread
paths are necessary. They are often needed for the synchronization points of the interpretation of
STDL ChoiceandPar constructs. Instances of such internal tag flow are found in lines 114 to
126, and in lines 262 to 272 of tAelepresenceapecification. Also, since LOTOS requires all

gates to have the same number and type of experiment offers (same number of tags in our case),
dummy tags are needed on several occasions. For instance, in line 102, the second tag on gate
SyncTOCon is a dummy tag; it is offered because other gates in the synchronization need two
experiment offers. This dummy tag could have any value since it will not be used in guards.
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To generate a level 1 specification with recursion, a few changes have to be introduced (fig. 79).
The following twelve lines have to be slightly modified (modificationsitateized):

Stopbecomes an off-end recursion of the calling process. Nstioplbecome recursive, only

those following a resulting event:

134 Next; Connection[Contact, Knock, DoorChecked, EndRec, Report, Next]

177 [Sig eq Yes] (* [G7] *) -> (EndSend; Transmission[Transmit, Receive, SendState, EndSend] )
189 RecState; Disconnection[Terminate, RecState]

228 EndRec; Reception[Receive, RecState, Played, SendState, EndRec]

231 [Sig eq No] (* [G6] *) -> (Played; Reception[Receive, RecState, Played, SendState, EndRec] )
258 KnockLost; Knocking2[Knock, DoorStateMem, Transmit, DoorChecked]

274 Knocking2[Knock, DoorStateMem, Transmit, DoorChecked]

293 DoorState ! D; Opening[Open, DoorState]

304 DoorState ! D; Closing[Close, DoorState]

For proces3 Loopto be able to callransmissionthe gatelransmithas to be added:

145 Transmit; TLoop [ Transmit , Receive, SendState, EndSend, Signal, RecVoice, Reclmage]

148 process TLoop[ Transmit , Receive, SendState, EndSend, Signal, RecVoice, Reclmage]: noexit =
175 (TLoop [ Transmit , Receive, SendState, EndSend, Signal, RecVoice, Reclmage])

Figure 79: Modifications to get a level 3 Telepresence specification

Composition of the Complete Specification
The simple composition procedure consists in adding the process definitions to the structure

generated from the LARG. The final result is the level 1 specificdédepresencedescribed in
Appendix C.

6.3.5 Validation of the First Specification

We can now play the design and validate some functionalities against the requirements and use
cases. For this purpose, we use validation techniques (85.4) on a level 1 specification with
recursion. We consider this level adequate for validation because:
* Itis more realistic than a level 1 without recursion,
* A level 3, which is more complex, does not bring much enhancement since the
Connectiortimethread is constrained to one instance at a time, and thus this constrains
KnockingandTransmissioralso to one instance at a time.

We give examples of simulation and testing scenarios in Appendix D. We discuss the results here:

Simulation
We executed one sequence with ELUDO to look for possible problems with our first timethread

map. Several problems were discovered, and we can relate them to the emphasized events (boxe:
1to 6 in Appendix D.I).
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» The evenflerminatewas accepted before any transmission started (box 1), although
the requirements specified that the disconnection should be available only after the
transmission starts. The interface of detepresencsystem should not allow the use
of Terminateat this point. This error leads to other problems also shown in the trace.
For instance, box 3 indicates that the same transmission could be terminated twice by
the initiator. This will affect a second transmission later on, as shown by box 6 where
the second transmission is terminated while the first one was aimed. This is due to the
cumulation ofTerminateevents, which is not appropriate at this point. The designer
now knows that a mechanism is needed to enseimminateis not allowed, or not
considered, before the beginning of the transmission, and that onlgonimatemust
be considered for a given connection.

* As indicated with box 2, images and voice data are not necessarily received in the right
order. The timethread map and BReceivavaiting place do not specify any ordering. It
is the responsibility of the designer to develop a way to express a FIFO ordering. For
instance, a FIFO waiting place could be invented and usdgefceive Although this
might not be essential at a timethread level in order to keep the diagram simple, this
problem definitely needs to be solved at the architecture level.

» This trace detects another problem related to the disconnection phase. Box 4 shows that
the initiator SUD still receives information after the disconnectisqonnectand
EndReg and even after a ne@ontactrequest. Box 5 indicates that the initiator SUD
also plays this information. The latter can mislead the initiator who thinks he/she
contacted someone else. Again, the designer learns that the system needs a mechanism
to ensure that all information contained in buffers and queues is played (or thrown
away) before the disconnection to be considered complete.

Simulation helps the designer to find such problems and to ask many questions. We must recall
that this timethread map does not intend to solve all the problems issued from specification
executions. The problems are noted and they will be solved later on, possibly in a new timethread
map (if the solution is obvious in the timethread domain) or at the architecture level.
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Testing
Appendix D.Il presents three simple test cases, bas&tbonection phasese cases (fig. 69),

that were applied to thEelepresencspecification with the help of the tool LOLA.

The first acceptance test (spec. 13) and the first rejection test (spec. 14) helped in validating the
output of theReportwhen the door is closed. No problem was detected.

The second acceptance test case (spec. 13), which was more complex, aimed at testing whethel
the Reportoutput was alwaySuccesgor possiblyTimeOuj when the respondépers his/her

door. This process was proved to b&A&Y PASStest case. Although our test was generally
executed successfully (99.94% of the finished executions), it was not always the case. The
problem seems to be that when a respofgenrs the door, the update of the internal state is not
instantaneous andknockingrequest might have just the time to decide that the door is closed,
denying the access as a result. TheeExpandcommand of LOLA helped in finding an
unsuccessful execution revealing this race problastExpandvith the options could also be

very useful to get all the unsuccessful executions. Testingelepresencespecification can
therefore be useful in finding problems associated to specific scenarios.

Knowing when to stop testing the specification becomes a legitimate question at this point.
Usually, we can stop when there are no more bugs to discover, or when there is no money or time
left [Pro 92]. More practially, we could define different software-reliability measurement
[MuA 89] for timethreads. For instance we could test that:

» All valid use cases or scenarios can be executed,;

» Allinvalid scenarios stated in the requirements are rejected,;

» All timethread activities and paths can be traversed,;

* Allloops are traversed a certain number of times;

« All combinations of tag values & guards are executed,;

e etc

We also might have to truncate to a certain depth the LTS corresponding to the LOTOS
specification (when branches are infinitely long), and to execute a certain number of times the
tests related to non-deterministic choices. To get confidence in our design, we therefore need
different coverage criteria. We do not provide them in this thesis; we only present instances of use
of testing. Coverage of timethread maps is still a research issue.
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6.4 Transformations and Second Timethread Map

We are now at a stage where end-to-end timethreads have to be factored in order to get only one
SUD that satisfies the requirements of both system roles (initiator and responder). The factoring
procedure is explained, for tiMessage Transfer Unéxample, in [Buh 93] and [BuC93]. In this
section, we will not repeat everything that has been said about the whole method. We concentrate
instead on the transformation phase, on some points in the mapping phase, and finally on the

validation phase.

6.4.1 Transformation Phase

Getting one SUD that includes both roles (initiator and responder) from the timethread map of
figure 75 might seem a very complex task. However, timethreads allow transformations that ease
this factoring. The procedure can be explained in three steps, which are illustrated for a simple

timethread in figure 80.

(c) Combining functionalities

Initiator Responder Initiator Responder
A|lB
T @- T
5 -
o =]
(&)
RJ R [
D|IC
(a) Original end-to-end timethread (b) The cut (timethread splitting)
Initiator-Responder Initiator-Responder
T A T
- A&C
5
C ~
D
B&D

(d) Merging inputs and outputs

Figure 80: Factoring procedure
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Factoring Pr r
Assume we start with a simple end-to-end timethread trigger&dythe initiator side, causing

some activities (not shown here) in the responder’s system, and resulting liatck in the
initiator’s system. Figure 80(a) presents such a timethread, which is very similar to timethreads
ReceptiorandKnockingfrom theTraveler System

* Because the timethread spans over two systems (with complementing roles), we can
assume that these systems communicate with each other to implement the causality
flow. Hence, we can cut the end-to-end timethread to make explicit the communication
of the two systems. In figure 80(b), this cut results in three interacting timethreads,
which are assumed to be path equivalent to the original one (see the discussion on path
equivalence in 85.3.2).

* Now that we have enhanced communication functionalities between the system, we
must combine the functionalities of both systems into one initiator-responder system.
To do so, we mirror the middle timethread (the one in the responder system) and bring
it into the new complete system (fig. 80(c)). We added arrows to express the causality
flow more clearly. At this point, the factoring is completed.

» Although our goal might be considered achieved in figure 80(c), we may wish to have
only one input channel and one output channel on which the messages are multiplexed.
In this case, we have to merge inputs together and merge outputs together to get a more
realistic model. We did so in figure 80(d), and we obtained a system that possesses
functionalities of both initiator and responder roles, with only two uni-directional
channels. This last step is sometimes not needed as it might lead to overspecification.

Communication
Such complete SUD can be easily connected to another similar SUD. For instance, figure 81

shows two communicating systems. The output of the first system interacts with the input of the
second system, and the input of the first system interacts with the output of the second system.
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System 1 System 2

Ty
R1

Ro

;
- 3

Figure 81: Two interacting complete systems

The interactions can also occur via an underlying service or medium (gray box in fig. 81). The
latter is placed between the two systems and could manage the routing, the retransmissions, etc.
Two completeTelepresencesystems could communicate, for example, via an underlying service
provider that can transport data (voice, video, requests, responses...) over some medium in a
reliable way. For instance, this could be a XTP protocol over a high-speed ATM optic fiber
network.

System 1 System 2

T Medium R
Ry T2

~e] O

Figure 82: Two complete systems interacting via a medium

Allowing these types of communication may however lead to causality flow problems. In figure
81, when a token goes from system 1 to system 2, it has a non-deterministic choice between two
alternatives. One of them, i.e., where the token goes directlyTydmthe end resuR,, was not

allowed in the original system. This problem has to be taken care of with tags and guards. By
adding tags indicating the path of provenance before going out of a system, it is possible to
resolve this non-determinism. We also need guards on each alternative when entering a system, so
that we can use tag values to guide the tokens to their right path. This mechanism is used in the
secondTelepresencenap (fig. 84).

Telepresence Factoring
The factoring transformation is now about to be applied to theTgéispresencenap. The vertical

cut will occur between the initiator and the responder. If we take the map of figure 75 as it is, we
create five new timethreads after the cut. However, this number can be reduced to four if we apply
a transformation on timethre&kceptiorbefore the cut. Figure 83 illustrates this transformation:
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Reception — Reception P
SendState
e SendState Transformed to
3 5
Disconnect © Disconnect o

Figure 83: Transformation of Async in Reception

The asynchronous evesendState is transformed intdReception We extract a parallel path
resulting in SendState and another parallel path which is the continuation of the original
Receptiontimethread. This path equivalence relation has the advantage of reducing the
communication coupling between systems after the cut.

This transformation having been applied, we now execute the factoring procedure by cutting the

timethreads and combining the functionalities (as in fig. 80). We assume here that we want to

explicitely show that there are two unidirectional channels per system only. Therefore, we use the

last step (d) defined in the factoring procedure, and we merge inputs and outputs. The second
timethread map is presented in the next figure:
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S.U.D. (Initiator-Responder)

]

Playlmage

PIaxVoice
.K@RecState

Terminate [G9] |
g@‘ o

Disconnection 0o
[G8] Played

)

3 oP=RDataOut
Disconnect

EndRec

Rpt=Success

Rpt
-—0
ReporP [G1]
‘ ResultT

Next

Contact . ’ P=KDataln
Connection .

m Knocking

-
Reclmage KnockLost
RecVoice Reception —foou

oP=RDataln
O

oP, oRep o—»

Signal

EndSend

Transmission
oRep=Access

Transmit
oP=KDataOut

Figure 84: Second Telepresence timethread map (1SUD)

Here are some comments on figure 84:

» TimethreadPisconnectionConnection TransmissionOpening andClosingare kept
unchanged because they were not affected by the cut.
» The dotted vertical line shows were the cut was done.

126 Formalization of Timethreads Using LOTOS



Transformations and Second Timethread Map

» The merging of inputs results in a new and complex timethread &adladIt includes
some paths and functionalities from the origiRateptiorandKnockingtimethreads.

* Two new external events are created for communicaom andDOut). They also
take care of the tags flow.

» As discussed previously in this section, tags and guards have been added to resolve
non-determinism associated to communication. Thekastanding for output path)
indicates the last path taken and is sent to a communicating system via theQesult
The other system receives this informationRaginput path). This tag is then used in

the new guard&10 to G13 to route tokens correctly. These guards are:
[G10] is[iP eq RDataln]
[G11] is[iP eq KDataOut]
[G12] is[iP eq RDataOut]
[G13] is]iP eq KDataln]

This complex transformation leads us to a map representing a $elgfgesenc&UD that has
functionalities of both roles (initiator and responder) defined in the requirements.

Note that the identity of some original timethreadisdckingandReceptiopappears to be lost in

the factored map. We can see that tags and guards in timeDagathtend to preserve the
possible causality paths in the system, but somehow we lose some structural information
identified in the first map. Mechanisms to ensure we can still access this information would be
welcome here. This is yet another research topic to be addressed in future work.

6.4.2 Mapping Phase

We apply now the interpretation method in order to get our second LOTOS specification of the
Telepresencsystem. We first apply the decomposition to get the STDL and LARG descriptions,

then we binary group the latter using the LAEG method. Finally, the LOTOS specification is

generated from these descriptions.

STDL Descriptions

Since timethreadBisconnectionConnection TransmissionOpening andClosinghave not been
affected by the factoring procedure, their STDL descriptions remain unchanged (refer to fig. 85).
In figure 85, we present the descriptions of timethré&2ats, Knocking andReception
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Timethread Data is
Internal Playlmage, PlayVoice, Disconnect
Trigger (DIn  ?iP ?iRep)

OrFork
Guard ( not ((iP eq KDataOut) or (iP eq RDataOut))) (* [Gadded] *)
Or
Guard (iP eq KDataOut) (* [G11] *) (* End of Knocking *)
Path Result (DoorChecked ! iRep) EndPath
Or
Guard (iP eq RDataOut) (* [G12] *) (* End of Reception *)
Path Result (SendState) EndPath
EndOrFork
Choice
Guard (iP eq RDataln) (* [G10] *) (* Body of Reception *)
Path
Par
Action (Playlmage)
And
Action (PlayVoice)
EndPar
Wait Signal (RecState)
OrFork
Guard (Sig eq Yes) (*[G9] *) Continue
Or
Guard (Sig  eq No) (*[G8] %)
Path Result  (Played) EndPath
EndOrFork
AndFork
Path
Action (Disconnect)
Result (EndRec)
EndPath
EndAndFork
Tag (oP = RDataOut)
EndPath
Or
Guard (iP eq KDataln) (* [G13] *) (* Body of Knocking *)
Path
Wait Memory (DoorState ? DS)
Choice
Guard (DS eq Close) (* [G4] *)
Tag (oRep = Denied)
Or
Guard (DS eq Open) (* [G5] *)
Async (Transmit)
Tag (0ORep = Access)
EndChoice
EndPath
EndChoice
Result (DOut ! oP ! oRep)
EndTT

Continue
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Timethread  Knocking is
Trigger (Knock)
Loss  (KnockLost)

Tag (oP = KbDataln)
Result (BOut ! oP)
EndTT

Timethread Reception is
Trigger (Receive)
Tag (oP = RDataln)
Result (DOut ! oP)
EndTT

Figure 85: STDLdescriptions of the second Telepresence map

The STDL grammar works well when used in a constructive approach, i.e, no problem occurs
when we build timethreads from simple ones to more complex ones. However, when transforming
a timethread, we may observe a limitation of the grammar w.r.t. mixing choices and or-forks.
When the timethreaBata is triggered Din ), the token has to take one out of the four paths in
front of it. This is why guards have been placed. However, what is implicit here is an or-fork with
three possible paths: one guarded wi@11] , another guarded witfG12] , and the last one
(unguarded) which leads to the continuation of the timethread. This last path then has a choice
between two sub-paths, guarded wi#10] and[G13] . Now, the problem is that a deadlock

may occur at this point. When a token hpsKDataOut as information, it may non-
deterministically follow the ungarded path of the or-fork, and then deadlock in front of the choice.

A simple solution to this problem is presented in figure 83. By adding a guard to the third option
of the or-fork, we can route the tokens correctly. The gya&afed] in the right timethread)
must forbid access to its path to tokens that are allowed to take one of the other paths. To do so,
such guard must have the following formadt ((first guard) Or (second guard)
Or...) .Inour case, we have:

[Gadded] is[not( (iP eq KDataOut) or (iP eq RDataOut) )]

Internaly transformed to

Figure 86: Internal transformation

This solution was adopted in the STDL descriptionDaita. If a tool was to automate the
factoring transformation, this feature would have to be included.
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LARG Description
TheTelepresencelSUDARG containing our eight interacting timethreads is shown in figure 77:
TelepresencelSUD (Contact, Report, Close, Open, Terminate, Next, Din, Dput
hide Knock, DoorState, DoorChecked, Transmit, Receive, SendState,
EndSend, RecState, Played, EndRec
( Knock, DOut) CReceive, DO@
Knocking Reception
ONC
C GSConn ) (Terminate. RecS@e C GSTrans )
Connection Disconnectior Transmission
RecState i
< e
COpen, DoorSta} C GSData J (Close, DoorSt@
. DoorState DoorState .
Opening Data Closing

Figure 87: LARG of the second Telepresence map

We enumerate here the interfaces (italicized label sets) which were too lengthy for our diagram:
» GSConns Contact, Knock, Doorchecked, EndRec, Report, Next
» GSDatais DIn, DOut, SendState, DoorChecked, DoorState, Transmit,
RecState, Played, EndRec
* GSTrandgs Transmit, Receive, SendState, EndSend
Binary Grouped LARG
With the help of the LAEG method, we generate the binary grouped LARG (fig. 78) from the
ungrouped one.
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TelepresencelSUD

(Contact, Report, Close, Open, Terminate, Next, DIn, @Out

hide Knock, DoorState, DoorChecked, Transmit, Receive, SendState,
EndSend, RecState, Played, EndRec

4 R
\ GSConn P

)

GSTrans

N/

Connection _._

S

L Receive
Transmissior

( )
Knock, DOut
\ noc ui

Knocking

( Receive, DOUD

Reception

Transmit,
DoorChecke
SendStatg

<
( GSData Germinate, RecStag

2
RecState . .
Disconnection

Data

DoorState
<
€

(Open, DoorStata Cclose, DoorStat

N ,
)
Opening \_/ Closing

As usual, the interfaces and hidden activities from the ungrouped LARG are kept unchanged in

Figure 88: Binary grouped LARG of the second Telepresence map

the binary grouped LARG.

Mapping on LOTOS

As suggested by the method, the structure part of the specification (lines 52 to 81 of spec. 16) is
generated from the binary grouped LARG. The processes corresponding to the individual
timethread are (manually) derived from the STDL descriptions. Appendix C (spec. 16) presents

the complete LOTOS specification namédlepresence_1SUDNe consider that a level 1

specification with recursion is sufficient for validation purposes in this thesis. Therefore, the level

3 specification will not be given nor used.
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6.4.3 Validation Phase

New Specification

Telepresence_1SUpec. 16) contains the functionalities of the initiator and the responder roles.
The validation of such a specification is not obvious at first sight, since end-to-end behaviours are
not present in the same way as in the first specification. Each time an initiator sends data to a
responder (or a responder to an initiator), the resulting evé&®ig with some associated tag
values. Each time a responder or an initiator receives data, the external elxnt The
specification shows the correct paths, but many forbidden scenarios could occur without proper
constraints from the environment. For instance, an initiator could receive voice and video data
even if he/she did not send any contact request.

To keep this fact in mind when we play this specification is a tedious task. One natural way of
constraining this specification correctly is by composing the latter with a similar system (86.4.1).
Therefore, we will not use the specificatidalepresence_1SUBs is, but we will transform it

into a process as part of a new specification corresponding to the communicating systems of
figure 81. Two process instances will be synchronized on their communication chaimedsd

DOut).

We can easily create such specification (calleldpresence_2Systemspec. 10). We double the

gates in the global interface in order for each systems (1 and 2) to have their own complete
interfaces. Then, we synchronize two instances of the prot@spresence_1SUDn the
channels Intout2  and In20utl 1. These are all the modifications needed to get the
communicating systems we wanted. Of course, we could specify a medium in between (as in fig.
81). This would allow us to test more closely the robustness of the system. However, since we do
not want the model to become too complex, we will stick to the first option.

1. In this example, we choose to hide these channels from users
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specification
Reportl, Report2,
Closel, Close2,
Openl, Open2,
Terminatel, Terminate2,
Nextl, Next2] :

... (* Definition of libraries and the Tag ADT *)

behaviour (* Composition of the 2 similar systems *)

hide In10ut2, In20utl in
In10ut2, In20utl]
[[INn10ut2, In20ut1]|
In20utl, In10ut2]
where
Report, (* Result of a contact *)
Close, (* Close user’s door *)
Open, (* Open user's door *)

Next, (* Get ready for next connection *)
Din, DOut (* Incoming/Outgoing data*) ] :

endproc (* Telepresence_1SUD *)

endspec (* Telepresence_2Systems *)

Telepresence_2Systems [ Contactl, Contact2,

Telepresence_1SUD [Contactl, Reportl, Closel, Openl, Terminatel, Nextl,

Telepresence_1SUD [Contact2, Report2, Close2, Open2, Terminate2, Next2,

process Telepresence_1SUD [ Contact, (* Initiator want to contact responder *)

Terminate,(* Initiator terminates a connection *)

... (* LOTOS code from the original specification Telepresence_1SUD *)

noexit

noexit =

Specification 10: Telepresence (2 systems composed together)

Validation Strategy

We need to validateTelepresence 2Systensgainst the requirements and the previous

specification Telepresenden order to see that:

« It conformé to the specificatioffelepresencéwvhich was itself assumed to conform to

the requirements). The conformance checking is due to the presumed “path

equivalence” between the two specifications, resulting from the factoring transforma-

tion.

» It does not create more problems than there weFel@presence

» It solves some problems foundTalepresence.

1. As explained in section 5.4.2, we still use design testing to check conformance between specifications

and not conformance testing
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Hence, we can re-apply the simulation sequences and test cases used in section 6.3.5. New tests
cases can be derived from fhelepresencespecification. Also, specific test cases validating the
factoring procedure and its communication aspects can be generated.

In the validation examples, we will use testing only. To simplify the approach, simulation and
verification are not used here, although they would be necessary in a real-life validation. We reuse
the three test cases (spec. ABreptTestlspec. 13:AcceptTest2and spec. 18RejectTesil
previously defined in appendix D.II. Of course, they are adapted to match the new gate names
(Contactl , Result2 ...).

We also add another rejection test calRegjectTestdspec. 20). This last test was not in the
previous test suite. We create it here in order to ensure that we have no additional error related to
invalid scenarios due to communication between systems.

Telepresence_2Systenh®es not intend to solve the problems we detected earlletépresence
(86.3.5). The former is the result of a factoring transformation that preserves path equivalence.
Therefore, we will not create additional test cases for these problems, which obviously will have
persisted in the second specification.

Many other test cases could be generated for design testing. However, to simplify the results and
to ease comparisons, we will consider the four tests presented only.

Testing Results
Appendix F presents the results of our four test cases. Here are some general conclusions from

this experiment:

» Telepresence_2Systeneas more internal events (due Bn and DOut) than
Telepresencdeading to an increased number of possible states and transitions.

» AcceptTestds again aMAY PASS test case. This time, 99.92% of the finished
executions terminated successfully. This ratio compares to the 99.94% found in section
6.3.5. Note that we could use simulation or the LOLA comn@meExpandor the-s
option of TestExpangto reveal the same race problem with the knocking request which
was already detected Telepresence
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» All three common test caseAdceptTestlAcceptTest2and RejectTestll performed
similarly. They did not detect any major difference between the original specification
and the transformed one. Therefore, they failed in provinglglapresence_2Systems
does not conform tdelepresence

* The last rejection test casBdjectTestp checked that &ontactrequest does not
directly lead to eResult(with any parameter) on the other user’s side. Such process
tests that the guards we added correctly route tokens, according to their prior paths to
which tags were associated. The result showed that no problem was detected with this

scenario.

This validation, although very superficial, did not detect unknown problems with this second
specification of th&@elepresenceystem. Hence, we might have a certain degree of confidence in
thatTelepresence_2Systenmnforms tolelepresence
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CHAPTER 7 Discussion

This chapter presents several topics that go beyond the thesis objectives. However, we believe the
following discussion to be useful by placing the thesis achievements in a wider context and by
opening new horizons. The next sections are closely related to many issues developed in the
previous chapters. We chose to emphasize four main topics which are: the architecture, the STDL
grammar, validation in general, and a few ideas on possible tools.

7.1 Towards a First Architecture

Why would we need another design methodology using formal methods while several already
exist? For instance, the Lotosphere Methodology [LOT 92], based on the conventional stepwise
refinement, offers powerful structuring and abstraction facilities that allow designers to maintain
control of the different aspects of the design at all levels along the design trajectory. This is
achieved by enabling formal statements of design constraints and objectives in the structure of the
design. The quality of the design is improved because of the mathematical foundations of
LOTOS, that allow verification of properties and extensive support for simulation and testing.
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We believe that what we need is a thinking tool, a methodology more intuitive and appealing than
the one proposed in the Lotosphere project. It has to be used in the framework of a practical
design process that engineers in industry can use without having to be formalists themselves. The
Lotosphere Methodology takes a formal method (LOTOS) and tries to build a complete design
methodology on it. In our approach, we start from some visual design concepts, very natural to
designers. Then, we use formal methods to help formalizing parts of the visual notation with what
formal methods offer the best. This concept was cattedpretation method&3.1) in [Bor 93].

This research direction seems, from our viewpoint, to be very promising.

Although we know from this thesis that we can capture the main requirements with a timethread

map and then get the corresponding LOTOS specification, this does not mean that we have a
complete design methodology. We at least need a more complete implementation-oriented model,
such as an architectural specification, of our timethread-designed system. Obtaining an

architectural design consistent with a timethread design is however a complex task. Two major

approaches are distinguished for this purpdsévation(fig. 89a) andralidation (fig. 89b).

Derivation: In this approach, an architectural specification of the sysédd) ic obtained from
the LOTOS mapping of the timethread desigib)Y on which some correctness preserving
transformations are applied. This new specification is mapped to an architectural design.

Validation: Here, we have to design both the timethread map and a sketch of an architecture
independently. We then map the two designs onto LOTOS specificalivhand AV) using
different interpretation methods. Finally, we try to validate the LOTOS specification obtained
from the architectural desigrAY), using verification or test cases derived from the LOTOS
specification generated from the timethread desiyf).(
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Timethread
Design

Architectura
Design

Timethread
Design

Mapping Mapping
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Specification Specification
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(a) Derivation approach

Architectura
Design

Mapping Mapping
LoTos | Validation | | oTOS
Specification Specification
TV AV

(b) Validation approach

Figure 89: Derivation and validation approaches

The advantages of using CPTs in the derivation approach is quite obvious: no need for costly
validation or for the generation of test cases. Although this solution is theoretically appealing,
CPTs are often difficult to define and also hard to apply. Also, the derivation approach
necessitates a reverse-mapping going from LOTOS to a particular architecture model, and we do
not have any such method yet.

In [BuC 94b], the authors discussed an option we could relate to our validation approach
(introduced in section 5.1.1). They explain how a timethread map allows the designer to look at
several architecture options, leading to a collaboration graph (see the definition on next page)
where roles and communications are more closely defined. We reproduced, in figure 90, the steps
going from a timethread ma®, to timethread-role malg , to the collaboration gragh (the first
architecture) previously presented in figure 53.
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Figure 90: From timethread maps to collaboration graphs

A role organizationis usually composed of simple role components (called carriers, workers, and
teams by the authors) to which timethread activities are associated. Carriers carry whole segments
of timethread forward, while taking care of concurrency issues. Workers do the functional work
for carriers. We can think of workers as having point responsibilities along timethreads. Teams
express collaboration grouping.

A timethread-role majs a timethread map on which we superimpose a role organization. We can
compare different organizations of configurations w.r.t. the same timethread map, allowing
designers to consider robustness, cost, and performance issues. Once the designer finds a
configuration that satisfies his/her major criterion, he/she tries to derive a soecélédxabration

graph

While timethread maps show causality flow paths, collaboration graphs show control flow paths.
They also aim at solving concurrency issues. Transforming timethread-role maps into collabo-
ration graphs leads to potentially many solutions, so human judgement, commitments, and design
decisions are required to determine the best one. This type of graph is considered to be a first
high-level architecture, based on roles instead of concrete hardware or software components.

Some heuristics and guiding rules to help in getting a collaboration graph from a timethread map
are presented in [BuC 94b], but no automated transformation procedure exists yet. This is why we
can relate this approach talidation By defining an interpretation model for a collaboration

graph in order to get a corresponding LOTOS specification, we could validate the latter against
the specification generated from a timethread map. What is interesting here is that collaboration
graphs and timethread maps are not independent. Because of a certain degree of dependance
(heuristics and guiding rules), we can informally derive a collaboration graph from a timethread
map and then perform a formal verification according to some equivalence or conformance
criterion.
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Of course, we acknowledge that much work remains to be done in this area. Nevertheless, we
believe that this approach, which combines many advantages of formality and informality, can
lead (especially if automated) to better and more rapidly obtained RTD system designs.

7.2 STDL

7.2.1 Features Evaluation

A context-free grammar is often used to give a formal syntax specification of a language. We used
an EBNF grammar (84.2.3) to define in an abstract way the allowed paths of a single timethread.
The grammar rules forbid many types of incorrect timethreads, without the help of additional
static or dynamic semantic rules.

STDL considers single timethreads as entities in their own right. It provides readable descriptions
that will ease the design of compilation tools.

Modifications can be brought to the language in order to expand or adapt it. This is also eased by
the three grammar rulesseg>, <GenOptions> , and<WPOptions> .

This language is well-suited for a constructive approach, i.e., starting from a simple timethread,
the designer can make it more complex by adding segments. STDL also possesses many
constructors that can be straightforwardly mapped onto LOTOS operators, and many levels of
specifications can also be generated from the same STDL description. The tag mechanism is also
a powerful feature that allow a more complete management of unfeasible paths, especially after
transformations such as factorings (86.4.1).

STDL, as it is now, is a major step towards the creation of a compiler tool that will generate
formal (LOTOS) specifications from timethread maps. We think that STDL is a language suitable
for LOTOS and a whole family of languages with multi-way rendezvous. In fact, we always had
in mind a multi-formalism context while developing STDL. Therefore, because it is a general
language describing timethreads for what they are, we believe other formal languages might be
used as output of other interpretation methods, perhaps at the cost of minor modifications to
STDL.
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7.2.2 Current Limitations

STDL is neither a perfect language, nor the ultimate solution to all our design problems. If we

want this language to improve with time, we first have to be honest and acknowledge its current
limitations and those of the LOTOS interpretation method. Hence, we decided to point out in this
section some of these limitations:

» STDL is an incomplete timethread description language because it does not manage
timethread interactions; we had to use LARGs as a formal means to express them. A
better language that would include both STDL and LARGS, in a consistent way, is still
needed.

* We do not have any formal proof that a STDL description (with the map LARG) and
the generated LOTOS specification are representative of the corresponding timethread
map. Timethreads semantics is informal and therefore, since we cannot go formally
from informal to formal, the formal semantics we gave to timethreads is hard to prove
correct, complete and consistent. We simply did our best in that matter, and perhaps it
is hard to do otherwise!

* Because we do not have a complete algorithm (or a compiler) yet, the mapping process
(from STDL to LOTOS) is not guaranteed. We saw that, with a level 1 specification,
the mapping method seems straightforward and correct. Level 2 and 3 specifications
are more complex and the mapping may proved to be much more difficult than it
appeared for level 1.

» STDL was influenced by the limitations of our interaction model (LARGS). Since the
LARGs only have synchronous interactions where no direction is specified, the
grammar had to include these features, although they belong to the interaction domain.
This led to the creation of the construct®ysc andAsync , and the tag flow operators
? and! .

» The STDL tag mechanism is strongly related to LOTOS Abstract Data Types
(especially booleans and natural numbers) and the value offer operatmdg! .
Although this eases the mapping onto LOTOS, this coupling might be a problem when
considering other formal languages as output to other interpretation methods.
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7.2.3 Possible Enhancements

The current STDL is a context-free grammar that expresses the syntax rules of the language. Of
course, as expressed in section 7.2.2, this is insufficient. We must define a set of semantic rules
(static and dynamic) to complete the language. These rules combined with a set of complete
mapping algorithms would formalize the language and the translation procedure.

STDL is a language that offers a lot of extension possibilities. We could extend it to include
grammar rules to describe timethread interactions in a map. This Tireethread Map
Description Languagé€or TMDL) would require constructors representing interactions, global
hide operator for systems internal events, recursive groupings (needed for binary groupings),
static semantic rules indicating valid and invalid interactions, etc. We believe SDTL can be reused
as is, to describe single timethreads.

We mentioned (87.2.1) ways to extend the STDL grammar. New segments can be added in the
<Seg> rule, when a new timethread construct is creat€@nOptions> allows the addition of

new global options to a single timethread. FinadlyPOptions> allows different options for a
waiting place. Of course, other grammar rules could be defined or modified to adapt new features
or to suit a new target formal language. We could, for instance, add to junction points several
options similar to the ones defineddwPOptions> .

To give a more precise idea of an extension okth€Options> rule, we defined two new types
of waiting place, calle@ignalandMemory in theTelepresencsystem (86.3.2 and 6.3.3). This
transformed STDL in the following way:

<WPOptions> = [<Delayed> | <Timed> | <Signhal> | <Memory>]
<Signal> = Signal
<Memory>= Memory

We also gave, in those sections, the LOTOS interpretation of such waiting places. Although we
want to express causality paths instead of behaviour at the timethread abstraction level, we saw
that a fewenhanced waiting placesere very useful to play the design. This approach led to a
much more realistic description of thelepresencesystem and a better management of its
causality paths.
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By adding simple options corresponding to LOTOS internal waiting place machinery, we could
simulate many types of waiting places:

* Normal (multiway rendezvous we have by default)
* Delayed (defined in the grammar)

» Time (defined in the grammar)

» Signal (defined in théelepresenceystem)

* Memory (defined in th@elepresenceystem)

* Bounded buffer (unordered)

* FIFO or LIFO queues

» Priority queues (we could cregigority tag9

* One-to-many, many-to-one, and many-to-many interactions. These types could be
used, for instance, in th€raveler system where a cab could wait for 4 travelers
(maximum) or a timeout before leaving. Then a plane could wait for 200 people before
leaving, etc. These waiting places could be very useful for a mapping onto Petri nets,
which supports many-to-many interactions in an elegant way.

Most of these complex waiting places could be useful at late stages in the timethread development
process, before the mapping to an architecture where buffers, mailboxes, queues, etc., are de facto
needed for communication management.

Inventing a_simplend_cleanotation to distinguish the above cases and possibly many other ones
is however not a trivial thing. We suggested the use of letters inside waiting places to show signal
and memory waiting places, but some people may find this solution too cumbersome. There
always is a trade-off between capturing every detail and making the big picture clear. Too much
notation gets in the way of the latter, but again, a tool might hide such precise details at an abstract
level and show them at the user’s request.
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7.3 Validation

Perhaps one of the greatest strength resulting from the interpretation method concept is that the
validation allows a designer to use many existing tools to simulate, test, and verify different
criteria, requirements, situations, scenarios, etc, in a timethread design.

We know that validation is necessary, even with incomplete descriptions, through any design

process. A design should always be validated in some way (simulation, test cases...) against
previous designs, and ultimately against the requirements. Good validation tools are of course
needed at all stages.

We have discussed validation issues all along the design ofrdweler system and the
Telepresencsystem. Although timethreads were not created to become a simulation model, we
showed that timethread-based validation can help playing a design and point out different
categories of problems. Aerror modelregroups these categories for a given notation.

Since we used LOTOS as the formal underlying model for timethread maps, our error model
helps designers to detect problems such as:

» Bad ordering of events,

» Unfeasible or unwanted synchronizations,
* Unfeasible or unwanted paths,

* Race conditions between tokens,

» Absence of path equivalence and/or conformance w.r.t. other specifications or
requirements,

* Incorrect communication between systems, etc...

As we saw from the many examples we gave in the thesis, LOTOS offers many facilities and
useful tools to detect these categories of problems. In fact, we can use all well-known LOTOS
validation techniques to simulate, test, and verify a timethread-oriented specification. The only
difference with respect to traditional LOTOS validation is that we play with possible paths instead
of possible behaviour. Thus, the techniques have to be slightly adapted to accommodate this way
of thinking.
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Of course, the use of other formalisms (we already mentioned Petri nets, event structures, Z...) as
target outputs of interpretation methods would allow other fault models. For instance,
performance and time constraints can hardly be validated with LOTOS. A Petri net (with some
extension) specification of a timethread map might be a better choice for these categories of
problems. In fact, we are not the only ones believing that using more than one formalisms
representing a system under design offers some advantages. In [BoC 93], another multi-formalism
approach is discussed. The authors propose to build a meta-language for design, based on visual
notations, that would use the specification and validation strengths of different formalisms.
Although they use different techniques and ideas, this interest in multi-formalism makes us think
we might be going in a useful research direction.

7.4 Tool Support

Timethreads and interpretations methods are more useful if tools can support them. In this section,
we speculate on what is required and expected from such tools.

7.4.1 Internal Representation of Timethreads

L Visual I I ons
In this thesis, we defined part of tlegmal representationf timethreads. We explained in section

7.2 that STDL could be extended with grammar rules representing the LARG interactions, hence
forming TMDL. If we add semantic rules to check valid interactions, consistency, missing or
invalid information, etc., we get a better formal representation of a timethread map.

Timethreads are a visual notation, thus graphical and spatial information have to be recorded
somewhere. Our formal representation, as it is now, does definitely not include such information.
An additionalvisual representatiorof timethread maps, internal to tools, is therefore needed.
Although this is outside of the scope of this thesis, we think it could be composed of some graph
grammar, suitable for 2-D graphs description, and a set of data specifying visual details.

A timethread tool would need a general description, cailednal representationincluding both
the formal representation and the visual representation. We show the structure of this internal
representation in figure 91.
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Internal Representation

Formal Representation Visual Representation
TMDL Graph Visual
Grammar?| | Information
Interactions
SDTL Grammar
. Consistency
Semantic Rules
Rules

Figure 91: Internal representation of a timethread map

In order to maintain consistency between formal and visual representations, a tool might need a
set ofconsistency ruleas part of the internal representation.

This internal representation of timethreads maps will be especially useful for interactive design
and for automated generation of formal methods specifications.

Construction and Recognition
We see two different ways of using the internal representation in a temognitionapproach
and aconstructionapproach.

In a recognition approach (fig. 92a), the designer works on the visual representation via a
Graphical User Interface (GUI) only. When the timethread map is satisfactory, the tool uses a
recognition methodo generate the map formal description. This leads however to some major

difficulties:

* The visual representation has to be complete and rich enough to provide all the
information needed to construct the formal description.

* We need a recognition method to compute or evaluate a formal representation from a
visual one instead of simple consistency rules. We believe the former to be more
complex to define and implement than the latter.

» Since the recognition is done when the map is finished, the designer does not know if
this map is valid or not since no semantic rules have been applied.
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With this approach, we lose in a sense the need for a separate formal representation. Everything
would have to be included in one model (the visual representation), and then the formal
representation would only be a projection of this model.

* Consistency Formal

4—p | Rep

Visual Rep. Rules
Constructio Transformatio
Command Rules
o o Recognition| Formal * »_ Consistency Formal
—p | Rep. 4—p | Rep.
Visual Rep. Method Visual Rep. Rules
(a) Recognition (b) Construction

Figure 92: Recognition and construction approaches

The construction (fig. 92b) is slightly different. In this approach, the designer still works on the
visual representation via the tool GUI, but at the same time, the formal representation is built and
consistency is checked. The user applies construction commands and these are translated
internally into transformation rules. Since the latter are validated by the semantics of the
language, the mutual consistency of these various representations is assured. The complete map is
thus created by construction, from a simple timethread to a complex map. In this way, the tool
constrains the construction commands allowed to the designer, and only valid timethread maps
can result.

Of course, we still are looking for better solutions, but this one seems promising and feasible. This
is part of work to be done in other theses and projects.

Interpretation Methods and Internal Representation

The visual interpretation includes all the information that is not pertinent to interpretation
methods. Therefore, formal specifications are generated from the formal description of timethread
maps only. The same formal description can be used as input to different interpretation methods.
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7.4.2 Timethread Editor

The purpose of an editor is to provide a GUI allowing the designer to construct and transform
timethread maps. Using a construction approach, the GUI would mostly manage the visual
representation while consistency rules would update the formal representation. We can implement
many different features in such a tool:

* The input could be a text file, a mouse-driven interface, or a pen-based interface.

» The GUI would allow commands for timethread construction and transformation. The
commands and operations allowed would be based on CPTs, extension or equivalence
criterion, and semantic rules. Such operations could look like:

Add/remove a timethread, and action, an event,
- Connect timethreads (synchronously/asynchronously),
- Insert a loop, a choice, a stub...,
- Hide actions, events...,
- Parallelize actions,
- Split/merge/factor timethreads...,
- efc...
» Abstraction facilities (hiding, stubs, layering, magnifications...) could be implemented.

* The tool could provide interactive management of tags and guards to eliminate
unfeasible paths.

» Options for timethreads and waiting places (as defined in STDL) could be used.
» Timethreads would have attributes such as different colors, patterns, shapes...
» Comments, annotations and pictures could be inserted.

* We could provide a library of stubs for reuse.

This list is not exhaustive. Many other features could be defined in an editor to help him/her
express more intuitively and clearly causality paths in a system.
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7.4.3 Interpretation Tools

An interpretation tool maps the formal description of a timethread map onto a formal language by
using an interpretation method. We can program many such tools, which are generally compilers,
but they all have the same input: a TMDL description.

We can also define different options for specific tools. For instance, a LOTOS interpretation tool
could generate different levels of specifications. Each timethread in a TMDL description could be
associated to a specific level (1, 2, or 3), with or without recursion.

Interpretation tools might have to do some internal processing of the TMDL description. For
instance, interactions in a plain TMDL description have to be binary grouped (using the LAEG
method) before LOTOS code can be output.

7.4.4 \alidation Tools

These tools already exist. This is one of the most important benefits of interpreting timethreads.
Different target formal languages naturally lead to different validation tools and techniques. We
already saw many LOTOS-based techniques and tools for simulation, testing, and verification.
These types of tools exist for most formal languages, and they could all be used to validate
particular aspects of timethread designs.

7.4.5 Other tools

Optimistically, we can foresee other tools especially useful at later stages of the design process:

» Going towards an architecture, we could add role architectures to timethread maps,
leading to more realistic architectural specifications.

* We could have “intelligent” tools suggesting candidate architectural solutions by using
different heuristics.

* We could design tools that, based on experience and specific architectural criterion,
would propose different skeletons of collaboration graphs that fit a role architecture
and a timethread map. Control and data could be inserted at this point.
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* We could add animation to tools, in order to show problematic scenarios detected using
validation tools.

» Performance analysis might be useful to designers, especially when considering
different candidate architectures. A tool to analyze performance according to designer
criterion would be very welcome.

» We could even think, for the last stages of the design process, about partially automated
code generation.

As one can see, there is still much room left for hard work and imagination.
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CHAPTER 8 Conclusion and Future Work

8.1 Conclusion

8.1.1 Objectives and Requirements Achieved

This thesis presented a LOTOS interpretation method for timethreads. We demonstrated that it is
possible to generate meaningful LOTOS specifications, from timethread @aps ¢hapter 1),

that can be used to validate and play the design in the early stages of the life-cycle methodology
(02). We showed how tools can support this transformat@8),(and we discussed many
resulting issues and difficultie©4).

We believe our four main objective®1 to O4 in chapter 1) were achieved. We also considered
the five requirements, also enumerated in chapter 1, in the following way:

R1) Timethreads are a description model suited for RTD systems. We assume designers
do not really change their way of thinking and working by using them.

R2) Our method is based on a multi-formalism approach. Although we used LOTOS in
this thesis, other target formalisms can be considered. We had in mind the
generality of STDL to satisfy this requirement.
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R3) If tools are supported, designers do not have to be LOTOS experts to use our
method, although a minimal knowledge is always useful. They simply have to use
already existing validation and verification tools that generally possess user-
friendly interfaces.

R4) Major system functionalities and basic scenarios are captured via a visual notation
(timethreads, in occurrence) easier to conceptualize than plain textual descriptions.

R5) Design tools are not yet available for our method, but major steps towards their
creation have been taken. Validation and verification tools however already exist.
This reuse is an important advantage of our method.

8.1.2 Contributions

Four major contributions of this thesis were introduced in section 3.2:

LOTOS Interpretation Method for Timethreads

Based on the concept of formal interpretation method, our approach generates LOTOS

specifications from timethread maps (chapters 3 and 4). In this thesis, we completed the method
by providing the mapping sub-method for single timethreads. This method was successfully

applied to two case studies.

Timethread Grammar

We defined a Single Timethread Description Language (STDL) to represent single timethreads
(chapter 4). We used a context-free grammar to express construction rules. This grammar
formalizes parts of the Timethread notation by itself, without any major reference to target formal
languages. Transformation and mapping rules were enumerated for the generation of LOTOS
code from STDL descriptions. Static and dynamic semantic rules are still needed to complete the
language.
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Techniques

Chapter 5 presented several techniques in the context of part of a timethread life-cycle
methodology. We applied the interpretation method (mapping techniques) to get a LOTOS
specification from the Traveler system. Then, we introduced several LOTOS-based
transformation techniques. We discussed notions of equivalence, extension, and conformance in a
timethread context. Validation techniques were also described. We largely discussed simulation,
testing, and verification techniques w.r.t existing LOTOS tools. These techniques help designers
in their thinking and analysis process by providing different ways to play the design and therefore
to discover potential problems early in the design process.

Case Studies

We developed two case studies in the thesis. Trageler system was a case study used to
illustrate the different steps of our approach. It provided a dynamic context easy to understand.
The second case study, thelepresencaystem (chapter 6), was a more complex real-life RTD
system. The visual contact service was defined in terms of its functionalities and basic
components. A first timethread map was constructed from basic use cases and mapped onto
STDL and LARG descriptions. We then manually generated its LOTOS specification using our
interpretation method, and then validated it against the requirements with simulation and testing.
Some test cases and simulation scenarios led to the discovery of several problems. We used &
transformation called factoring to get the second timethread map. We generated the corresponding
STDL, LARGs, and LOTOS specification. We validated the latter against the requirements and
the previous specification to check conformance.

Other contributions have been identified along the thesis:

* Our LOTOS specifications use what we calletingethread-oriented styleifferent
from other traditional specification styles that usually describe a system’s complete
behaviour. This new style leads to specific approaches for validation and conformance
checking because one deals with causality paths instead of pure behaviour.

* We identified different complexity options, known lasels of specificatignfor the
generation of LOTOS specifications from timethread maps.

* We defined dag mechanismery useful for path control in a timethread map.
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» The STDL grammar can lextendedn many ways, thanks to some rules for options
and segments definitions. We also identify posséinibanced waiting placeSwo of
them Memory andSignal ) were used in th&elepresenceystem.

* In chapter 7, we discussed ways of using our approach to get a first architecture
consistent with its timethread map.

* Also in chapter 7, different ideas on a complete timethread-oriented design tool are
introduced. We discussed internal representations and tools for timethread maps
edition, interpretation, and validation.

8.2 Future Work

Objective O4 was to present problems with the approach and resulting research issues. Many
topics presented in this thesis require further attention. We can easily define short-term and long-
term research issues. We believe the most important ones are the following:

Short-Term Research Issues

* We use two different models to represent our timethread maps (LARGs and STDL).
This causes non-homogeneity problems. STDL could be extended to include
timethread interactions, thus forming a more unifofimethread Map Description
LanguaggTMDL in section 7.2.3).

» A grammar is not powerful enough to be a complete language by $&seifintic rules
are also needed. Defining these rules for TMDL would improve this language’s
usefulness.

* Tools are still missing. We believe eompiler that would generate LOTOS
specifications from TMDL descriptions is essential. Tag management and semantic
rules also have to be considered.
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Long-Term Research Issues

» The definition ofTimethread Correctness Preserving TransformatipiSPTs) based
on LOTOS CPTs would represent a major step towards a more complete methodology.

* Interpretation methods for other target formal semantic model, e.g. Petri nets, would
take advantage of the multi-formalism validation allowed by our approach.

* Since we mostly deal with real-time systems, introduction of data and time concepts
might be needed sooner or later. Extensions to the LOTOS language concerning time,
ADTs, modularity, and typed gates should be studied in the future.

* More complete definitions of path equivalence, conformance, and extension relations
between timethreads would be an asset for design validation purpose.

* How not to lose identity of previous timethreads in factored maps (86.4.1) is a research
topic that deserves closer attention.

* The integration of architecture notations and timethread maps needs to be studied for
our approach to be useful later in the life-cycle methodology.

 To automate our process, we need tools and GUIs that would generate TMDL
descriptions.

» Other real-life case studies could be an excellent way to test and improve the methods
defined in this thesis.
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Specification Traveler_Level3

Appendix B.  Specification Traveler_Level3

The following specification is the level 3 interpretation of Theveler SysteniThe modifications

done to the level 1 specification of chapter 5 to transform it to a level 3 specificatitalicized

The transformation of processemveleransPlaneare straightforward, but proces$gispatcher

and Cab need to have a more complex mechanism to manage constrained-start timethread in a
recursive environment.

1 (* Traveler_Level3; Daniel Amyot, March 29, 1994 *)

2 (* Level 3 specification of the Traveler system *)

3

4 specification Traveler_Level3[Tnew (* New traveler wants to travel *),
5 Tdest (* Traveler arrives to destination *) ] : noexit
6

7 behaviour (* Structure obtained from the LARG *)

8

9 hide (* hidden interactions *)

10 TphoneD, (* Traveler phones Dispatcher for a cab *)
11 TgetinC, (* Traveler gets in the cab *)

12 TCride, (* Traveler and cab ride *)

13 TgetoutC, (* Traveler gets out the cab *)

14 TgetonP, (* Traveler gets on the plane *)

15 TPflight, (* Traveler and plane flight *)

16 TgetoffP, (* Traveler gets off the plane *)

17 Din, (* Dispatcher is in the office *)

18 DaskC, (* Dispatcher asks for a cab *)

19 Dout, (* Dispatcher is not in the office *)

20 Cin, (* Taxi driver in the cab *)

21 Cout, (* Taxi driver not in the cab *)

22 Pready, (* Plane is ready *)

23 Phangar (* Plane goes to the hangar *)

24

25 in

26

27 Traveler[Tnew, TphoneD, TgetinC, TCride, TgetoutC, TgetonP, TPflight, TgetoffP, Tdest]
28 |[TphoneD, TgetinC, TCride, TgetoutC, TgetonP, TPflight, TgetoffP]|
29 (

30 Plane[Pready, TgetonP, TPflight, TgetoffP, Phangar]
31 Il

32 (

33 Dispatcher[Din, TphoneD, DaskC, Dout]

34 |[DaskC]|

35 Cabl[Cin, DaskC, TgetinC, TCride, TgetoutC, Cout]
36 )

37 )

38

39 where

40

41  (* Local hidden actions: *)

42 (* e *)

43  (* Traveler: Tairport *)

44  (* Plane: *)

45  (* Dispatcher: DlookforC, Dfillstats, Dready *)

46  (* Cab: CgoD, Cgarage *)

47

48
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49  (* Timethread Traveler *)

50 process Traveler[Tnew, TphoneD, TgetinC, TCride, TgetoutC, TgetonP, TPflight, TgetoffP
51 Tdest] : noexit =

52 hide Tairport in (* hidden action *)

53 Tnew;

54 (

55 TphoneD; stop (* in-passing interaction *)

56 If

57 (

58 TgetinC; (* rest of the path *)

59 TCride;

60 TgetoutC;

61 Tairport;

62 TgetonP;

63 TPflight;

64 TgetoffP;

65 Tdest; stop

66 )

67 If

68 (* recursion for level 3 *)

69 Traveler[Tnew, TphoneD, TgetinC, TCride, TgetoutC, TgetonP, TPflight, TgetoffP,
70 Tdest]

71 )

72 endproc (* Traveler *)

73

74 (* *)

75

76  (* Timethread Dispatcher *)

77 process Dispatcher[Din, TphoneD, DaskC, Dout] : noexit =
78 (* hidden actions *)

79 hide

80 DlookforC, (* Dispatcher looks for a cab *)

81 Dfillstats, (* Dispatcher fills statistics *)

82 Dready, (* Dispatcher is ready for next traveler *)

83 SyncCS (* Internal synchronization for level 3 constrained start *)

84 in

85 DispatcherWP_CSI[Din, SyncCS]

86 |[SyncCS]|

87 DispatcherSub[SyncCS, TphoneD, DlookforC, DaskC, Dfillstats, Dready, Dout]
88 where

89

920 (* Waiting Place Machinery *)

91 process DispatcherWP_CS|[Din, SyncCS] : noexit =

92 Din;

93

94 SyncCS; stop (* Allows one token to go *)

95 Il

96 DispatcherWP_CS[Din, SyncCS] (* Accumulation of Din *)

97 )

98 endproc (* DispatcherWP_CS *)

99

100 (* Rest of the timethread *)

101 process DispatcherSub[SyncCS, TphoneD, DlookforC, DaskC, Dfillstats, Dready, Dout]
102 : noexit =

103 SyncCS; DispatcherLoop[SyncCS, TphoneD, DlookforC, DaskC,Dfillstats,Dready,Dout]
104 where

105
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107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
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124
125
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127
128
129
130
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132
133
134
135
136
137
138
139
140
141
142
143
144
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147
148
149
150
151
152
153
154
155
156
157
158
159

Specification Traveler_Level3

process DispatcherLoop| SyncCS, TphoneD, DlookforC, DaskC,Dfillstats,Dready,Dout]

: noexit =
(* Compulsory segment *)
TphoneD;
DlookforC;
(
DaskC; stop (* in-passing interaction *)
11l
Dfillstats;

(
(* Optional segment *)
Dready;
DispatcherLoop[ SyncCS,TphoneD,DlookforC,DaskC,Dfillstats,Dready,Dout]
1
(* Exit Loop *)
Dout;
DispatcherSub[SyncCS,TphoneD,DlookforC,DaskC,Dfillstats,Dready,Dout]

endproc (* DispatcherLoop *)
endproc (* DispatcherSub *)
endproc (* Dispatcher *)

* *)

(* Timethread Cab *)
process Cab[Cin, DaskC, TgetinC, TCride, TgetoutC, Cout] : noexit =
(* hidden actions *)
hide
CgoD, (* Cab goes to wait the dispatcher *)
Cgarage, (* Cab goes to the garage *)
SyncCS (* Internal synchronization for level 3 constrained start *)
in
CabWP_CS|Cin, SyncCS]
[SyncCS]|
Cabsub[SyncCS, DaskC, TgetinC, TCride, TgetoutC, CgoD, Cgarage, Cout]
where

(* Waiting Place Machinery *)
process CabWP_CSICin, SyncCS] : noexit =
Cin;
(
SyncCS; stop (* Allows one token to go *)
Il
CabWP_CSJ[Cin, SyncCS] (* Accumulation of Cin *)

)
endproc (* DispatcherWP_CS *)

(* Rest of the timethread *)
process Cabsub[SyncCS, DaskC, TgetinC, TCride, TgetoutC, CgoD, Cgarage, Cout]
: noexit =
SyncCS; CabLoop[SyncCS, DaskC, TgetinC, TCride, TgetoutC, CgoD, Cgarage, Cout]
where
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160 process CabLoop[ SyncCS, DaskC, TgetinC, TCride, TgetoutC, CgoD, Cgarage, Cout]
161 : noexit =

162 (* Compulsory segment *)

163 DaskC;

164 TgetinC;

165 TCride;

166 TgetoutC;

167 (

168 (* Optional segment *)

169 CgoD; CabLoop[ SyncCS, DaskC, TgetinC, TCride, TgetoutC,CgoD,Cgarage,Cout]
170 1]

171 (* Exit Loop *)

172 Cgarage;

173 Cout; Cabsub[SyncCS, DaskC, TgetinC, TCride, TgetoutC,CgoD, Cgarage, Cout]
174 )

175 endproc (* CabLoop *)

176 endproc (* Cabsub *)

177 endproc (* Cab *)

178

179 (* )

180

181 (* Timethread_Plane *)

182 process Plane[Pready, TgetonP, TPflight, TgetoffP, Phangar] : noexit =
183 (* no hidden action in the timethread *)

184 Pready;

185 (

186 TgetonP;

187 TPflight;

188 TgetoffP;

189 Phangar; stop

190 Il

191 (* recursion for level 3 *)

192 Plane[Pready, TgetonP, TPflight, TgetoffP, Phangar]

193 )

194 endproc (* Plane *)

195 endspec (* Specification Traveler_Level3 *)

Specification 11: Traveler System, Level 3
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Appendix C.  Specification Telepresence

This specification is the level 1 interpretation (without recursion) ofTglepresence System
(chapter 6).

1 (* Specification Telepresence, 14 April 1994 *)

2 (* Level 1 specification, without recursion *)

3

4 specification Telepresence[ Contact, (* Initiator want to contact responder *)
5 Report, (* Result of a contact *)

6 Close, (* Close user's door *)

7 Open, (* Open user's door *)

8 Terminate,(* Initiator terminates a connection *)

9 Next  (* Get ready for next connection *) ] : noexit
10

11  library

12 Boolean, NaturalNumber

13 endlib

14

15 (* Tag ADT definition. All possible tags are enumerated here. *)
16 type Tag is Boolean, NaturalNumber
17 sorts Tag

18 opns No, Yes, (* Tags *)

19 Success, Denied, TimeOut,

20 Open, Close,

21 Access,

22 OK, TOut :->Tag

23 N :Tag -> Nat  (* Tag-to-Nat function *)
24 _eq_,

25 _ne_:Tag, Tag -> Bool (* Tag equivalence *)
26 eqns forall X, y: Tag

27 ofsort Nat

28 N(No) =0;

29 N(Yes) = Succ(N(No));

30 N(Success) = Succ(N(Yes));

31 N(Denied) = Succ(N(Success));
32 N(TimeOut) = Succ(N(Denied));
33 N(Open) = Succ(N(TimeOut));
34 N(Close) = Succ(N(Open));

35 N(Access) = Succ(N(Close));
36 N(OK) = Succ(N(Access));
37 N(TOut) = Succ(N(OK));

38 ofsort  Bool

39 xeqy =N(x)eq N(y);

40 Xxhney =not(x eqy);

41  endtype

42

43  behaviour (* Architecture obtained from the LARG *)

44

45  hide (* hidden interactions *)

46 Knock, (* Send a checkdoor request *)

47 DoorState, (* Check the responder's door state *)

48 DoorChecked, (* The responder's door has been checked *)

49 Transmit, (* Begin transmission of voice and images *)

50 Receive, (* Start the reception *)

51 SendState, (* Indicate to the responder wether the initiator disconnects *)
52 EndSend, (* The transmission is ended *)

53 RecState, (* Indicate wether the initiator asked to terminate *)
54 Played, (* Voice and image messages were played *)

55 EndRec (* The connection has terminated *)

56
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57 in

58

59 (

60 (

61 Connection[Contact, Knock, DoorChecked, EndRec, Report, Next]
62 Il

63 Transmission[Transmit, Receive, SendState, EndSend]

64 )

65 |[Receive, SendState, EndRec]|

66 (

67 Disconnection[Terminate, RecState]

68 |[RecState]|

69 Reception[Receive, RecState, Played, SendState, EndRec]
70 )

71 )

72 |[Knock, DoorChecked, Transmit]|

73 (

74 Knocking[Knock, DoorState, Transmit, DoorChecked]

75 |[DoorState]|

76 (

77 Opening[Open, DoorState]

78 If

79 Closing[Close, DoorState]

80 )

81 )

82

83  where

84

85 (* *)

86

87  (* Timethread Connection *)

88 process Connection[Contact, Knock, DoorChecked, EndRec, Report, Next] : noexit =
89 (* hidden gates for time WP and choice *)

90 hide

91 TimeOutCon,

92 SyncTOCon,

93 SyncOrCon

94 in

95 Contact;

96 (

97 Knock; stop

98 If

99 (* Wait Time Mechanism *)

100 (

101 TimeOutCon;

102 SyncTOCon ! TOut ! TOut; (* The 2nd tag is a dummy used for synchro only *)
103 stop

104 0

105 DoorChecked ? Resp: Tag;

106 SyncTOCon ! OK ! Resp;

107 stop

108 )

109 |[SyncTOCon]|

110 SyncTOCon ? ResultTO: Tag ? Resp: Tag; (* Tags have to follow *)
111 (* Choice Mechanism *)

112 (

113 [ResultTO eq TOut] (* [G1] *) ->

114 ( let Rpt: Tag = TimeOut in SyncOrCon ! ResultTO ! Resp ! Rpt; stop )
115 1]

116 [(ResultTO eq OK) and (Resp eq Denied)] (* [G2] *) ->
117 (let Rpt: Tag = Denied in SyncOrCon ! ResultTO ! Resp ! Rpt; stop )
118 1]

119 [(ResultTO eq OK) and (Resp eq Access)] (* [G3] *) ->
120 (let Rpt: Tag = Success in

121 EndRec;
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122 SyncOrCon ! ResultTO ! Resp ! Rpt; stop
123 )

124 )

125 [[SyncOrCon]|

126 SyncOrCon ? ResultTO: Tag ? Resp: Tag ? Rpt: Tag;

127 (

128 Report ! Rpt; stop

129 Il

130 Next; stop

131 )

132 )

133 endproc (* Connection *)

134

135 (* *)

136

137 (* Timethread Transmission *)

138 process Transmission[Transmit, Receive, SendState, EndSend] : noexit =
139 hide

140 (* hidden actions *)

141 Signal, (* Someone is observing *)

142 RecVoice, (* The micro records the voice *)

143 Reclmage (* The camera records the image *)

144 in

145 Transmit; TLoop [Receive, SendState, EndSend, Signal, RecVoice, Reclmage]
146

147 where

148 process TLoop [Receive, SendState, EndSend, Signal, RecVoice, Reclmage] : noexit =
149 (* hidden gate for Par and Signal WP *)

150 hide

151 SyncAndTra,

152 SyncSigTra

153 in

154 Signal;

155 (

156 Reclmage; SyncAndTra; stop

157 [[SyncAndTra]|

158 RecVoice; SyncAndTra; stop

159 )

160 |[SyncAndTra]|

161 SyncAndTra;

162 (

163 Receive; stop

164 If

165 (* Waiting place signal management *)

166 (

167 SendState; SyncSigTra ! Yes; stop
168 1]

169 SyncSigTra ! No; stop

170 )

171 [[SyncSigTra]|

172 SyncSigTra ? Sig: Tag;

173 (

174 [Sig eq No] (* [G6] *) ->

175 (TLoop [Receive, SendState, EndSend, Signal, RecVoice, Reclmage])
176 1]

177 [Sig eq Yes] (* [G7] *) -> (EndSend; stop )
178 )

179 )

180 endproc (* TLoop *)

181 endproc (* Transmission *)

182
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183 (* )

184

185 (* Timethread Disconnection *)

186 process Disconnection[Terminate, RecState] : noexit =
187 Terminate;

188 (

189 RecState; stop

190 )

191 endproc (* Disconnection *)

192

193 *)

194

195 (* Timethread Reception *)

196 process Reception[Receive, RecState, Played, SendState, EndRec] : noexit =
197 hide

198 (* hidden actions *)

199 Playlmage, (* The monitor shows the image *)
200 PlayVoice, (* The speaker plays the voice *)
201 Disconnect, (* Update disconnection status *)
202 (* hidden gates for Par and Signal WP *)

203 SyncAndRec,

204 SyncSigRec

205 in

206 Receive;

207 (

208 (

209 Playlmage; SyncAndRec; stop
210 |[SyncAndRec]|

211 PlayVoice; SyncAndRec; stop
212 )

213 |[SyncAndRec]|

214 SyncAndRec;

215 (* Waiting place signal management *)

216 (

217 RecState; SyncSigRec ! Yes; stop
218 0

219 SyncSigRec ! No; stop

220 )

221 |[SyncSigRec]|

222 SyncSigRec ? Sig: Tag;

223 (

224 [Sig eq Yes] (* [G9] *) ->

225 (SendsState; stop

226 I1l

227 Disconnect;

228 EndRec; stop

229 )

230 0

231 [Sig eq No] (* [G8] *) -> (Played; stop )
232 )

233 )

234 endproc (* Reception *)

235

236 *)

237

238 (* Timethread Knocking *)

239 process Knocking[Knock, DoorState, Transmit, DoorChecked] : noexit =
240 (* hidden gates for signal WP *)

241 hide

242 DoorStateMem (* Memory cell for internal use *)
243 in

244 (* Waiting place with memory management *)

245 DoorStateMemory [DoorState, DoorStateMem] (Close)
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|[DoorStateMem]|
Knocking2[Knock, DoorStateMem, Transmit, DoorChecked]
where
process Knocking2[Knock, DoorStateMem, Transmit, DoorChecked] : noexit =
(* hidden gates for lost and choice *)
hide

KnockLost, (* The knock request is lost *)
SyncOrKno  (* Internal synchro. for the OR fork *)
in
Knock;
(
KnockLost; stop

1
DoorStateMem ? DS: Tag;
[DS eq Close] (* [G4] *) ->( let Rep: Tag = Denied in SyncOrKno ! DS ! Rep; stop )

1
[DS eq Open] (* [G5] *) ->

( let Rep: Tag = Access in
Transmit; stop
1l
SyncOrKno ! DS ! Rep; stop
)
)
[[SyncOrKno]|

SyncOrKno ? DS: Tag ? Rep : Tag;
DoorChecked ! Rep;
stop

)
endproc (* Knocking2 *)

process DoorStateMemory [DoorState, DoorStateMem] (Mem: Tag): noexit =
DoorState ? NewMem: Tag; DoorStateMemory [DoorState, DoorStateMem] (NewMem)

0

DoorStateMem ! Mem; DoorStateMemory [DoorState, DoorStateMem] (Mem)
endproc (* DoorStateMemory *)

endproc (* Knocking *)

* *)

(* Timethread Opening *)
process Opening[Open, DoorState] : noexit =
Open;
(
let D: Tag = Open in
DoorState ! D; stop

)
endproc (* Opening *)

* *)

(* Timethread Closing *)
process Closing[Close, DoorState] : noexit =
Close;

(
let D: Tag = Close in

DoorState ! D; stop
)

endproc (* Closing *)

endspec (* Telepresence *)

Specification 12: Telepresence System, Level 1 Without Recursion
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Appendix D.  Validation of Telepresence, Level 1 with Recursion

We present here the validation of the level 1 specification Telepresence (with recursion) against
different scenarios. We use the simulation and testing techniques presented in section 5.4.

D.I Simulation

The following sequence of activities is a complex scenario (connection-transmission-connection),
obtained with the help of ELUDO, that reveals a few problems associated to the current design.

(* Tree generated by Isla *)
Telepresence[Contact, Report, Close, Open, Terminate, Next]()

Terminate _
Contact; \ 1) Terminateaccepted before
Open;

hidden DoorState !Open:Tag; transmission starts.
hidden Knock;

hidden DoorStateMem !Open:Tag;

hidden SyncOrKno !Open:Tag !Access:Tag;
hidden DoorChecked !Access:Tag;

hidden SyncTOCon !OK:Tag !Access:Tag;
hidden Transmit;

hidden Signal;

hidden Reclmage;

hidden RecVoice;

hidden SyncAndTra;

hidden SyncSigTra INo:Tag;
hidden Signal;
hidden Reclmage;
hidden RecVoice;
hidden SyncAndTra;
hidden Receive ;
hidden Playlmage;

2) Receiving in right order?

hidden PlayVoice; 3) Same transmission
hidden SyncAndRec; . . X
Terminate : g terminated twice. Will affectja
hidden RecState; ..

hidden SyncSigRec !Yes:Tag; second transmision.

hidden SendState;

hidden SyncSigTra !Yes:Tag;
hidden EndSend;

hidden Disconnect;

hidden EndRec;

hidden SyncOrCon !OK:Tag !Access:Tag !Success:T ...; 4) Previous reception
Report ISuccess:Tag;

Next; continues afte€ontact
Contact ;

hidden Receive ; - n
hiddon 5) Information playing afte

hidden PlayVoice
hidden SyncAndRec;

hidden RecState ;
hidden ~SyncSigRec !Yes:Tag _\ 6) Second transmission
terminated while the first one

was aimed.

-

- DisconnectandEndRec
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D.II  Testing

Two acceptance and one rejection test cases, inspired fradDotimectioruse case, are applied to
the Telepresencepecification. We use the testing facilities of LOLA to get meaningful results.

Eirst Acceptance Test Case
This process tests whether the posdta@ors areDeniedor TimeOutwhen the responder’s door
is closed (by default in the specification).

process AcceptTestl[Contact, Report, Success]: noexit =
(* Test for denied or timeout report when the door is closed (default) *)
Contact;
(
Report ! Denied; Success; stop
0
Report ! TimeOut; Success; stop
)
endproc (* AcceptTestl *)

Specification 13: Acceptance test case 1 for level 1 Telepresence System

We use LOLA's commandestExpando test all possible scenarios. The result, expressed below,
shows our test case to benast passtest. This indicates a valid behaviour from our specification.

lola> TestExpand -1 Success AcceptTestl -i
Composing behaviour and test :

Analysed states =139
Generated transitions = 184
Duplicated states =0
Deadlocks =0

Process Test = accepttestl
Test result = MUST PASS

successes = 46
stops =0
exits =0

cuts by depth =0

: o o

This second process tests tRa&portcannot outpuSuccessvhen the responder’s door is closed
(it is initially closed in the specification).
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process RejectTestl[Contact, Report, Fail]: noexit =
(* Test for denied or timeout report when the door is closed (default) *)
Contact;
Report ! Success; Falil; stop
endproc (* RejectTestl *)

Specification 14: Rejection test case 1 for level 1 Telepresence System

The TestExpangbrocedure returngject, meaning that our specification behaves properly.

lola> TestExpand -1 Fail RejectTestl -i

Composing behaviour and test :

Analysed states =93
Generated transitions = 92
Duplicated states =0
Deadlocks =31

Process Test = rejecttestl
Test result = REJECT

successes =0
stops = 31
exits =0
cuts by depth =0

Second Acceptance Test Case
This more complex process tests that, when the resp@umkas his/her door and the initiator

Contacs the responder, thReportshould output é&uccesor possibly alimeOutwhen the
initiator Terminata the connection.

process AcceptTest2[Contact, Open, Terminate, Report, Success]: noexit =
(* Test for success (or timeout) report when the responder opens the door *)
Open;
Contact;
(
Terminate;
(
Report ! Success; Success; stop
0
Report ! TimeOut; Success; stop
)
0
Report ! TimeOut; Success; stop

)
endproc (* AcceptTest2 *)

Specification 15: Acceptance test case 2 for level 1 Telepresence System
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Since the transition system generated fromTédepresencspecification is infinite when there is

a transmission, we must limit the depth of the search (here to 15 events) T&stRapand
procedure. This generates a huge number of executions (509507) that should give us confidence
in the result.

lola> TestExpand 15 Success AcceptTest2 -i -y

Composing behaviour and test :

Analysed states =331916
Generated transitions = 841382
Duplicated states =0
Deadlocks =40

Process Test = accepttest2
Testresult = MAY PASS

509507 executions analysed:

successes = 63617
stops = 40
exits =0
cuts by depth = 445850
LOLA outputsmay passas a result. On 509507 executions, 63617 were successful, 40 were

unsuccessful, and the remaining 445850 were unfinished (they were probably still in the
transmission loop).

We can look for specific instances of successful and unsuccessful executions Witie rgpand
command of LOLA. By using different seeds, we were able to find an instanc&uctasseport

and one of alimeOutreport (fig. 93). We also found one unsuccessful execution where the
deadlock was caused by a closed door. Although the resp@Qubsed the door before the
Contactof the initiator, the door did not change its internal state before it was checked by the
knocking request. This race condition is therefore due to time lapsed be@yssmand
DoorState

LOLA also allows users to take a closer look to its diagnostics. The optiai TestExpand
output all traces leading to a deadlock, in the form of a monolithic LOTOS tree with choices and
action prefixes only. Other options output the other types of traces

* -d :traces cut by depth search.
* -a :traces leading to the success event.
* -e :traces leading texit.
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(* Reached a Success report *)
OneExpand -1 Success AcceptTest2 182 -v -i

Composing behaviour and test :

1 open;

2 contact;

3 i; (* doorstate ! open *)

4 i; (* knock *)

5 i; (* doorstatemem ! open *)
6 i; (* syncorkno ! open ! access *)
7 i; (* transmit *)

8 i; (* doorchecked ! access *)
9 i; (* synctocon ! ok ! access *)
10 terminate;

11 i; (* signal *)

12 i; (* recvoice *)

13 i; (* recimage *)

14 i; (* syncandtra *)

15 i; (* syncsigtra ! no *)

16 i; (* signal *)

17 i; (* recvoice *)

18 i; (* receive *)

19 i; (* playimage *)

20 i; (* playvoice *)

21 i; (* syncandrec *)

22 i; (* recimage *)

23 i; (* recstate *)

24 i; (* syncandtra *)

25 i; (* syncsigrec ! yes *)

26 i; (* syncsigtra ! no *)

27 i; (* signal *)

28 i; (* disconnect *)

29 i; (* recvoice *)

30 i; (* recimage *)

31 i; (* endrec *)

32 i; (* syncorcon! ok laccess !success *)
33 i; (* receive *)

34 report ! success ;

35 i; (* syncandtra *)

36 i; (* syncsigtra ! no *)

37 success;

Process Test = accepttest2
Testresult = SUCCESSFUL EXECUTION

Transitions generated = 37

(* Reached a TimeOut report *)
OneExpand -1 Success AcceptTest2 144 -v -i

Composing behaviour and test :

1 open;

2 contact;

3 terminate;

4 i; (* knock *)

5 i; (* doorstate ! open *)

6 i; (* knocklost *)

7 i; (* timeoutcon *)

8 i; (* synctocon ! tout ! tout *)
9 i; (* syncorcon !tout !tout !timeout *)
10 report ! timeout ;
11 success;

Process Test = accepttest2
Testresult = SUCCESSFUL EXECUTION

Transitions generated = 11

(* Deadlock caused by a closed door *)
OneExpand -1 Success AcceptTest2 16 -v -i

Composing behaviour and test :

1 open;

2 contact;

3 terminate;

4 i; (* knock *)

50 (* doorstatemem ! close )
6 i; (* syncorkno ! close ! denied *)

7 i; (* doorchecked ! denied *)

8 i; (* doorstate ! open *)

9 i; (* synctocon ! ok ! denied *)

10 i; (* syncorcon ! ok !denied !denied *)
11 stop

Process Test = accepttest2
Test result = REJECTED EXECUTION

Transitions generated = 11

Figure 93: Scenarios generated with OneExpand for the Telepresence specification
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Appendix E.  Specification Telepresence _1SUD

This specification is the level 1 interpretation (with recursion) offélepresence Systemhere
functionalities of both roles (Initiator/Responder) are within one SUD (chapter 6).

1 (* Specification Telepresence_1SUD, 28 May 1994 *)

2 (* Level 1 specification, with recursion *)

3

4 specification Telepresence_1SUD [ Contact, (* Initiator want to contact responder *)
5 Report, (* Result of a contact *)

6 Close, (* Close user's door *)

7 Open, (* Open user's door *)

8 Terminate,(* Initiator terminates a connection *)

9 Next, (* Get ready for next connection *)

10 Din, DOut (* Incoming/Outgoing data*) ] : noexit
11

12 library

13 Boolean, NaturalNumber

14  endlib

15

16 (* Tag ADT definition. All possible tags are enumerated here. *)
17 type Tag is Boolean, NaturalNumber
18 sorts Tag

19 opns No, Yes, (* Tags *)

20 Success, Denied, TimeOut,

21 Open, Close,

22 Access,

23 OK, TOut,

24 RDataln, RDataOut,

25 KDataln, KDataOut,

26 dummy :->Tag

27 N :Tag -> Nat  (* Tag-to-Nat function *)
28 _eq_,

29 _ne_:Tag, Tag -> Bool (* Tag equivalence *)
30 eqns forall x,y:Tag

31 ofsort Nat

32 N(No) =0; (* Tag-to-Natural Mapping *)
33 N(Yes) = Succ(N(No));

34 N(Success) = Succ(N(Yes));

35 N(Denied) = Succ(N(Success));
36 N(TimeOut) = Succ(N(Denied));
37 N(Open) = Succ(N(TimeOut));
38 N(Close) = Succ(N(Open));

39 N(Access) = Succ(N(Close));

40 N(OK) = Succ(N(Access));

41 N(TOut) = Succ(N(OK));

42 N(RDataln) = Succ(N(TOut));

43 N(RDataOut) = Succ(N(RDataln));
44 N(KDataln) = Succ(N(RDataOut));
45 N(KDataOut) = Succ(N(KDataln));
46 N(dummy) = Succ(N(KDataOut));
47 ofsort  Bool

48 xeqy =N(x)eqN(y);

49 Xxney =not(x eqy);

50 endtype

51

52  behaviour (* Architecture obtained from the LARG *)
53

54  hide (* hidden interactions *)

55 Knock, (* Send a checkdoor request *)

56 DoorState, (* Check the responder's door state *)
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57 DoorChecked, (* The responder's door has been checked *)
58 Transmit, (* Begin transmission of voice and images *)

59 Receive, (* Start the reception *)

60 SendState, (* Indicate to the responder wether the initiator disconnects *)
61 EndSend, (* The transmission is ended *)

62 RecState, (* Indicate wether the initiator asked to terminate *)
63 Played, (* Voice and image messages were played *)

64 EndRec (* The connection has terminated *)

65

66 in

67

68 (

69 (

70 Connection[Contact, Knock, DoorChecked, EndRec, Report, Next]
71 [[KnocK]|

72 Knocking[Knock, DOut]

73 )

74 |[EndRec]|

75 (

76 Transmission[Transmit, Receive, SendState, EndSend]
77 |[Receive]|

78 Reception[Receive, DOut]

79 )

80 )

81 |[Transmit, DoorChecked, SendState]|

82 (

83 (

84 Data[DIn, DOut, SendState, DoorChecked, DoorState, Transmit, RecState,Played, EndRec]
85 |[RecState]|

86 Disconnection[Terminate, RecState]

87 )

88 |[DoorState]|

89 (

20 Opening[Open, DoorState]

91 If

92 Closing[Close, DoorState]

93 )

94 )

95

96 where

97

98 (* *)

99

100 (* Timethread Connection *)

101 process Connection[Contact, Knock, DoorChecked, EndRec, Report, Next] :
102 (* hidden gates for time WP and choice *)

103 hide

104 TimeOutCon,

105 SyncTOCon,

106 SyncOrCon

107 in

108 Contact;

109 (

110 Knock; stop

m Il

112 (* Wait Time Mechanism *)

113 (

114 TimeOutCon;

115 SyncTOCon ! TOut ! dummy; (* The 2nd tag is a dummy used for synchro only *)
116 stop

117 1]

118 DoorChecked ? Resp: Tag;

119 SyncTOCon ! OK ! Resp;

120 stop

121 )

noexit
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122 [[SyncTOCon]|

123 SyncTOCon ? ResultTO: Tag ? Resp: Tag; (* Tags have to follow *)
124 (* Choice Mechanism *)

125 (

126 [ResultTO eq TOut] -> (*[G1] *)

127 ( let Rpt: Tag = TimeOut in SyncOrCon ! ResultTO ! Resp ! Rpt; stop )
128 0

129 [(ResultTO eq OK) and (Resp eq Denied)] -> (*[G2] *)

130 (let Rpt: Tag = Denied in SyncOrCon ! ResultTO ! Resp ! Rpt; stop )
131 0

132 [(ResultTO eq OK) and (Resp eq Access)] -> (* [G3] *)

133 (let Rpt: Tag = Success in

134 EndRec;

135 SyncOrCon ! ResultTO ! Resp ! Rpt; stop
136 )

137 )

138 [[SyncOrCon]|

139 SyncOrCon ? ResultTO: Tag ? Resp: Tag ? Rpt: Tag;

140 (

141 Report ! Rpt; stop

142 Il

143 Next; Connection[Contact, Knock, DoorChecked, EndRec, Report, Next]
144 )

145 )

146 endproc (* Connection *)

147

148 (* *)

149

150 (* Timethread Transmission *)

151 process Transmission[Transmit, Receive, SendState, EndSend] : noexit =
152 hide

153 (* hidden actions *)

154 Signal, (* Someone is observing *)

155 RecVoice, (* The micro records the voice *)

156 Reclmage (* The camera records the image *)

157 in

158 Transmit; TLoop [Transmit, Receive, SendState, EndSend, Signal, RecVoice, Reclmage]
159

160 where

161 process TLoop [Transmit, Receive,SendState,EndSend, Signal,RecVoice,Recimage]: noexit =
162 (* hidden gate for Par and Signal WP *)

163 hide

164 SyncAndTra,

165 SyncSigTra

166 in

167 Signal;

168 (

169 Reclmage; SyncAndTra; stop

170 |[SyncAndTra]|

171 RecVoice; SyncAndTra; stop

172 )

173 |[SyncAndTra]|

174 SyncAndTra;

175 (

176 Receive; stop

177 I

178 (* Waiting place signal management *)

179 (

180 SendState; SyncSigTra ! Yes; stop

181 1

182 SyncSigTra ! No; stop

183 )

184 |[SyncSigTra]|

185 SyncSigTra ? Sig: Tag;
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186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

(*

(

[Sig eq No] -> (* [G6] *)
(TLoop [Transmit, Receive, SendState, EndSend, Signal, RecVoice, Recimage])

[ (*Nextguardis [G7]*)
[Sig eq Yes] -> (EndSend; Transmission[Transmit, Receive, SendState, EndSend])

)

)
endproc (* TLoop *)
endproc (* Transmission *)

%)

(* Timethread Disconnection *)

(*

process Disconnection[Terminate, RecState] : noexit =
Terminate;

(

RecState; Disconnection[Terminate, RecState]

)

endproc (* Disconnection *)

%)

(* Timethread Reception *)

(*

process Reception[Receive, DOut] : noexit =
Receive;

(
)

endproc (* Reception *)

let oP: Tag = RDataln in DOut ! oP ! dummy; Reception[Receive, DOut]

*)

(* Timethread Knocking *)

(*

process Knocking[Knock, DOut] : noexit =
hide
KnockLost (* The knock request is lost *)
in
Knock;
(
KnockLost; Knocking[Knock, DOut]
0
( let oP: Tag = KDataln in DOut ! oP ! dummy; Knocking[Knock, DOut]

)

endproc (* Knocking *)

*)

(* Timethread Opening *)

(*

process Opening[Open, DoorState] : noexit =
Open;
(
let D: Tag = Open in
DoorState ! D; Opening[Open, DoorState]

)
endproc (* Opening *)

*)

184
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246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
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263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

(* Timethread Closing *)
process Closing[Close, DoorState] :
Close;
(
let D: Tag = Close in
DoorState ! D; Closing[Close, DoorState]
)

endproc (* Closing *)

* “)

Specification Telepresence_1SUD

noexit =

process Data[DIn, DOut, SendState, DoorChecked, DoorState, Transmit, RecState, Played,

EndRec]: noexit =

(* hidden gates for signal WP *)
hide

DoorStateMem (* Memory cell for internal use *)

n

(* Waiting place with memory management *)

DoorStateMemory [DoorState, DoorStateMem] (Close)

|[DoorStateMem]|

Data2[DoorStateMem,DIn, DOut,SendState, DoorChecked, Transmit,RecState, Played,EndRec]

where

process Data2[DoorStateMem, DIn, DOut, SendState, DoorChecked, Transmit, RecState,

Played, EndRec]:

noexit =

(* hidden gates for Choice, Par and Signal WP *)

hide
SyncOrKno,
SyncAndRec,
SyncSigRec,
(* hidden actions *)
Playlmage,
PlayVoice,

(* Internal synchro. for the OR fork *)

(* The monitor shows the image *)
(* The speaker plays the voice *)

Disconnect (* Update disconnection status *)

In

DIn ? iP: Tag ? iRep :Tag;
(

[(iP ne KDataOut) and (iP ne RDataOut)] -> (* [Gadded] *)

(
[iP eq RDataln] ->
(

(
Playlmage; SyncAndRec;
|[SyncAndRec]|
PlayVoice; SyncAndRec;

)

|[SyncAndRec]|

SyncAndRec;

(* [G10] *) (* Body of Reception *)

stop

stop

(* Waiting place signal management *)

(
RecState; SyncSigRec ! Yes;

I
SyncSigRec ! No;

)
|[SyncSigRec]|
SyncSigRec ? Sig: Tag;
(
[Sig eq Yes] -> (*[G9]*)

stop

stop

( let oP: Tag = RDataOut in

DOut ! oP ! dummy;

Data2[DoorStateMem,DIn,DOut,SendState,DoorChecked, Transmit,

RecState, Played, EndRec]
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309 Disconnect;

310 EndRec; stop

311 )

312 0

313 [Sig eq No] (* [G8] *) ->

314 ( Played; Data2[DoorStateMem, DIn, DOut, SendState, DoorChecked,
315 Transmit, RecState, Played, EndRec])

316 )

317 )

318 0

319 [iP eq KDataln] -> (* [G13] *) (* Body of Knocking *)

320 (

321 DoorStateMem ? DS: Tag;

322 (

323 [DS eq Close] -> (* [G4] *)

324 ( let oRep: Tag = Denied in SyncOrKno ! DS ! oRep; stop )
325 Il

326 [DS eq Open] -> (* [G5] *)

327 ( let oRep: Tag = Access in

328 Transmit; stop

329 11l

330 SyncOrKno ! DS ! oRep; stop

331 )

332 )

333 |[SyncOrKno]|

334 SyncOrKno ? DS: Tag ? oRep : Tag;

335 ( let oP: Tag = KDataOut in

336 DOut ! oP ! oRep;

337 Data2[DoorStateMem, DIn, DOut, SendState, DoorChecked, Transmit,
338 RecState, Played, EndRec])

339 )

340 )

341 Il

342 [iP eq KDataOut] -> (* [G11] *) (* End of Knocking *)

343 (DoorChecked ! iRep;

344 Data2[DoorStateMem, DIn, DOut, SendState, DoorChecked, Transmit, RecState,
345 Played, EndRec])

346 1l

347 [iP eq RDataOut] -> (* [G12] *) (* End of Reception *)

348 (SendState;

349 Data2[DoorStateMem, DIn, DOut, SendState, DoorChecked, Transmit, RecState,
350 Played, EndRec])

351 )

352 endproc (* Data2 *)

353

354 process DoorStateMemory [DoorState, DoorStateMem] (Mem: Tag): noexit =
355 DoorState ? NewMem: Tag; DoorStateMemory [DoorState, DoorStateMem] (NewMem)
356 Il

357 DoorStateMem ! Mem; DoorStateMemory [DoorState, DoorStateMem] (Mem)

358 endproc (* DoorStateMemory *)

359

360 endproc (* Data *)

361

362 endspec (* Telepresence_1SUD *)

Specification 16: Telepresence System (1 SUD), Level 1 With Recursion
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Appendix F.  Validation of Telepresence 2Systems

Two acceptance and two rejection test cases, mostly adapted from the test cases in appendix D.lI,
are applied to thelelepresence_2Systerspecification. We again make use of the testing
capacities of LOLA. Although they would be necessary in a real-life validation, simulation and
verification are not to be used here to simplify the approach.

First Acceptance Test Case
This process tests whether the posdta@ors areDeniedor TimeOutwhen the responder’s door

is closed (by default in the specification). Systeml is the initiator and system 2 is the responder.

process AcceptTestl[Contactl, Reportl, Success]: noexit =
(* Test for denied or timeout report when the door is closed (default) *)
Contactl;
(
Reportl ! Denied; Success; stop
0
Reportl ! TimeOut; Success; stop
)
endproc (* AcceptTestl *)

Specification 17: Acceptance test case 1 for Telepresence_2Systems

We use the comman@iestExpando test all possible scenarios. The result, expressed below,

shows our test case to benaist passtest again. This result suggests that the specification might
conform to theTelepresencspecification.

lola> TestExpand -1 Success AcceptTestl -i
Composing behaviour and test :

Analysed states =370
Generated transitions = 506
Duplicated states =0
Deadlocks =0

Process Test = accepttestl
Testresult = MUST PASS

successes = 137
stops =0
exits =0

cuts by depth =0

: — o
This second process tests tRaportcannot output the valuguccessvhen the responder’s door
is closed (by default in the specification). Systeml is the initiator and system 2 is the responder.
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process RejectTestl[Contactl, Reportl, Fail]: noexit =
(* Test for denied or timeout report when the door is closed (default) *)
Contactl;
Reportl ! Success; Fail; stop
endproc (* RejectTestl *)

Specification 18: Rejection test case 1 for Telepresence_2Systems

The TestExpangbrocedure returngject, meaning that our specification behaves properly in that
matter, just aelepresencdid before.

lola> TestExpand -1 Fail RejectTestl -i

Composing behaviour and test :

Analysed states =233
Generated transitions = 232
Duplicated states =0
Deadlocks =67

Process Test = rejecttestl
Test result = REJECT

successes =0
stops = 67
exits =0
cuts by depth =0

Second Acceptance Test Case
This more complex process tests that, when the resp@umkas his/her door and the initiator

Contacs the responder, thReportshould output alimeOutor possibly aSuccessvhen the
initiator Terminates the connection. In this example, system 2 is the initiator and system 1 is the
responder (but this has no repercussion because systems 1 and 2 are perfectly symmetrical).

process AcceptTest2[Contact2, Openl, Terminate2, Report2, Success]: noexit =
(* Test for success (or timeout) report when the responder opens the door *)
Openli,;
Contact2;
(
Report2 ! TimeOut; Success; stop
0
Terminate2;
(
Report2 ! Success; Success; stop
0
Report2 ! TimeOut; Success; stop
)
)
endproc (* AcceptTest2 *)

Specification 19: Acceptance test case 2 for Telepresence_2Systems
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Since the transition system generated fromTédepresencspecification is infinite when there is

a transmission, we must again limit the depth of the search (here to 15 eventS)estExpand
procedure. This generates an extremely large number of executions (862999) that should give us
confidence in the result.

lola> TestExpand 15 Success AcceptTest2 -i -y
Composing behaviour and test :

Analysed states =521796

Generated transitions = 1384734

Duplicated states =0

Deadlocks =60

Process Test = accepttest2
Testresult = MAY PASS

862999 executions analysed:

successes = 76919
stops = 60
exits =0
cuts by depth = 786020
LOLA outputsmay passas a result. On 862999 executions, 76919 were successful, 60 were

unsuccessful, and the remaining 786020 were unfinished due to the search depth of 15. We could
use here the optiors of TestExpando get all 60 traces leading to deadlocks, in the form of a
monolithic LOTOS tree. Then, we could compare these traces with the ones found in the previous
Telepresencspecification to verify that no new problem was introduced.

Second Rejection Test Case

This last test was not in the previous test suite (appendix D.II). We create it here in order to ensure
that we have no additional error related to invalid scenarios due to communication between
systems (as presented in section 6.4R§jectTest2ests that when an initiator (system 1)
Contacs the responder (system 2), the latter does not g&R@pgrtof any kind.

process RejectTest2[Contactl, Report2, Fail]: noexit =
(* Test for denied or timeout report when the door is closed (default) *)
Contactl;
Report2 ? Anything: Tag; Fail; stop
endproc (* RejectTest2 *)

Specification 20: Rejection test case 2 for Telepresence_2Systems

The TestExpandorocedure returngeject, meaning that our specification does not add to the
problems we already encountered. Hence, this is another step in the conformance testing of
Telepresence_2Systems.t. Telepresencand the requirements.
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lola> TestExpand -1 Fail RejectTest2 -i

Composing behaviour and test :

Analysed states =233
Generated transitions = 232
Duplicated states =0
Deadlocks =67

Process Test = rejecttest2
Test result = REJECT

successes =0
stops = 67
exits =0
cuts by depth =0
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