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Timethreads are a new notation for visual description of the different causality paths of a s

They illustrate causality sequences of activities through systems. A design process based

use of timethreads has already been defined. 

The Formal Description Technique LOTOS (Language Of Temporal Ordering Specification

specification language based on the temporal ordering of observational behaviour.

This thesis aims at the integration of formal methods in the design of real-time and distr

systems by presenting a LOTOS interpretation of timethreads. With the help of a time

grammar and a suite of techniques, LOTOS specifications are derived from timethread ma

designer can then ‘play’ with the design by validating the specifications during the early sta

requirements capture and analysis.
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1.1 Motivation

This thesis is part of an ongoing project from the Formal Methods in Design (FMD) res

group. This project aims at defining a framework for the integration and support of fo

methods in the timethread-centered design process. For that purpose, one of the first steps

was to show that LOTOS specifications could be generated from timethread designs. This

addresses this issue.

Formal Methods in the Design Process

Formal methods in software engineering intend to provide a mathematical foundation 

process of software design, transformation, and validation. Many such methods were dev

in the last decade. Their integration in the design process may indeed prove very profitable

is done in an appealing and cost-effective way for use in the industrial environment. Nevert

industrial developers are not inclined to integrate these new methods in their design pro

Some of the main reasons concern the relative complexity of formal languages, and the ne

of thinking they impose on designers.
Formalization of Timethreads Using LOTOS 1 
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A certain degree of informality is essential in early stages of the development process. De

in industry regularly use a variety of notations in a partially informal manner to cap

requirements and candidate solutions. These notations, although informal, are useful as t

tools. However, one cannot proceed from the informal to the formal by formal means. We c

go automatically from these informal diagrams and sketches to a complete formal specifica

is also almost impossible to capture the requirements correctly by using formal methods d

Design decisions have to be made, and many intermediate steps are often required.

We need a less painful way of creating formal specifications in industry. We want a method

designers could use the power of formal techniques through a user-friendly interface. One

purposes of our work is to be able to capture the requirements and then to do hig

requirement testing in early stages of development. This is very important since the further

are detected in a product’s development, the more costly it is to fix them [Pro 92]: “Fix

problem in the requirements costs 1% as much as fixing the resulting code” [Pfl 92].

Problem Definition

We believe that formal methods do not intend to replace the whole design process, bu

integration in the development process could lead to solutions with fewer errors in a shorte

period. The real question then becomes: how should formal methods be integrated in the des

process of real-time and distributed systems in an appealing way for industrial engineers? 

We think that the integration of formal methods is best achieved when designers do not h

change their way of thinking and communicating. The following requirements, already disc

in [BBO 94], present the main issues from our point of view:

R1) Designers should be allowed to use whichever design description model offers

the expressiveness and flexibility they need to design real-time and distrib

systems. The way people actually work does not have to be radically changed.

R2) Designers can use different formal methods to analyze different aspects of 

systems. One formal method is not expressive enough to capture the whole de

is only a projection. A multi-formalism approach has many advantages over a s

formalism approach.

R3) Designers do not have to be experts in a specific formal language to use it. A f

method should be transparent to the user while its strengths are being used.
2 Formalization of Timethreads Using LOTOS 
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R4) Since visual notations are more expressive and easier to conceptualize at a hig

of abstraction than textual descriptions, they should be used to capture the 

concepts and basic scenarios from the requirements.

R5) Tools must be available to help the designer go from the informal to the formal. 

specialized for a formal method can be used afterwards on the formal descriptio

Many problems arise from such general requirements. This thesis proposes a solution b

the Timethread notation and the formal description technique LOTOS.

1.2 Objectives

This thesis aims at providing elements for the integration of the formal technique LOTOS

timethread-centered design process while conforming to the five requirements enumerate

previous section.

We define four main objectives in this context:

O1) To demonstrate that we can manually generate LOTOS specifications 

timethread maps

O2) To show that these specifications are meaningful and that they can be used to e

the design. This is also referred as play the design.

O3) To show that tools could eventually support the transformation from timethrea

LOTOS.

O4) To discuss resulting problems, difficulties, and new research issues.

To satisfy these objectives, we will use an approach based on formal interpretation me

Chapter 3 presents more deeply this approach and the different contributions of the thesis.

1.3 Organization

The seven remaining chapters will cover the following issues:

CHAPTER 2: Background

We review the Timethread visual notation, the formal language LOTOS, and the LARG mod

architectural graphs. Several terminology definitions are also given.
Formalization of Timethreads Using LOTOS 3 
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CHAPTER 3: The Approach and the Contributions

We present the approach taken by the FMD research group for the integration of formal m

in the design process. This approach is based on formal interpretation methods. Four sub-m

(map decomposition, LAEG, mapping, and composition) are introduced. Then, the contrib

of the thesis are enumerated w.r.t. the objectives of the previous section. Finally, we pre

ongoing case study: the Traveler system.

CHAPTER 4: From Timethreads to LOTOS

This chapter presents the LOTOS semantics given to the Timethread notation. It enumerate

basic concerns and according solutions, and then discusses a new timethread gramma

timethreads, simple interactions, and special timethread symbols are developed usin

grammar, for which mapping rules are given for the generation of LOTOS specifica

Examples inspired from the Traveler system are given all along the chapter.

CHAPTER 5: Elements of a Life-Cycle Methodology

We firstly present a short overview of a timethread-oriented life-cycle methodology, and

different techniques related to this methodology are discussed. We present the complete m

procedure of the Traveler timethread map onto LOTOS, followed by a discussion about a 

transformation techniques. Finally, we apply LOTOS-based validation techniques to

timethread-oriented specification.

CHAPTER 6: Case Study: Telepresence A Multimedia System Design Example

The methods and techniques introduced in the previous chapters are applied to a more 

real-time and distributed system: the multimedia application Telepresence. We present two

timethread maps where one is a transformation of the other. The first one is constructe

basic use cases, mapped onto LOTOS, and then validated against the requirements. The

timethread map is a transformation (factoring) of the first one that preserves path equiva

Again, a LOTOS specification is generated and validated using different simulation and t

techniques.

CHAPTER 7: Discussion

This chapter discusses several issues encountered in the research work of this thesis. We

emphasize four main issues related to: the first architecture, the STDL grammar, valida

general, and a few ideas on possible tools.
4 Formalization of Timethreads Using LOTOS 
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CHAPTER 8: Conclusion and Future Work

This last chapter concludes the thesis. It reviews the contributions with respect to the

objectives. Then, short-term and long-term research issues are identified.
Formalization of Timethreads Using LOTOS 5 
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2.1 The Timethread Notation

“A timethread is a path for the flow of causality from a stimulus at the start (indicated by a filled

circle), through a progression of responsibilities (shown as labelled points along the 

culminating in a response (a “T”-junction at the end). The name (timethreads) comes from

fact that time increases along them and they look like threads” [BuC 94a]. Timethreads are usefu

for design discovery and system reasoning at a global and high-level perspective. They e

cause-to-effect relationships by linking activities performed by the system, resulting from 

stimulus (cause) and terminating with some eventual response (effect).

This notation is considered intuitive and appealing by many engineers. At a very abstrac

timethreads leave intentionally many details unresolved. Refinement permits to clarify ma

these details. We use timethreads to focus on the end-to-end behaviour of the system we

design. Timethreads are also example-oriented, meaning that they are used to show examples

representative scenarios. They are not intended to show complete behaviours, but they can

specify possible causality paths in the system.
Formalization of Timethreads Using LOTOS 7 
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Timethreads are also different than threads of control, making them more appropria

understanding macroscopic behaviours [BuC 92]. Causality flow should be interpreted neither a

data flow nor as control flow. Timethreads are in fact more related to use cases [Jac 91] as they

both represent the start and end points of causal flow paths [BCP 93].

 

“The flow model of timethreads is easy to understand in terms of moving tokens” [BuC 94b]. We

can think of instances of a timethread as tokens going along its path. A token placed at the

the path is moved along this path from responsibility to responsibility, to explain what will ha

as a result of a stimulus. This token is removed when it reaches the end of the timethread. 

refer to this model as we explain how the different timethread constructors work.

Being still in evolution and not completely formal, the Timethread notation presents many 

ended issues yet it offers much flexibility to the designer. 

2.1.1 Basic Timethread Set

The Timethread notation includes very few basic symbols [BuC 94a, BuC 94b, and Bu

Figure 1 shows the basic notation elements of timethreads. A typical timethread starts 

waiting place (triggering event) and ends with a junction point (resulting event). The body, on

which activities are placed, links the triggering event to its resulting event(s).

Figure 1: Basic notation elements

More complex timethreads are also composed of these symbols. Notions such as 

parallelism, and synchronization can also easily be expressed. Figure 2 describes the usu

of forking and joining timethread paths. In this figure, we assume a timethread flow from l

right:

Body

Waiting place
At the beginning of body, for a start triggering event.
Along a body, for a triggering event from another timethread

or from the environment.

On which activities are placed.

Junction point
At the end of body, for a resulting event.
Along a body, for synchronization between concurrent timethreads.
8 Formalization of Timethreads Using LOTOS 
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(a) OR-Fork: An exclusive choice between two paths is given. A token along

entering path will follow only one of the exiting paths.

(b) OR-Join: Two paths merge into one, without any synchronization. A token a

any of the entering paths will follow the single exiting path.

(c) AND-Fork: A path forks into two concurrent paths. A single token along 

entering path will split into clones that follow each exiting pa

concurrently.

(d) AND-Join: Two paths synchronize together and only one path results. One 

from each entering path will wait one from each other path. T

combine afterwards in a single token to follow the exiting path.

Figure 2: Forks and joins

Note here that there is no constraint on the number of paths involved. We may join more th

paths at once, and they could come from the same timethread or different ones. The

reasoning applies to the fork operations.

2.1.2 Timethreads Interactions

Synchronous and asynchronous interactions, implying two or more timethreads, are 

expressed without adding any new notation. Interactions may occur on waiting place

junction points. The most common types of interaction are presented in figure 3. 

(a) Concatenation: An ending timethread triggers another one. A token at the end

path is removed and a new one is placed at the beginning o

second timethread and follows it.

(a) OR-Fork (b) OR-Join (c) AND-Fork (d) AND-Join
Formalization of Timethreads Using LOTOS 9 
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(b) In-passing: Asynchronous interaction where the timethread on the left trigge

one on the right, without stopping, and then continues. A new toke

placed at the beginning of the timethread on the right when the to

from the timethread on the left passes the start point. After that

two tokens progress concurrently down the two separate paths.

(c) OR-Start: A timethread is triggered by one or the other ending timethrea

token at the end of either ending path is removed and a new o

immediately placed at the beginning of the starting timethread 

follows it.

(d) AND-Start: Two timethreads synchronize together and trigger another one.

token from each ending path will wait for all others an then they al

a new token to go on the next timethread path.

Figure 3: Typical interactions

Note that the number of interacting timethreads is not restricted to two or three. In the g

case, we can compose these types of interactions to build more complex ones involving

more timethreads. Also, interactions can occur at any waiting place along a timethread, not

the starting event (see figures 40 and 41). This approach is flexible and yet powerful.

2.1.3 Other Symbols

Special-purpose symbols can be added at the designer’s convenience to increase the ex

ness of the Timethread notation. In the literature [BuC 94b], many such symbols have

introduced, especially to highlight issues associated with robustness, real-time, and con

behaviour that need to be resolved in the architecture. Because of their usefulness in

situations, some of these symbols will receive special attention in chapter 4. They are pre

here in figure 4:

(a) Timer: A special waiting-place that is used to express delay, time-outs, w

dogs, etc.

...... ...
...

...
......

...

(a) Concatenation (d) AND-Start(c) OR-Start(b) In-passing

...
...

...
10 Formalization of Timethreads Using LOTOS 
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(b) Stub: A collapsed timethread that is to be defined (or refined) at a later s

Details are hidden intentionally at this level of abstraction. Stubs m

also have other uses.

(c) Abort: Destroys the instances of another timethread (or the tokens alon

timethread).

(d) Loss: This ‘ground’ symbol indicates the loss of a token along the timeth

path. It is used to express robustness concerns.

Figure 4: Other symbols

2.1.4 Timethreads Refinement and Transformations

Different timethreads refinement and transformations have been used in the literature. The

the designer to manipulate a timethread map. Although they are not completly formalized y

most important ones are presented here in a general way (see [BoL 94] for further informa

• Activity refinement: An activity is considered as a black box which can itself be

decomposed as a sequence of activities.

• Stub refinement: More general case where a black box (timethread stub or path stu

replaced by a more complex and complete timethread or path.

• Functionality extension: Addition of details to a path (concurrent or alternative pa

new activities, etc).

• Timethread cutting: A timethread is split into two or more independent timethreads.

• Timethread merging: Independent timethreads are merged together to form only

timethread. Parts of paths from different timethreads can also be merged.

• Timethreads composition: Addition of an interaction between several timethreads.

• Timethreads decomposition: Removal of an interaction between several timethreads

(a) Timer (d) Loss(c) Abort(b) Stub
Formalization of Timethreads Using LOTOS 11 
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2.2 LOTOS

In this section, we recall the origin of LOTOS as a formal technique, and then present its

operators, transformation and validation concepts, and a few tools used in our research

more complete description of the language and its different uses, refer to [BoB 87, LF

Sch 93, and Tur 92].

2.2.1 Formal Methods

Formal methods, in particular process algebras, proved their usefulness in capturing desc

of complex, concurrent, and communicating systems. LOTOS (Language Of Temporal Or

Specification) is an algebraic specification language and a Formal Description Technique (

It was especially developed for the formal description of the OSI architecture (interfaces, se

and protocols), although it is applicable to distributed and concurrent systems in general. 

people try to extend its field of action on hardware, telephony [Bou 91], operating sys

embedded systems and real-time systems. LOTOS has been an ISO Standard (8807) sin

[ISO 88].

The basic idea of LOTOS is to describe a system by defining the temporal relations alo

interactions that constitutes the system’s externally observable behaviour. The process 

LOTOS (known as Basic LOTOS) is based on ideas found in CCS [Mil 80] and CSP [Hoa 8

The data part of LOTOS (included in Full LOTOS) is based on the theory of abstract data typ

and comes from the language ACT ONE [EhM 85].

2.2.2 Operators

In LOTOS, systems are described in terms of processes. A process is viewed as a black bo

interacting with its environment via its observable gates (figure 5). Its internal actions are

unobservable by the environment. The behaviour expression is built by combining LOTOS

actions by means of operators and possibly instantiations of other processes.

The basic element of a behaviour expression is the action which represents a synchronizatio

between processes, between a process and its environment, or both. An action consists o

name, a list (possibly empty) of value experiment offers (value offers or interaction param

and possibly a predicate that imposes conditions on the event to be accepted. Actions areatomic

in a sense that they occur instantaneously, without consuming time.
12 Formalization of Timethreads Using LOTOS 



LOTOS

 hidden

.

 given
Figure 5: Representation of a system specified in LOTOS

In figure 5, the system is composed of two processes that interact with each other on the

gate Gate5  (interaction point). In LOTOS terms, we say that Process1  is synchronized with

Process2  on Gate5 . LOTOS synchronization is based on a multi-way rendezvous concept

The partial LOTOS specification 1, corresponding to the system presented in figure 5, is

here (reserved words are in bold):

specification  System [Gate1, Gate2, Gate3, Gate4] : noexit
behaviour

hide  Gate5 in
Process1[Gate1, Gate2, Gate5]
|[Gate5]|
Process2[Gate3, Gate4, Gate5]

where
process  Process1[Gate1, Gate2, Gate5] : noexit  :=

(* ... Behaviour of Process1 *)
endproc
process  Process2[Gate3, Gate4, Gate5] : noexit  :=

(* ... Behaviour of Process2 *)
endproc

endspec

Specification 1: System example

Process1 Process2Gate1

Gate2 Gate3

Gate4Gate5

System

Environment
Formalization of Timethreads Using LOTOS 13 
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The main LOTOS constructors are recalled in figure 6, where a is an action, Bi  are behaviour

expressions, gi  are gates, and P is a predicate:

Figure 6: Main LOTOS constructors

More operators exist (choice  and par ) but they are not used in this thesis. Also, the construc

and the use of abstract data types in LOTOS are not discussed in the current section, but 

fully described in [ISO 88].

Name Behaviour Expression Comment

B
as

ic
 B

eh
av

io
ur

E
xp

re
ss

io
ns

Inaction stop Cannot engage in any interaction (deadlock).

Successful 
Termination

exit Indicates that a process has sucessfully pe
formed all its actions. 

Process 
Instantiation

ProcName [g 1, ..., g n] Creates an instance of a process.

B
as

ic
O

pe
ra

to
rs Action Prefix a;  B Used to prefix a behaviour expression B with an

action a. There exists a special action, called i ,
that a process can execute independently.

Choice B1 []  B 2 Allows the user to define different alternatives
for a given process.

E
na

bl
in

g 
an

d 
D

is
ab

lin
g

Enabling B1 >> B 2 Used to sequence two behaviour expressions. B1
has to exit  for B2 to be executed.

Disabling B1 [>  B 2 Used to express situations where B1 can be
interrupted by B2 during normal functionning.

C
om

po
si

tio
n

Parallel Com-
position

B1 |[ g1, ..., gn ]|  B 2 Composition in which B1 and B2 behave inde-
pendently, except for the gates g1, ..., g n
where B1 and B2 must synchronize.

Interleaving B1 |||  B 2 Composition in which B1 and B2 behave inde-
pendently (the synchronization set is empty).

Full Synchro-
nization

B1 ||  B 2 Composition in which B1 and B2 are synchro-
nized on all their gates.

O
th

er
 O

pe
ra

to
rs Hiding hide  g 1, ..., g n in  B Used to hide actions (g1, ..., g n) which

are internal to a system. These actions canno
synchronize with the environment.

Guarded 
Behaviour

[ P] ->  B B can be executed if P is true.

Local Defini-
tion

let  x:s = E in  B Substitutes a value expression (E) by a variable
identifier (x ) of sort s  in B.
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2.2.3 Transformations and Validation

LOTOS provides formal means to manipulate, combine, factor, and transform beha

expressions in various ways. Properties can also be verified and tested by the available to

present here the terminology used in the LOTOS community.

Transformations

“The term transformation is often used to cover all forms of refinement and reformulation o

specification” [Tur 91]. For instance, a high-level abstract specification can be transformed

more concrete and deterministic one. This is usually referred as stepwise refinement. LOTOS

allows many types of transformations from which Correctness Preserving Transformation

[CPT 92], or CPTs, are the most interesting ones. There exist many CPTs such as functio

decomposition, behaviour expansion, action refinement, processes splitting and regroupin

rearrangement, inverse expansion, multi-way to two-way synchronization, etc. Transform

from a specification written in one LOTOS style to a specification in another style also 

[VSS 91]. Equivalence, reduction and extension relations are used to assess the correctne

transformations.

Validation

Demonstration of design compliance with stated and unstated user requirements [LO

Validation is a generic term that includes testing and verification techniques. It is mostly us

check properties such as conformance, absence of deadlocks, liveness, and completeness

Testing

Checking of the real behaviour of the system by the application of test cases [LOT 92]. Pr

testing (which is not exhaustive), is confined to the detection of certain types of problem

particular instances of inconsistencies. A testing theory for LOTOS is presented in [Bri 8

includes notions of canonical testers, conformance testing and test cases derivation.

Simulation

LOTOS specifications are executable. Interactive simulation is therefore a validation techniqu

often used, mainly in the early stages of the design process.
Formalization of Timethreads Using LOTOS 15 
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Verification

“Demonstration of consistency between two designs” [LOT 92]. The algebraic properti

LOTOS provide a theoretical foundation that supports some formal reasoning abou

specification, called verification. Behavioral specifications can be verified using relations suc

bisimulation, testing equivalence, and trace equivalence. Desirable properties for the s

expressed in terms of temporal logic formulas, can be verified using model checking [Grh 9

These definitions of validation and verification slightly differ from the ones now generally 

by the software engineering community. In [Pre 87] for instance, verification is defined as

we building the product right?”, and validation as “Are we building the right product?”. 

terminology used in the thesis is based on the definitions given in the previous paragraphs

2.2.4 Tools

LOTOS tools for various stages of the development cycle are developed by many groups 

the world [GLO 91 and Sch 93]. From the tools available to us, two are particularly usef

step-by-step execution of specifications:

ELUDO

ELUDO (Environnement LOTOS de l’Université D’Ottawa) is a toolkit regrouping many

previous tools (such as ISLA and SELA) with a new interface. An X-Windows interface 

exists (XELUDO). We will use ELUDO for validation purposes in the upcoming case studie

LOLA

LOLA (LOTOS LAboratory) is a tool developed at the Universidad Politécnica de Madrid. It

allows the simulation and expansion of LOTOS specifications.

Other tools, such as SMILE, CAESAR, and TOPO, also possess the functionalities required

‘animate’ the specifications, just as it is needed in the case studies.
16 Formalization of Timethreads Using LOTOS 
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2.3 LARG

2.3.1 The LARG Model

The LARG (LOTOS Architectural Representation Graph) model has been developed to se

the intermediate structural model in the LOTOS interpretation method for architecture-

design [Bor 93 and BBO 94]. An example of a LARG, in which the different types of compon

are identified, is given in figure 7. The structural components of the LARG model are c

processes. Interactions between processes are realized by means of multi-way rendezv

gates.

The initial LARG model has been developed in such a way that the LARG artifacts (proc

and gates) can directly be mapped onto LOTOS structural constructs. Finally, for the purp

the LAEG (LOTOS Architectural Expression Generation) method, both a Grouping algorithm

an UnGrouping algorithm have been defined on LARGs. The LARG model, the Grou

algorithm and the UnGrouping algorithm are all formally defined in [Bor 93].

Figure 7: Example of a LARG

2.3.2 LAEG Method 

The LAEG method aims at generating LOTOS structural expressions from LARGs. 

conducted in two distinct phases:

P b, c, d

hide a in

a, b, c

P1

a, c, d

P3

a, b, d

P2

a

b

Process identifier

Hidden gate set

Process box

Grouping

Gate

Link

3-way interaction
gate set

2-way interaction
gate set

Label set

c, d

P3c,d

(Interface)
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• LARG analysis

• Generation of LOTOS structural expressions.

LARG Analysis

This phase aims at detecting architectural errors and non-determinism. In the case of time

interpretation, the LARG analysis phase can be reduced to a structural ambiguity identifi

(called non-deterministic interaction-choice in [BoA 93]).

We say that a gate g is the source of structural ambiguity in a LARG P, iff:

• g is contained in more than one gate set (GS) in P

• Every GS containing g is linked on one side to a constant set of processes, calle

root process set of the structural ambiguity, and on the other side to distinct proces

i.e. processes which are linked to only one GS containing g, called the choice process

set of the structural ambiguity.

Thus, every process which possesses gate g is either linked to every GS containing g, or to one

and only one GS containing g.

In figure 8, an example of such structural ambiguity is given. In this LARG, gate a is the

ambiguous gate. We observe that P1 can interact with either P2 or P3 on the 2-way interaction

gate a. We also observe that P2 and P3 do not interact together. Therefore, in order to have

interaction on gate a, we need to have P1 ready to interact on a and either P2 or P3 also ready to

interact on a.

Figure 8: Structural ambiguity in a LARG

aP1

a

P2

a

P3

a
a
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Generation of LOTOS Structural Expressions

The second phase consists in generating LOTOS structural expressions from LARGs. Thi

is essential since LOTOS possesses binary operators only. It involves successive applica

the Grouping algorithm. The algorithm is applied until we obtain a binary grouped LARG w

is equivalent to the former one.

An illustration of LARG binary grouping is given in figure 9. Figure 9(b) gives an equiva

binary grouping LARG which has been obtained by successive applications of the Gro

algorithm. The grouping sequence used in figure 9 has been arbitrarily chosen, and is only

many possible solutions.

Figure 9: Binary grouping of a LARG

The tree representation of the LARG of figure 9(b) and its associated LOTOS stru

expression are given in figure 10. We see from these two figures that the generation of a L

structural expression from a binary grouped LARG is straightforward.:

((P1[a, e] |[a]| P2[a, b]) |[b]| P3[b, c]) |[c, e]| (P4[c, d] |[d]| P5[d, e])

Figure 10: Tree representation and LOTOS A.E. of the linearized LARG

eP1
a, e

P5
d, e

P2
a, b

a

P4
c, d

P3
b, c

d

cb P2
a, b

P1
a, e

P3
b, c

P5
d, e

P4
c, d

a db c,e

(a) (b)

|[c, e]|

|[b]| |[d]|

P4 P5P3|[a]|

P1 P2
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Structural Ambiguities in LARG

Grouping an ambiguous LARG might be problematic because, in some cases, groupings

the interaction semantics of the LARG. For example figure 11(a) and 11(b) represent two di

groupings derived from figure 8. We observe that these two groupings lead to two non-equ

LARGs. In the first case a is a 2-way interaction while in the second case a is a 3-way interaction.

The LARG of figure 11(a) corresponds to a correct interpretation of figure 8, while figure 1

corresponds to an incorrect one.

To eliminate ambiguities from such LARGs, a technique called structural ambiguity grouping

(also called non-deterministic interaction-choice grouping in [Bor 93]) was defined. In this

technique, we group together all processes contained in the choice process set (refer to [

for more details on grouping techniques). Figure 11(a) illustrates an example of the applica

this technique. 

  

Figure 11: Grouping an ambiguous LARG

(a) Structural ambiguity grouping (b) Incorrect grouping

P1
a

P3
a

P2
a

a

P1
a

P3
a

P2
a

a

a

P3[a] |[a]| (P1[a] |[a]| P2[a])P1[a] |[a]| (P2[a] ||| P3[a])
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2.4 Definitions

Since LOTOS and the Timethread notation use common terminology, we define here the s

terminology that will be used in the remaining chapters:

Triggering event: Starting event of a timethread.

Resulting event: Ending event, termination of a timethread.

Process: A LOTOS behaviour abstraction, unless cited otherwise.

Interaction: General relation of observation between the environment and a trigg

or resulting event, or between many timethreads on a waiting place.

Synchronization: Special case of interaction, usually artificial and internal, within o

timethread. Multiway synchronization refers however to the LOT

concept.

Activity: Action or event along a timethread.

Event: Activity on which there is interaction. Events are of three kinds: trigger

resulting or synchronization events.

Action: Activity on which no timethread interaction is allowed. An actio

corresponds to a certain functionality within the system.

In the thesis, new words or concepts, as well as references to timethreads and LOTOS co, will

be italicized.
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Contributions
ght

 on the

ation

ign in

hread

ture the

esign

ss

 these

oblem
Five requirements (referred as R1 to R5) have been defined in section 1.1. Many problems mi

arise from such general requirements. The following sections present a solution based

Timethread notation, the formal description technique LOTOS, and formal interpret

methods. Then, the contributions are introduced with respect to the thesis objectives.

3.1 The Approach

A solution to our problem is introduced in [Bor 93 and BBO 94], where the concept of formal

interpretation methods is presented. Such a method allows the interpretation of a given des

terms of a given formal semantic model. We think we can apply this idea to the Timet

notation. 

Timethreads are an intuitive visual notation that can be used as a design model to cap

requirements (R4 in §1.1). They can also lead to a first architecture expressed in any d

description model useful to designers (R1). This introduction of timethreads in the design proce

(figure 12) is simple and yet very helpful for designers since they already use most of

concepts, often in an ad-hoc way. Such integration facilitates the transition from the pr

domain to the solution domain.
Formalization of Timethreads Using LOTOS 23 



The Approach and the Contributions

esign

n

thread

uthors

design of

eption,

reads

ly from

ds.

an be

authors

OS. Its

s, and

guage.
Figure 12: Timethreads in the design process

Being still informal, timethreads open the door to the introduction of formal methods in the d

process. We can create an interpretation method for timethreads, allowing their interpretation i

one or more formal languages (R2).

LOTOS is the first formal method that has been chosen as a formal basis for our Time

notation. Previous work has been done on other approaches. In [ViB 91] and [Vig 92], the a

presented a technique that can be used to support an effective process for generating the 

concurrent systems, with the help of timethreads (called slices at that time) and LOTOS. In

[LaB 92], the authors try to see whether or not two different approaches of a design conc

ObjecTime and LOTOS, could be used in a complementary way in order to add timeth

concepts to the ObjecTime tool. The approach presented in our research differs considerab

these two, but the experience gained helped in getting a better understanding of timethrea

Other formal methods, such as Petri nets [BDC 92] and event structures [Roz 92], c

considered as other options as a formal basis for the Timethread notation. In [FCB 93], the 

introduced a Petri net interpretation of timethreads. As a first step, we decided to use LOT

expressiveness (especially w.r.t. communication), its transformation and validation method

the numerous available tools are among the main reasons why we chose this particular lan

Requirements

First 

Architecture

Requirements

First 

Architecture

Timethreads 
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In order to integrate LOTOS in the timethread-centered design process, the first step cons

defining an interpretation method that allows the generation of LOTOS specifications 

timethread maps, which are collections of interacting timethreads. The idea of for

interpretation method presented in [Bor 93] has been adapted to timethreads and LOT

F. Bordeleau in [BoA 93]. We present this method in figure 13 where the grey box represe

main contributions of this thesis.

Figure 13: LOTOS interpretation method for timethreads

This LOTOS interpretation method for timethreads is composed of four methods, which a

enumerated here:

Map decomposition method

In our view, timethreads are considered as entities in their own right. This leads to a dec

sition method consisting of two steps:

• Mapping of the topology of interacting timethreads (from the map) onto a LARG. 

is mostly discussed in section 4.4.

• Description of the paths of individual timethreads using a timethread grammar.

Map
decomposition

method

LOTOS specification

Timethreads

LOTOS

LOTOS
Interpretation

Model

Method

Timethread map

Composition of
complete specification

method

LOTOS

expressions
behavioral

LARG
model

LAEG
method

LOTOS

expressions
structural

Grammar

Mapping
method

Thesis
Contribution
Formalization of Timethreads Using LOTOS 25 



The Approach and the Contributions

thread

r the

S

aviour

amples

ne.

TOS

ap) and

ce in a

flects

n tools.

ion

tics to

ds to

ead
The LARG and the grammar are considered part of the internal representation of the time

map. Therefore, this thesis will take the LARG and the grammar as starting points fo

generation of a specification. The grammar will be discussed in chapters 4 and 7.

LAEG Method

The LAEG (LOTOS Architectural Expression Generation) method aims at generating LOTO

structural expressions from LARGs. It is conducted in two distinct phases:

• LARG analysis, where potential structural ambiguities are detected and fixed.

• Generation of LOTOS structural expressions.

This method was presented in §2.3.2.

Mapping Method

The mapping method is a compilation from the grammar representation to a LOTOS beh

expression. In the next chapter, this compilation process is shortly introduced, and many ex

and rules are developed, but no complete algorithm will be given. This is still work to be do

Composition of the Complete Specification Method

The composition of the complete specification method consists in combining both the LO

structural expression (which expresses the way timethreads interact in the timethread m

the different LOTOS behavioral expressions (each of which expresses the activity sequen

single timethread) in a global LOTOS specification. The resulting LOTOS specification re

the path behaviour of the complete timethread map and can be used as an input to validatio

3.2 Contributions of the Thesis

The major contributions of this thesis related to the thesis objectives (O1 to O4 in §1.2) are

enumerated here.

LOTOS Interpretation of Timethreads

A LOTOS interpretation method for individual timethreads is developed. It allows the generat

of LOTOS processes from single timethread. This interpretation provides a formal seman

the Timethread notation, with LOTOS as an underlying model. This contribution inten

satisfy the objective O1 which relates to the generation of LOTOS specifications from timethr

maps.
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Timethread Grammar

A grammar for single timethreads description is presented. This context-free grammar

internal representation that defines the single timethreads in a map, and allows the gener

specifications in formal languages such as LOTOS. Objectives O1 and O3 (support of tools) are

aimed by the creation of this grammar.

Techniques

Techniques for the transformation of timethread maps are introduced, and validation tech

are discussed. They are mostly based on LOTOS transformations and validation techniqu

on different LOTOS tools. These techniques should help designers to play the design (ob

O2).

Case Study

A multimedia case study, the Telepresence system, is developed in chapter 6. The interpretat

method is applied to the timethread map in order to get a LOTOS specifications. We also

use of the transformation and validation techniques on this example. This complex case stu

attempts to satisfy all four objectives.

Of course, for each contribution, we will point out resulting problems, difficulties, and rese

issues (objective O4). Other minor contributions will be identified along the remaining chapte

We believe that the approach we propose will help in capturing and testing system require

Also, once user-friendly timethread interfaces are available, our method could lead t

production of formal specifications in industry, thus allowing designers to use the power of f

techniques.

3.3 Ongoing Case Study for Chapters 4 and 5

An ongoing case study is used in chapters 4 and 5 in order to relate methods and conce

concrete and simple example. For this purpose, we use the Traveler system, an example adapted

from [BuC 93] and [BuC 94b]. A complete LOTOS specification will be derived from 

timethread map of the traveler system using the LOTOS interpretation method for timeth

described in this thesis (see also [BoA 93]).
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The traveler system, shown in figure 15, is not a computer system in a literal sense. This e

depicts a familiar situation from everyday life which is easy enough to illustrate properties s

to common computer systems. We can think of the travelers, the taxis, the planes, e

components analog to computer-based subsystems, processes, or objects. Therefore, the

system will help us thinking about distributed systems in the large without committing to

architectural concerns.

Note that this is not the only way of using timethreads for design. For instance, timethreads 

been used in association with role-architectures in object-oriented design [BuC 94b].

3.3.1 Informal Description of the Traveler System

Travelers use a traveler system to get to a certain destination. The timethread map of figure

shows a use case [JaA 92] delimiting the system (black box) and its environment. We cons

this a use case because it expresses a sequence of transactions in a dialogue between th

the system.

To transform this black box into a grey box showing how a traveler gets to its destination, w

a more complete description. The latter will be our starting point for the development o

interpretation method.

Figure 14: Use case of the traveler system

Suppose that the traveler system is composed of a taxi company, where a dispatcher 

requirements from the travelers and then dispatches a taxi, and an airline. Different comp

are defined: traveler, dispatcher, cab, and plane. They collaborate to get travelers t

destination without the intervention of a master controller to direct their individual activities

without themselves necessarily having individual knowledge of how they fit into the w

[BuC 93]. This can be considered a distributed system.

Destination

New Traveler

Traveler system
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Here is the path description of each component (fig. 15), with corresponding activities alo

path. When a new traveler comes (Tnew), she phones the dispatcher for a cab (TphoneD), goes to

a rendezvous point, gets in the cab (TgetinC), has a taxi ride (TCride), gets out the cab (TgetoutC),

and goes to the airport (Tairport). Then, she waits for a plane, gets on the plane (TgetonP), flights

to another airport (TPflight), gets off the plane (TgetoffP), and finally gets to the final destinatio

(Tdest).

The dispatcher comes to the office (Din), waits for a request from a traveler (TphoneD), looks for

an available cab (DlookforC), asks for a cab (DaskC), fills internal statistics (Dfillstats), and

leaves the office (Din) or gets ready for the next traveler (Dready).

A taxi driver gets in the cab (Cin), waits for a request from the dispatcher (DaskC), waits for the

traveler to get in at a rendezvous point (TgetinC), gives a ride to the traveler (TCride), leaves the

traveler (and gets paid!) (TgetoutC), and gets ready for a new request (CgoD) or goes to the

garage (Cgarage) and gets out the taxi (Cout).

At the airport, when an airline plane is ready (Pready), it waits for a traveler to get on (TgetonP),

flies to the next airport (TPflight), leaves the traveler (TgetoffP) and goes to a hangar (Phangar).

3.3.2 Timethread Map of the Traveler System

Following the complete description of the last section, the simple use case presented in fig

can be refined, using a timethread-centered design process [BuC 93], into a detaile

description: the timethread map of figure 15.
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Figure 15: Timethread map of the traveler system

The refinement process is not presented here. This diagram is considered as a first “desig

LOTOS specification can therefore be derived. A few things have to be noted here:

• The refined grey box description of the system under design (SUD) still has the

environment as the black box description (fig 14). Every activities in the SUD cou

“hidden” from a LOTOS point of view.

• A timethread is neither a component, an agent, nor an object, as the map could s

Timethreads span components, and they are not necessarily related on a 1-to-1 

with components. Therefore, the fact that we have four timethreads here and th

assumed we have four components is a coincidence.

• Different shadings are used here to differentiate timethreads, to give them a dif

identity. The identity of a timethread’s segment is not yet clarified in the nota

Shadings, colours, and identifiers can be used for this purpose.

Traveler

Dispatcher PlaneCab

Tnew

TphoneD

TgetinC TgetoutC

DaskC

TCride

DlookforC
Dfillstats

Dready

Din Dout

Cin

Cout

Cgarage

CgoD

Tairport

TgetonP

TPflight

TgetoffP

Phangar

Tdest

Pready
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The Timethread notation includes a basic set of timethreads symbols, symbols to denote d

types of interactions between timethreads, and special symbols. This chapter presents the

semantics given to this notation.

4.1 Basic Concerns

4.1.1 Guiding Rules

We need a few guiding rules to help us giving a semantics to timethreads:

• We consider timethreads as entities in their own right. One way to represent this 

to associate one LOTOS process to one timethread. This solution is preferable

one where each section of a timethread path is mapped onto a LOTOS proces

latter solution leads to many processes and hidden interactions that destro

timethreads structure.

• Waiting places and junction points are represented as LOTOS gates on 

interaction with the environment or with other timethreads will occur. They can

hidden to represent abstraction levels or internal interactions.
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• The body will only represent sequencing of activities. No special semantics is giv

empty paths, although some underlying machinery may be refined from these pat

later stage. Because we cannot specify what is not explicitly drawn on a timet

map, we assume no behaviour.

• Timethreads are not a front-end for LOTOS-based design. LOTOS is the fo

underlying model that supports timethread design. Therefore, we do not inte

generate LOTOS in any traditional specification style [VSS 91]. A timethread-oriented

style, which reflects the timethread structure of the system under design but not its

architecture, will result from the mapping.

With these ideas in mind, we can now proceed in giving a semantics to the Timethread not

4.1.2 Levels of Specifications

Figure 16: Basic timethread

Figure 16 represents a basic timethread, or a cause-to-effect relationship. It is intuitive to thin

about this behaviour in a sequential way and to define its LOTOS equivalence as P:= A; stop ,

where A represents a sequence of activities. A timethread’s activity can identify future fragmen

of sequential code: an abstract sequence of actions, a function, a procedure, a method, or

processes. Timethread activities are mapped onto LOTOS gates: gates without interactio

the environment or other timethreads) for actions, and gates on which there is interact

events (refer to §2.4 for the terminology).

We should also consider the start point and the end point as LOTOS gates. The start poi

triggering event, called Trigger, coming from the environment or from another timethread. T

end point has a resulting event called here Result. Thus, a unique instance of this timethread co

be represented as follows (we deliberately omit the gate parameters for conciseness althou

should be all present in each definition and instantiation):

A
P
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ion
process  P[...] : noexit  :=
   TriggerP; A; ResultP; stop
endproc  (* process P, level 1 without recursion *)

Nevertheless, since we deal with reactive systems, our timethread’s representation must be

react to more than one initial stimulus from its environment. We would like this process 

executed as often as the environment desires to, i.e., more than one token can go along 

Hence, recursion can be included in the process definition:

process  P[...] : noexit  :=
   TriggerP; A; ResultP; P[...]
endproc  (* process P, level 1 with recursion *)

We also need these instances to execute concurrently (or the tokens to go concurrently), w

not the case in the last definition. LOTOS parallelism needs to be introduced and unbo

recursion should be avoided, as in the following process:

process  P[...] : noexit  :=
   TriggerP; (A; ResultP; stop  ||| P[...])
endproc  (* process P, level 3 *)

A could be an empty sequence of activities. In this case, the timethread will simply repres

cause-effect relationship between TriggerP and ResultP. Besides, since the first action, TriggerP,

is observable (or synchronized with other timethreads, as it will be explained later), ungu

recursion is avoided1.

For execution purposes, we may prefer not to have an unbounded number of instanc

timethread at once in a system. Hence we could parametrize the maximum number of in

using, for example, the NumberInstances abstract data type:

type NumberInstances is  NaturalNumber
opns Pred : Nat -> Nat
eqns

forall  x : Nat
ofsort  Nat
   Pred(Succ(x)) = x;

endtype

1. A first attempt in defining this kind of recursion was  P := (A; stop   ||| i ; P ) . Although

recursion is guarded, this process introduces infinite sequences of internal events. This type of recurs
makes validation and execution of LOTOS specifications more difficult.
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This parametrized number of concurrent instances could be handled, for example, using re

and selection predicates in the following way:

process  P[...] (n:Nat): noexit  :=
(* n > 0 is the maximal number of instances *)
TriggerP; (
   A; ResultP; P[...] (Succ(0))
   |||
   [n ne Succ(0)] -> P[...](Pred(n))
   )
endproc  (* process P, level 2 with recursion and *)
        (* with concurrent execution *)

The guard [n ne Succ(0)] together with the parametrized recursion P(Pred(n)) instantiates n

instances of process P, as in a countdown, namely from P(n) to P(Succ(0)). Then, no other

concurrent process will be created. Tail recursion (P(Succ(0))) will keep the number of instance

to n in the system.

Another possibility would be to instantiate an absolute maximum of n occurrences of process P in

parallel, without any tail recursion. Therefore, only n concurrent instances will exist an

terminate:

process  P[...] (n:Nat): noexit  :=
(* n > 0 is the maximal number of instances *)
TriggerP; (
   A; ResultP; stop
   |||
   [n ne Succ(0)] -> P[...](Pred(n))
   )
endproc  (* process P, level 2 without recursion and *)
        (* with concurrent execution *)

The last possibility is a parametrization where we have a bounded number (n) of instances,

executed sequentially:
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process  P[...] (n:Nat): noexit  :=
(* n > 0 is the maximal number of instances *)
TriggerP; (
   A; ResultP;
      ( [n ne Succ(0)] -> P[...](Pred(n)) )
   )
endproc  (* process P, level 2 with sequential *)
        (* execution *)

Thus, several different types of behaviours can be associated with a timethread. Depen

what exact behaviour we want to simulate, different levels of abstractions can be defined.

Figure 17 presents a summary of options associated to our levels of specification. A sho

example (without gate parameters) is given for each:

Level Options Example

L1: 

Single instance

Without tail

recursion

process  P : noexit  :=
   TriggerP; A; ResultP; stop
endproc

With tail

recursion

process  P : noexit  :=
   TriggerP; A; ResultP; P
endproc

L2:

Parametrized

number of 

instances

With

sequential

execution

process  P (n:nat) : noexit  :=
   TriggerP;(
     A; ResultP;
     ( [n ne Succ(0)] -> P(Pred(n)) ) )
endproc

Without tail

recursion,

Concurrent

execution

process  P (n:nat) : noexit  :=
   TriggerP;(
     A; ResultP; stop
     |||
     [n ne Succ(0)] -> P(Pred(n)) )
endproc

With tail

recursion,

Concurrent

execution

process  P (n:nat) : noexit  :=
   TriggerP;(
     A; ResultP; P(Succ(0))
     |||
     [n ne Succ(0)] -> P(Pred(n)) )
endproc
Formalization of Timethreads Using LOTOS 35 



From Timethreads to LOTOS

n how

ish to

ss, a

listic

ses for

s could

more

lot of

e are

ctural

n will

ugh

, even

n in

SAR).
Figure 17: Levels of abstraction and their options.

Depending on what type of questions we want to ask of a generated specification, and o

much detail we want to consider, we may prefer to use different levels. For example, if we w

quickly test some behaviours or play some easy scenarios in early stages of the design proce

level 1 (L1) specification is rapidly generated and tested. For more complex and rea

scenarios (including concurrency, robustness, cycles, etc...) or for the generation of test ca

the implementation, a level 2 specification could be used. The last level (L3) is like a level 2

specification where there is no commitment to a specific number of instances. Note that (L3) has

semantics nearly equivalent to the Petri nets presented in [FCB 93], while (L1) leads to more

workable and understandable LOTOS code.

Of course, a natural extension of this concept would be to allow mixed-levels specifications, i.e.,

each timethread would independently have its own level and options. These specification

simulate the behaviour of a final system in a very realistic way and would be 

implementation-oriented than pure L3, L2 or L1.

Our interpretation of timethreads often results in a new style of LOTOS code, i.e., with a 

concurrent instances and many resulting stop  processes. This timethread-oriented style reflects

the timethread structure of the system under design but not its final architecture. W

concerned here with a behavioral interpretation of the path specification, without archite

considerations (at least at this abstraction level).

By using such concurrent and recursive interpretation, the execution of our specificatio

result in a large number of stop  processes interleaving with the rest of the behaviour. Altho

this type of resulting behaviour is usually unwanted, it does not really lead to any problem

for simulation tools (such as XELUDO or LITE). What is really dangerous is the recursio

parallelism (levels 2 and 3), which is not accepted by some tools (for instance, the tool CAE

L3:

Unbounded

number of

instances

None process  P : noexit  :=
   TriggerP;(
     A; ResultP; stop
     |||
     P )
endproc

Level Options Example
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One way to avoid problems arising from recursion in parallelism might be to add a m

command in a meta-language (or a tool control language) to manage the number of instan

process. No option would be needed with such an operator: a single level of specification

always be used for any simulation. This feature is not implemented in any known tool ye

therefore we have to simulate it directly in the specification.

In this thesis, we mostly use level 1 specifications, because they are the most simple and

ones. Level 3 specifications are discussed sometimes, but level 2 specifications are pu

because they introduce a high level of complexity in LOTOS specifications for a very little g

4.1.3 Tag Mechanism

In the previous section, we mentioned that each timethread instance, or token, has an 

state. This state could determine which path will be followed when a choice occurs. We m

may not know this state during early stages of the design process. But at some point in ti

want to capture it to give a more specific picture of behaviour.

Timethreads are path specifications, not complete behaviour specifications. Althoug

intention is not to specify the complete behaviour, if we can be accurate on what path 

taken, based on an instance’s internal state, then we should use this information in the dia

derive the specification accordingly. The notation may need to have tags and guards for adding

such details.

By attaching guards to paths at an OR-fork junction (when needed), we can solve most of th

determinism problems associated to choices and unfeasible paths. One of the different alte

would be chosen according to previous information set by tags.

These tags and guards should not be mandatory. They should be used only when requ

specific paths. Non-determinism can still be present, if we do not have the information to so

In this way, a map can be incrementally extended if desired, without changing what is a

there.
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We give a simple example with tags and guards in figure 18. When a token takes (in 

deterministic way) the upper path at the first OR-fork, a tag T is set to the value Up. Then, at the

second OR-fork, it is forced to take the upper path again because a guard constrains the low

to tags T different from the value Up. If the token follows the lower path at the first OR-fork, th

tag T becomes Down, and the token can take either path at the second OR-fork, because it sa

the guard of the lower path and there is no constraint associated to the upper path.

Figure 18: Use of tags and guards

This mechanism is implementable in LOTOS using an abstract data type Tag that enumerates

possible tags and defines equality and inequality operations. Assignation of a value to a

done using the LOTOS let  construct, and the guards are mapped onto LOTOS guards. A 

complete description of the mapping is presented in section 4.5.5.

A timethread tool could implement many facilities to create and manipulate tags, in a 

friendly way. Such tool could also have the options to show or hide guards and/or tags to m

diagram simpler.

4.1.4 Tag Flow

The choice of a specific timethread path can influence the choice of another timethread pa

effect. Tags and interactions between these two timethreads are needed. There are only tw

of indicating inter-timethread interactions: preconditions and explicit interactions. M

timethread patterns are handled clearly by one or the other method. However, data has to

an interaction point for tag information to be transferred from one timethread to another. Th

be implemented by message passing or by global variables.

Timethreads allow the use of both message passing and global variables. Since we are d

distributed systems, often without shared memory to manage such variables, global va

could be considered useless or dangerous to use. However, at a high level of abstraction, 

help designers delaying many decisions related to implementation while making the big p

clearer.

T=Up

[T<>Up]
T=Down
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In this thesis, we formalize message passing only, because this way of handling data relat

closely to distributed systems in general. LOTOS offers the powerful mechanism of mult

synchronization, to allow message passing (ADTs) at interaction points. Timethreads intera

can be mapped onto LOTOS multi-way synchronizations, and tag information can then flow

one timethread to another, or from the environment to a timethread. 

In figure 19, there are three tags (LOTOS value identifiers) C, T, and P. There is a flow of

information going from the environment to C, as expressed by an arrow going towards 

timethread (incoming arrow). This information is associated to a token which takes a

according to the guards. Then T is set and passed to the next timethread (outgoing arrow), w

accepts this value in a local tag P (incoming arrow). Finally, P is used to determine which path 

to be taken in the second timethread.

Figure 19: Flow of information

The tag flow symbol ( ) is not part of the traditional Timethread notation, although

equivalent data flow symbol has been used in the literature. There is a trade-off between ca

every detail and making the big picture clear. Too much notation clutters the pic

Nevertheless, we consider the tag flow notation to be simple and clear, and we will use it 

thesis to express flow of information between timethreads. We also use one type of dataTag)

only, in order for the mapping to be simple. At the abstraction level that interests us, time

maps do not contain other types of data.

[P<>Up]

T=Up [P=Up]

C

T=Down

[C=1]

[C<>1] PT
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4.2 STDL Grammar

We use a Single-Timethread Description Language (SDTL), expressed as a grammar, to describe

valid single timethreads. We use STDL to map timethreads onto formal languages su

LOTOS. It is a step towards a general description model that is expected to become the 

representation of timethread maps in a design tool.

The decomposition method of a timethread map (§3.1) would output a LARG description 

interactions and also the description of each individual timethread in STDL. Then a “com

would take these descriptions and output a LOTOS process for each timethread. In sect

this was called the mapping method.

4.2.1 Requirements

In order to have the functionality expressed above, the grammar should:

G1) Be general enough for the generation of LOTOS processes, while being indepe

Other formalisms, such as Petri nets, could be used as output languages o

mapping methods.

G2) Reflect a complete single timethread instead of segments, since these ar

meaningful and do not fully express a timethread’s intentions.

G3) Produce readable descriptions, so that people can actually read them. This help

design, debugging and implementation of a tool. This grammar almost becom

language by itself.

G4) Ease timethread-to-timethread transformations.

G5) Support tags and data flow.

G6) Be adaptable, i.e., it should be easily modified or extended in order to suit sp

needs or special notations.

G7) Avoid redundant constructors while keeping the intentions of the timethread.

G8) Possibly be integrated in a more general description model where timeth

interactions and visual details are also supported.
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4.2.2 Achievements

The STDL grammar presented in the next section achieves most of the goals mentioned:

G1) LOTOS code can be generated from SDTL (this is the topic of the next sec

However, mapping methods for other formalisms (such as Petri nets) are still unt

G2) SDTL generally reflects a complete timethread and its intentions, not only some

paths or segments.

G3) SDTL descriptions are easy to read and understand.

G4) This has not been verified yet, although we give a taste of transformations in the

chapter.

G5) Tags, guards and message passing are supported by SDTL.

G6) We can adapt SDTL in order to include new special symbols or constructs, mos

modifying the <Seg>, <GenOptions >, and <WPOptions>  rewrite rules.

G7) Only a few constructors can be considered as redundant (Par  and AndFork , Choice

and OrFork ), and this trade-off aims at preserving timethread intentions.

G8) SDTL can be associated to LARGs to cover interactions (§4.4). The integratio

composition rules and visual informations to complete map description 

representation is still work to be done.

4.2.3 SDTL Grammar in EBNF

The following context-free grammar represents the Single-Timethread Description Languag

use an Extended Backus-Naur Form where:

• Rewrite rules are of the form Left-Hand Side = Right-Hand side

• Non-terminal symbols are delimited by < and > as in <Name>

• Terminal symbols are in bold-italic as in Name

• Alternative rules are separated by vertical bars ( |  ) as in <Delayed> | <Time>

• Optional items are enclosed in square brackets ([  and ] ) as in [<RecTagValues>]
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• Optional lists, possibly empty, are enclosed by braces {  and }  as in {<Seg>} . A star

(* ) is added to indicate non-empty lists as in {<Seg>}* .

• Enumerations are expressed with ..  as in a.. z

• Comments are between (*  and *) .

(* STDL, June 9, 1994 *)
(* Single-timethread definition. We separate stubs from complete timethread for future use. *)
<Timethread> = Timethread  <TTId> Is  <StubOrTT> EndTT 
<StubOrTT> = <Stub> | <GenOptions> [<Internals>] <Trigger> <FirstPath> 

(* Stub definition. No general options nor segments. They represent timethread stubs *)
<Stub> = Stub  <Trigger> <Result> EndStub

(* General options available to timethreads; can be extended. At the moment, there are two *)
(* non-exclusive options available for aborted and constrained timethreads. *)
<GenOptions> = [<Aborted>] [<Constrained>]
<Aborted> = AbortedOn (  <EventId> )
<Constrained> = Constrained  

(* A list of activities can be internal, i.e. hidden from the timethread’s environment. *)
<Internals> = Internal  <Identifier> { ,  <Identifier>}

(* A trigger has access to waiting places options and it might receive tag values. *)
<Trigger> = Trigger  <WPOptions> (  <TriggerId> [<RecTagValues>] )  

(* The first path of a timethread does not need the keywords Path and EndPath to be clear. *)
<FirstPath> = {<Seg>} <Result>

(* A result can send tag values to the environment or other interacting timethreads. *)
<Result> = Result  (  <ResultId> [<SendTagValues>] )  

(* Waiting places options available; the list can be extended. At the moment, we consider two *)
(* exclusive options. *)
<WPOptions> = [<Delayed> | <Timed>]
<Delayed> = Delayed  
<Time> = Time  

(* Types of segments available; the list can be extended *)
<Seg> = <Abort> |

 <Action> |
<AndFork> |

 <Async> |
 <Choice> |

<Loop> |
<Loss> |
<OrFork> |
<Par> |
<SegStub> |
<Sync> |
<Tag> |
<Waiting>

(* This event aborts another timethread. *)
<Abort> = Abort (  <EventId> )  

(* Indicates an action and its identifier. *)
<Action> = Action (  <ActionId> )  
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(* Asynchronous/syncronous waiting places. Async can send tag values in passing, and Sync can *)
(* receive them. *)
<Async> = Async ( <EventId> [<SendTagValues>] )
<Sync> = Sync (  <EventId> [<RecTagValues>] )  

(* Choice (OR-Fork & OR-Join) and OR-Fork (no join) segments. The Choice has at least two *)
(* optional list of segments, and the OrFork as a choice between the continuation of the *)
(* original path and at least one new path. Guards are optional. *)
<Choice> = Choice  [<Guard>] {<Seg>} { Or  [<Guard>] {<Seg>} }* EndChoice
<OrFork> = OrFork  [<Guard>] Continue  { Or  [<Guard>] <Path>}* EndOrFork

(* A new path is a list of segments with a result. *)
<Path> = Path  {<Seg>} <Result> EndPath

(* A Loop is composed of two sections, Compulsory and Optional, indicated by their coresponding *)
(* keywords (they can be abbreviated by Comp and Opt). Guards are optional. *)
<Loop> = Loop  <LoopComp> <LoopOpt> EndLoop  
<LoopComp> = <CompSymb> [<Guard>] {<Seg>}
<LoopOpt> = <OptSymb> [<Guard>] {<Seg>}
<CompSymb> = Comp | Compulsory
<OptSymb> = Opt  | Optional

(* Loss of an instance or token. Can be guarded. *)
<Loss> = Loss  (  [<Guard>] <LossId> )  

(* Par (AND-Fork & AND-Join) and AND-Fork (no join) segments. The Par has at least two *)
(* optional list of segments, and the AndFork adds at least one concurrent path. *)
(* Guards are forbidden (it is not a choice). *)
<Par> = Par  {<Seg>} { And {<Seg>}}* EndPar  
<AndFork> = AndFork  <Path> { And <Path>} EndAndFork  

(* Segment stub definition. They represent path stubs. *)
<SegStub> = SegStub  (  <SegStubId>  )

(* Waiting place that waits for an environment stimulus. *)
<Waiting> = Wait  <WPOptions> (  <EventId> [<RecTagValues>] )  

(* Tags definition and tags passing (send and receive). *)
<Tag> = Tag (  <TagId> = <ValueId> )  
<RecTagValues> = ? <TagId> [<RecTagValues>]
<SendTagValues> = !  <TagId> [<SendTagValues>]

(* Guard expressions. The list of equation operators and boolean operators can be extended. *)
(* These operators are currently based on LOTOS boolean and natural ADTs. *)
<Guard> = Guard  (  <GuardExpr> )  
<GuardExpr> = <TagId> <EqOp> <ValueId> |

not  ( <GuardExpr> )  |
(  <GuardExpr> )  <BoolOp> (  <GuardExpr> )

<EqOp> = eq  | ne
<BoolOp> = and  | or  | xor  | implies  | iff

(* Different identifiers used. They all start with a letter, except ValueId. *)
<ActionId> = <Identifier>
<EventId> = <Identifier>
<LossId> = <Identifier>
<ResultId> = <Identifier>
<SegStubId> = <Identifier>
<TagId> = <Identifier>
<TriggerId> = <Identifier>
<TTId> = <Identifier>
<ValueId> = {<Alphanum>}*
<Identifier> = <Letter> {<Alphanum>}
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<Alphanum> = <Digit> | <Letter>
<Digit> = 0.. 9
<Letter> = a.. z  | A.. Z

Appendix A presents the syntax diagrams of the STDL grammar. Rewrite rules are in rect

and terminal symbols are in ellipses. Section 4.6 also presents the mappings from ST

LOTOS according to these rules.

We believe SDTL is a step towards the automated generation of LOTOS specifications

timethread maps. Section 7.2 discusses more in depth the utility and advantages of this gr

The next section presents most common cases of mapping from single timethreads to S

LOTOS processes.

4.3 Single Timethreads in LOTOS

We present here the mapping method that generates LOTOS from single timethreads expr

STDL. We mostly use level 1 specifications, although level 3 specifications are some

discussed. We also refer to the Traveler System introduced in section 3.3 to illustrate pertine

examples.

Section 4.3.1 presents basic timethread combinations, i.e. unconstrained and constraine

and the loop constructor. Section 4.3.2 shows the use of concurrent and alternate segmen

a given timethread. In the upcoming examples, we present the timethread map, the corres

STDL code, and then the resulting LOTOS process. We use a simpler LOTOS syntax (w

gate parameters and process identification) in order to simplify the behaviour expre

generated. The complete LOTOS syntax is however respected in the appendices specifica

Note that for some instances of basic combinations (e.g., constrained start and loop), th

lation is not straightforward. However, we believe that it could be formally defined and 

mated, and this is why section 4.6 reviews most of the general mappings from STDL to LO

4.3.1 Basic Combinations

Sequence
The basic timethread of figure 20 has been already discussed in §4.1.2. The sequence is a very

common pattern that can be found in the Traveler System (timethreads Traveler and Plane). In the

following example, we consider the timethread Plane alone, without any interaction with

Traveler. We obviously see that events and actions are directly mapped onto LOTOS gates
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Figure 20: Example of sequence

To get a level 1 specification with recursion, we replace stop  with the process instantiation

Plane[gates...] . A level 3 specification is obtained by adding  ||| Plane[gates...]

after stop . Generally, these are the only modifications needed to get a specification at a s

level. This is easily manageable for a tool or a compiler.

Internal Actions
In the previous timethread (fig. 20), we can observe all activities since nothing is de

internal. We defined events to be activities on which the environment or other timeth

interact, so they cannot be hidden or abstracted within a timethread, although whole inter

could be hidden at a higher level in a timethread map (see §5.2.1). Actions however 

internal to a timethread, and the STDL grammar allows this with the Internal  construct.

For instance, we can make actions TgetonP and TgetoffP internal to the timethread (fig. 20). Al

actions declared internal is mapped onto a LOTOS hidden gate.

Figure 21: Example of sequence with internal actions

A tool could allow a designer to select which actions should be internal to their resp

timethreads. Note that we will not use internal actions in the remaining examples of this ch

The Traveler and Telepresence systems will however use this very useful notion.

Timethread  Plane is
   Trigger  (Pready)

   Action  (TgetonP)
   Action  (TPflight)
   Action  (TgetoffP)
   Result  (Phangar)
EndTT

Plane :=
   Pready;
   (
      TgetonP;
      TPflight;
      TgetoffP;
      Phangar; stop
   ) (* L1 *)

Timethread  Plane is
   Internal
      TgetonP,TgetoffP
   Trigger  (Pready)

   Action  (TgetonP)
   Action  (TPflight)
   Action  (TgetoffP)
   Result  (Phangar)
EndTT

Plane :=
   hide  TgetonP,TgetoffP in

   Pready;
   (
      TgetonP;
      TPflight;
      TgetoffP;
      Phangar; stop
   ) (* L1 *)

TPflight

TgetoffP

Phangar
Pready

Plane

TgetonP
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Constrained Start

Figure 22: Example of constrained start

Figure 22 presents the constrained start timethread Dispatcher, without the loop and the

interactions found in the original timethread map. The system allows only one instance (

token) of timethread Dispatcher at a time, i.e., Dispatcher has to terminate for a new instance 

start. For level 1 specifications (with or without recursion), there is no difference betwe

constrained start and a sequence, because there is at most one instance at a given tim

cases. However, we would like the triggering event not to be refused for level 3 specific

while an instance is executed. Those triggering events have to be accumulated in some w

that purpose, the start waiting place needs internal machinery to manage the incoming of p

many triggering events Din, while allowing only one token to go at a time.

The constrained start timethread Dispatcher, including a waiting place with necessary intern

machinery, is specified at level 3 in specification 2:

Specification 2: Level 3 constrained start

Timethread  Dispatcher is
   Constrained
   Trigger  (Din)

   Action  (DlookforC)
   Action  (DaskC)
   Action  (Dfillstats)
   Result  (Dout)
EndTT

Dispatcher :=

   Din;
   (
      DlookforC;
      DaskC;
      Dfillstats;
      Dout; stop
   ) (* L1 *)

Dispatcher

Din

Dout

DlookforC
DaskC

Dfillstats

Dispatcher :=
   hide  SyncCS in          (* hidden gate *)
      WP_CS |[SyncCS]| DispatcherSub
   where

   WP_CS :=               (* Waiting Place Machinery *)
      Din; (SyncCS; stop   (* Allows one token to go *)
            |||
            WP_CS)        (* Accumulation of Din *)
       
   DispatcherSub :=       (* Rest of the timethread *)
      SyncCS;
      DlookforC;
      DaskC;
      Dfillstats;
      Dout; DispatcherSub (* L3 *)
      (* Ready for the next token *)
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We need two sub-processes, one for the waiting place (WP_CS) and one for the rest of the

timethread (DispatcherSub), to represent the constrained start. These processes are synchr

on a hidden gate called SyncCS. We discuss waiting places with internal machinery in chapter

Loop
The timethread Dispatcher includes a loop to indicate that someone can dispatch more than 

cab. Figure 23 shows this loop, but we still ignore interactions for the moment. In the LO

representation of a loop, we have to define a sub-process (here Dloop) corresponding to the loop

part and the rest of the timethread. For this purpose, we defined, in STDL, a compulsory segment

Compulsory  (must be executed at least once) and an optional segment Optional  (may or may

not be executed). 

 

Figure 23: Example of loop

Again, recursion can be added to this process if necessary. Level 3 specifications a

possible: we simply replace Din; Dloop  with Din; (Dloop ||| Dispatcher) . Lastly,

guards can be attached to determine whether we loop again or not.

4.3.2 Concurrent and Alternate Segments

The Traveler System does not have any of the four types of concurrent and alternate segmen

§2.1.1). We will present short examples adapted from the Traveler timethread to illustrate these

segments.

Timethread  Dispatcher is
   Constrained
   Trigger  (Din)
   Loop
     Compulsory
       Action  (DlookforC)
       Action  (DaskC)
       Action  (Dfillstats)
     Optional
       Action  (Dready)
   EndLoop
   Result  (Dout)
EndTT

Dispatcher :=
   Din; (Dloop)
   where
   Dloop :=
      (* Compulsory Seg *)
      DlookforC;
      DaskC;
      Dfillstats;
      (
         (* Optional Seg *)
         Dready; Dloop
         []
         (* Exit loop *)
         Dout; stop
      ) (* L1 *)

Dispatcher

Din

Dout

DlookforC
DaskC

Dfillstats

Dready
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OR-Fork
Suppose the traveler has a choice between going to its destination and staying in bed (Tstaybed)

that particular morning. These are two exclusive paths that will never join. Figure 26 pre

such a (simplified) timethread. The LOTOS choice operator ([] ) is used in the interpretation o

the OR-Fork.

Figure 24: Example of OR-Fork

In STDL, the choice construct allows multiple alternatives (more than two options) and t

reflected in the LOTOS code accordingly. When an OrFork  occurs, we choose between th

continuation of the timethread (Continue ) and new path segments (Path ). The latter have their

own resulting events. As expressed in the STDL grammar, at least one new segment is ne

the OrFork  construct. We also have the possibility to add guards to the all segments. Fina

generate recursive specifications by modifying the stop  of each alternative, and level 

specifications by adding ||| Traveler  before the last parenthesis, as in the previous sectio

Choice
The choice is the combination of an OR-Fork with an OR-Join. It indicates that a token can fo

one of many different paths for a while, but all these paths merge in a common path lat

instance, our traveler still wants to get to the airport, but she now has a choice between

(Ttaxi) and a bus (Tbus). This case is presented in figure 25.

Timethread  Traveler is
   Trigger  (Tnew)
   Action  (Twakeup)
   OrFork
   (* Continued segment *)
       Continue
     Or
   (* New path *)
       Path
          Result  (Tstaybed)
       EndPath
   EndOrFork
   Action  (Tairport)
   Result  (Tdest)
EndTT

Traveler :=
   Tnew;
   (
      Twakeup;
      (
         (* Continued seg *)
         Tairport; 
         Tdest; stop
       []
         (* New path *)
         Tstaybed; stop
      )
   ) (* L1 *)

Traveler

Tnew
Tstaybed

Tairport

Twakeup

Tdest
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Figure 25: Example of choice (OR-Fork & OR-Join)

Again, we have added a hidden gate SyncOR to synchronize the end of the choice with the rest

the timethread. Multiple choices are supported by STDL and LOTOS, and guards can be a

AND-Fork
The traveler is able to do many things concurrently. In the next example (fig. 26), the trave

a report to read. After she phones the dispatcher, she can read this report (Tread) before her taxi

ride, before getting to the airport, before or after the arrival to the destination. This is repre

with two concurrent paths after a AND-Fork.

 

Figure 26: Example of AND-Fork

The LOTOS interleaving operator is used here to represent that two tokens follow the two

concurrently. The AndFork   adds new concurrent path segments, and we may have more tha

exiting paths (thus at least one new Path  segment), without guards.

Timethread  Traveler is
   Trigger  (Tnew)

   Choice
 
       Action  (Ttaxi)
     Or
       Action  (Tbus)
   EndChoice

   Result  (Tairport)
EndTT

Traveler :=
   Tnew;
   (
      hide  SyncOR in
      (
         Ttaxi; SyncOR; stop
       []
         Tbus; SyncOR; stop
      )
      |[SyncOR]|
      SyncOR;
      Tairport; stop  
   ) (* L1 *)

Timethread  Traveler is
   Trigger  (Tnew)
   Action  (TphoneD)
   AndFork
     (* New path *)
     Path
       Action  (Tread)
       Result  (TrepOK)
     EndPath
   EndAndFork
   (* Continued segment *)
   Action  (TCride)
   Action  (Tairport)
   Result  (Tdest)
EndTT

Traveler :=
   Tnew;
   (
      TphoneD;
      (
         (* New path *)
         Tread
         TrepOK; stop
       |||
         (* Continued seg *)
         TCride;
         Tairport; 
         Tdest; stop
      )
   ) (* L1 *)

Traveler

Tnew

TairportTbus

Ttaxi

Traveler

Tnew TrepOK

Tairport

TphoneD

TdestTCride

Tread
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Par
Sometimes, we do not care in what order some activities occur, or we want to represent t

occurring concurrently. A constructor named par, which is an AND-Fork followed by a AND-

Join, is used in figure 27 to express such a concept. In this example, the traveler has to r

report after she phones the dispatcher and before she arrives at the airport. However, she 

it before or after her taxi ride (or during her ride, if we interpret the interleaving as 

concurrency).

The STDL Par  construct is mapped onto the LOTOS parallel composition operator. 

synchronization between all concurrent paths occurs on a hidden gate (SyncAND). As for the

other constructors, we can specify more than two concurrent paths, and we can generate r

or level 3 specifications.

Figure 27: Example of par (AND-Fork & AND-Join)

The reason for using a hidden gate instead of the exit  followed by the enable operator (>>) to

synchronize concurrent segment is to preserve consistency with other types of interactio

§4.4.1).

4.4 Timethread Interactions

A timethread map is a collection of interacting timethreads. We can differentiate two typ

interactions: timethread starting (§4.4.1), where one or many timethreads start one or man

timethreads, and synchronous/asynchronous interactions along timethread paths (§4.4.

structural part of these interactions will be obtained using the timethread decomposition m

and the LAEG method [Bor 93].

Timethread  Traveler is
   Trigger  (Tnew)
   Action  (TphoneD)

   (* Concurrent segs *)
   Par
       Action  (Tread)
     And
       Action  (TCride)
   EndPar

   (* Rest of Traveler *)
   Action  (Tairport)
   Result  (Tdest)
EndTT

Traveler :=
   Tnew;
   (
      TphoneD;
      (
         hide  SyncAND in
         (
            Tread;
            SyncAND; stop
          |[SyncAnd]|
            TCride;
            SyncAND; stop
         )
         |[SyncAnd]|
         SyncAnd;
         Tairport; 
         Tdest; stop
      )
   ) (* L1 *)

Traveler

Tnew

TphoneD Tdest

Tairport

Tread

TCride
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The decomposition method aims at mapping the topology of interacting timethreads onto a 

and generating descriptions of individual timethreads in STDL. Section 4.3 showed how 

descriptions are obtained from individual timethread. The current sections covers the map

timethread maps onto LARGs, and the generation of LOTOS structural expressions us

LAEG method.

4.4.1 Starting Concurrent Timethreads

This section proposes several basic scenarios, related to the Traveler System, where timethreads

are started. Their goal is to present interactions constructors, which are represen

juxtapositions of basic symbols (refer to §2.1.2).

Concatenation
The concatenation is probably the most simple interaction, and several basic options

discussed here. In the example of figure 28, the dispatcher receives a phone call and as

cab. This enables a cab to go and get a traveler (CgetT).

Figure 28: Example of concatenation

The mapping onto a LARG is given. There are two processes, one for each timet

synchronized on gate DaskC. This gate could be potentially hidden at a higher lever of abstrac

(see §5.2.1 for further explanations on internal events). The LAEG method generate

corresponding LOTOS structural expression. The analysis step does not find any ambiguity

LARG, and the expression shown in the figure is directly generated.

where DisGates  is Din, TphoneD, DaskC

Dispatcher [Din, TphoneD, DaskC]
|[DaskC]|
Cab [DaskC, CgetT]

where

   (* Process definitions *)

Din

TphoneD
DaskC

CgetT

Dispatcher Cab

DaskC

Dispatcher

DisGates

Cab

DaskC,CgetT
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The process definitions are given below (fig. 30). They correspond to two sequences wh

result of the first timethread (Dispatcher) is the same event as the triggering event of the sec

one (Cab). The synchronization occurs on that specific event (DaskC).

Figure 29: Level 1 process definitions of figure 28

We can use different levels of specification for these two processes. In figure 30, we used 

specifications as process definitions.

Figure 30: Level 3 process definitions of figure 28

Gate Synchronization vs Enable Operator
In figure 28, we used synchronization on an explicit gate instead of the LOTOS enable op

(>>) in order to avoid problems associated to levels of specification. An instance of 

problems is given in figure 31, where a timethread Q is concatenated to the end of a timethread P: 

Figure 31: LOTOS synchronization on a concatenation

Timethread  Dispatcher is
   Trigger  (Din)
   Action  (TphoneD)
   Result  (DaskC)
EndTT

Dispatcher :=
   Din;
   (
      TphoneD;
      DaskC; stop
   ) (* L1 *)

Timethread  Taxi is
   Trigger  (DaskC)
   Result  (CgetT)
EndTT

Taxi :=
   DaskC;
   (
      CgetT; stop
   ) (* L1 *)

Dispatcher :=
   Din;
   (
      TphoneD;
      DaskC; stop
      |||
      Dispatcher
   ) (* L3 *)

Taxi :=
   DaskC;
   (
      CgetT; stop
      |||
      Dispatcher
   ) (* L3 *)

P1

P2

P3

P4

Q1

Q2

Q3

Q4

P1

P2

P3

P4

Q1

(a) Wrong behaviour using exit (b) Good behaviour using a hidden gate

.

.

.

.

.

.
.
.
.
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With a level 3 specification, we cannot use the LOTOS enable operator (>>) to describe the

interaction because all instances of P, although they are executed in parallel, would have

synchronize on exit before Q starts (see fig. 31a). This is impossible because there would b

infinite number of instances of P. By using synchronization on a potentially hidden gate, 

instance of process Q is created every time an instance of process P terminates (fig. 31b), whitout

any problem.

We considered the generalized termination (>ei>), presented in [QuA 92], as an alternative 

synchronization on potentially hidden gates. However, although the problem of the sta

enable operator is solved, the new operator was found to act like a disabling (all instanceP

would be destroyed after an enabling). Also, the extension of [QuA 92] needs some change

underlying model of LOTOS (a new compound event), and their proposal is not standardiz

Because of these reasons, this option was rejected.

The use of potentially hidden gates leaves us with fewer LOTOS operators to conside

satisfies one of the guiding rules presented in §4.1.1.

In-Passing Start
We adapt here the previous example. The concatenation is replaced with an in-passing start, and

the dispatcher fills his statistics at the end (see fig. 32).

Figure 32: Example of in-passing start

where DisGates  is Din, TphoneD, DaskC, Dfillstats

Dispatcher [Din,TphoneD,DaskC,Dfillstats]
|[DaskC]|
Cab [DaskC, CgetT]

where

   (* Process definitions *)

Din

TphoneD DaskC

CgetT

Dispatcher Cab

Dfillstats

DaskC

Dispatcher

DisGates

Cab

DaskC,CgetT
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This interaction is asynchronous, i.e, Dispatcher does not wait at the interaction point, but Cab

does. The LARG model expresses synchronous interactions only, and thus the “asynchr

part must be simulated in the processes themselves. We decided to express it in the descr

the non-waiting timethread Dispatcher as shown in figure 33:

Figure 33: Process definitions of figure 32

We prefer this way of simulating asynchronous interactions to the insertion of a buffer be

two processes. The latter option causes another process to be created and the asynchron

to be split (DaskC would become DaskCSend and DaskCReceive). Our option is much simpler

and only one event is necessary.

OR-Start
Many-to-one timethread interactions are possible. In this example (fig. 34), we suppose tha

a Dispatcher or a Traveler can ask for a Cab. 

Timethread  Dispatcher is
   Trigger  (Din)
   
   Action  (TphoneD)
   (* Async event *)
   Async  (DaskC)
   (* Rest of the path *)
   Result  (Dfillstats)

EndTT

Dispatcher :=
   Din;
   (
      TphoneD;
      (
         DaskC; stop
         |||
         Dfillstats;
         stop
      )
   ) (* L1 *)

Timethread  Cab is
   Trigger  (DaskC)

   Result  (CgetT)
EndTT

Cab :=
   DaskC;
   (
      CgetT; stop
   ) (* L1 *)
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Figure 34: Example of OR-Start

The LAEG method finds OR-Starts to lead to structural ambiguities. LOTOS structur

expressions cannot be directly derived from such LARGs. However, as explained in section

we apply the structural ambiguity grouping to solve this problem. The resulting LOTO

structural expression is presented in figure 34.

Process definitions are derived in the same way as the concatenation (thus, directly fr

map). Different levels of specification lead however to different global behaviours. For inst

if the three processes involved are specified using level 1 without recursion, then once Cab has

been triggered by one incoming timethread, the other timethread will deadlock on AskC because

we only have one instance of Cab. If we use recursion, then the second incoming timethread

to wait for Cab to finish before synchronizing on AskC. There are no such problem at a level 

AskC is always available to as many instances of incoming timethreads as possible. This i

advantage of level 3 specifications over level 1 specifications, because we do not have to c

the non-availability of AskC while validating the map.

(
   Dispatcher [Din, AskC]
   |||
   Traveler [Tnew, AskC]
)
|[AskC]|
Cab [AskC, CgetT]

where
   (* Process definitions *)

Din

AskC CgetT

Dispatcher

Cab

Tnew
Traveler

AskC
Dispatcher

Din,AskC

Cab

AskC,CgetT

AskC

Traveler

Tnew,AskC
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AND-Start
Suppose we need a token from a timethread Traveler and one from Cab to create a token on a

timethread Ride, as in figure 35. The LARG representation of this AND-Start is a three-way

rendezvous between the three processes. The LOTOS structural expression is easily ge

from the LARG, and process definitions are generated as usual.

Figure 35: Example of AND-Start

We saw that one-to-one starts and many-to-one starts can be mapped onto LOTOS. Any 

of timethreads, including one-to-many and many-to-many starts, are obtained by the

construction. We generate the LOTOS structural expressions in a similar way.

4.4.2 Synchronous / Asynchronous Interactions Along Paths

This section deals with different kinds of shared paths, synchronizations and triggering 

between timethreads. Waiting places along timethreads will be used. 

Synchronous Join-Fork
A traveler and a cab have to synchronize during their ride to the airport. They wait for each

on TgetinC, go together (TCride), and then go their separate ways after TgetoutC. This

synchronous Join-Fork of timethreads Traveler and Cab is shown in figure 36:

Ride [TinC, ToutC]
|[TinC]|
(
   Cab [Cin, TinC]
   |[TinC]|
   Traveler [Tnew, TinC]
)

where
   (* Process definitions *)

TinC

ToutC

Cab

Ride

Tnew
Traveler

Cin

TinC

Cab

Cin,TinC

Ride

TinC,ToutC

Traveler

Tnew,TinC
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Figure 36: Example of synchronous Join-Fork

All activities on the common segment are put in the gate set linking the two processes. The

these two processes are synchronized on all activities on this path segment. Since inte

occur all along this segment, actions cannot be hidden locally. In fact, actions such as TCride are

more than actions; they are also interactions. The current interpretation results in identical

of the common segment in the two timethreads description. However, a timethread too

should not be bothered with such problem.

Identical copies lead to potential problems. One can be encountered in the case of modific

which will have to be applied consistently to all copies. A second one relates to some well-

problems due to non-deterministic choices in the LOTOS world. We know that the composit

a process P with itself is not always equivalent to P. Figure 37 shows an example of a no

deterministic process P and the composition P || P where P:= a; b; stop  [] a; c; stop .

Deadlocks can result in the composition process P || P after the action a.

Figure 37: LTSs of P and P||P

where CabGates  is Cin, TinC, TCride, ToutC, Cgarage
and TravGates  is Tnew, TinC, TCride, ToutC, Tairport

Cab [Cin, TinC, TCride, ToutC, Cgarage]
|[TinC, TCride, ToutC]|
Traveler [Tnew, TinC, TCride, ToutC, 
          Tairport]

where
   (* Process definitions *)

TinC ToutC

Cab

Tnew
Traveler

Cin
Cgarage

Tairport

TCride

TinC,

Cab

CabGates

ToutC Traveler

TravGates

TCride,

a

b

P P || P

a

c

a

b c

a
a

a
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Could such problem occur between two synchronizing timethreads? We believe it coul

Timethreads have unique identifiers for their activities, so a choice between identical act

impossible. Also, because internal actions are not allowed in a synchronized segment (all 

have to be observable to synchronize), there will never be a non-deterministic choice 

internal actions. Therefore, we think these are sufficient conditions to avoid most problem

synchronized timethreads. 

There is another way of formalizing the synchronous Join-Fork, presented in [Amy 93]

avoids all the problem due to identical copies (fig. 38). We introduce a new process 

SyncThread that represents the common synchronized segment (here TCride). It is almost

considered a timethread by itself, and could be specified at different levels. The pro

synchronization is done on the first (TinC) and last events (ToutC).

Figure 38: Second interpretation of synchronous Join-Fork

This interpretation, similar to semaphores in LOTOS, could facilitate timethread transform

by eliminating the consistency checking between synchronizing processes. Also, we are 

hide internal actions in SyncThread, while this was impossible in the previous alternative beca

all actions had to be observable to synchronize. However, the cost is a supplementary p

which is not consistent with the one-to-one relation between timethreads and LOTOS pro

and increased complexity w.r.t. tag flow. In this thesis, we prefer to use the solution w

additional processes to this alternate solution.

where CabGates  is Cin, TinC, ToutC, Cgarage
and SyncGates  is TinC, TCride, ToutC

and TravGates  is Tnew, TinC, ToutC, Tairport

Cab [Cin, TinC, ToutC, Cgarage]
|[TinC, ToutC]|
SyncThread [TinC, TCride, ToutC]
|[TinC, ToutC]|
Traveler [Tnew, TinC, ToutC, Tairport]

where
   SyncThread :=
      TinC;           (* First event *)
      (
         TCride;      (* Sync. segment *)
         ToutC; stop  (* Last event *)
      )

   (* Process definitions of Cab and *)
   (* Traveler, without TCride. *)

TinC,

Cab

CabGates

ToutC
Traveler

TravGates

SyncThread

SyncGates
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The following example (fig. 39) presents a case where an asynchronous Join-Fork is required. A

Bus and a Cab possess both the ability to perform the Ride action, without any synchronization

This simple example shows that the asynchronous Join-Fork is more a visual hint th

interaction between timethreads. This is why the gate set is empty.

Figure 39: Example of asynchronous Join-fork

The interpretation is simply reduced to two interleaving processes having both the gate Ride.

End-Trigger
This example slightly differs from the concatenation (see fig. 28). In figure 40, Cab starts

independently from Dispatcher, but it has to wait for DaskC before continuing. Since DaskC is

the resulting event of Dispatcher, an end-trigger is required.

where CabGates  is Cin, Ride, Cout
and BusGates  is Bin, Ride, Bout

Cab [Cin, Ride, Cout]
|||
Bus [Bin, Ride, Bout]

where
   (* Process definitions *)

Cab

Bin
Bus

Cin
Cout

Bout

Ride

Cab

CabGates

Bus

BusGates
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Figure 40: Example of end-trigger

In STDL, the waiting place DaskC is represented with a <Sync>  segment. Tags can flow from

Dispatcher to Cab.

In-Passing-Trigger
We modify the previous example to insert an in-passing-trigger. The dispatcher, after having

asked for a cab, does not wait for anything to happen and fills his statistics. Figure 41 illu

this asynchronous interaction.

Figure 41: Example of in-passing-trigger

where DisGates  is Din, TphoneD, DaskC
and CabGates  is Cin, Ride, CgetT

Dispatcher [Din, TphoneD, DaskC]
|[DaskC]|
Cab [Cin, DaskC, CgetT]

where

   (* Process definitions *)

where DisGates  is Din, DaskC, Dfillstats
and CabGates  is Cin, DaskC, CgetT

Dispatcher [Din, DaskC, Dfillstats]
|[DaskC]|
Cab [Cin, DaskC, CgetT]

where

   (* Process definitions *)

Din

TphoneD
DaskC

CgetT

Dispatcher Cab

Cin

DaskC

Dispatcher

DisGates

Cab

CabGates

Din

TphoneD
DaskC

CgetT

Dispatcher Cab

CinDfillstats

DaskC

Dispatcher

DisGates

Cab

CabGates
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In STDL, the interaction point DaskC is represented as Async (DaskC)  in Dispatcher, and

Sync (DaskC)  in Cab. The resulting process definitions are similar to the ones in figure 33.

Other Interactions
Complex interactions, involving more than two timethreads, are described using the 

approach. A separate architectural approach (such as the LARG model) combined with

timethread description (in STDL) gives us the LOTOS architecture required to represent th

complex timethreads interactions.

4.5 Special Symbols

In this section, we give a LOTOS interpretation to a selection of timethread special sy

(see §2.1.3). In order to keep the mappings simple, LARG representations and LOTOS str

are not given when they can be easily derived from the previous sections.

4.5.1 Timers

Delays
A timer symbol, used as a delayed waiting place triggering a timethread, expresses a delayed

start. In figure 42, the dispatcher waits for a certain time before asking for a cab. In STDL

keyword Delayed , an option in the grammar (<WPOptions> ), is used to express such waitin

places. This delay is interpreted in LOTOS as the internal action Delay.

Figure 42: Example of delayed start

Time is an abstract notion in LOTOS. We think that an internal action is sufficient to cl

express a delay, and therefore no time extension is needed. In fact, strictly speaking, e

internal action is not necessary because, in LOTOS, every action implies arbitrary 

However, an explicit internal action makes the specification clearer and more meaningful.

Timethread  Dispatcher is
   Delayed
   Trigger  (TphoneD)
   Result  (DaskC)
EndTT

Dispatcher :=
   hide  Delay in
   Delay;
   TphoneD;
   (
      DaskC; stop
   ) (* L1 *)

Traveler
TphoneD

Tnew

TgoCab

DaskC

Dispatcher
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A delayed waiting place can also be used alone along a timethread path. It is interpreted

same way, i.e, with an internal action Delay.

Timeouts
We also use timer symbols to express time waiting places. Assume a cab is waiting for the

dispatcher’s orders. After a certain period of time (TimeOut), if the cab does not receive anythin

it can decide to continue its way to get a traveler by his own. In figure 42, we use the 

waiting place option Time  to indicate such a time waiting place. 

Figure 43: Example of time waiting-place

We map Time  onto a LOTOS hidden gate TimeOut. A cab has a choice between waiting an ord

or continuing after TimeOut. Both choice lead to the internal event SyncTO for internal

synchronization with the rest of the path. Note that we use a special tag (ResultTO) that represents

the state of an instance (or a token). This tag, with a value of TOut or OK, can be used later to

constrain alternatives with guards (see §4.5.5 for tags use). Also, time waiting places can b

as triggering events.

4.5.2 Stubs

Stubs represent abstract paths or timethreads. We distinguish two types of stubs:

• Timethread stubs: they represent an abstract complete timethread, including a trige

event and a resulting event. They however do not include any segment. Time

stubs usually interact with other timethreads. In STDL, we define them with

keyword Stub  (see §4.2.3).

Timethread  Cab  is
   Trigger  (Cin)
   Sync Time  (DaskC)
   Result  (CgetT)
EndTT

Cab :=
   Cin;
   (
      hide  TimeOut, SyncTO in
     (
         TimeOut;
         SyncTO! TOut;
         stop
         []
         DaskC;
         SyncTO! OK;
         stop
      )
      |[SyncTO]|
      SyncTO ?ResultTO:Tag;
      CgetT; stop
   ) (* L1 *)

Dispatcher
Din

CgetT

Cab

TphoneD
DaskC

Cin
62 Formalization of Timethreads Using LOTOS 



Special Symbols

y are

 the

sulting

were
• Path stubs: they represent a missing or abstract path along a timethread. The

located directly on the body of a timethread. In STDL, we define them using

segment SegStub .

As a timethread stub example, the Dispatcher stub of figure 44 provides the DaskC event

necessary for Cab to continue. The triggering event of this stub is Din, and nothing else is said

about Dispatcher.

Figure 44: Example of a timethread stub

The timethread stub is mapped onto a LOTOS process with only one triggering and one re

event. As shown in the LARG, they can interact with other timethreads as if they 

timethreads themselves.

Figure 44 presents an example of a timethread were the path stub StartAndGo abstracts a more

complex path were the cab driver might check the fuel, start the car, go to work, etc .

Figure 45: Example of a path stub

Timethread  Cab is
   Trigger  (Cin)
   Sync  (DaskC)
   Result  (CgetT)
EndTT

Cab :=
   Cin;
   (
      DaskC;
      CgetT; stop
   ) (* L1 *)

where DisGates  is Din, DaskC
and CabGates  is Cin, DaskC, CgetT

Name Dispatcher is
   Stub
      Trigger  (Din)
      Result  (DaskC)
   EndStub
EndTT

Dispatcher :=
   Din;
   (
      DaskC; stop
   ) (* L1 *)

Timethread  Cab is
   Trigger  (Cin)
   SegStub  (StartAndGo)
   Result  (CgetT)
EndTT

Cab :=
   Cin;
   (
      StartAndGo;
      CgetT; stop
   ) (* L1 *)

Dispatcher

CgetT

Cab

DaskC

Cin

Din

Dispatcher

DisGates

Cab

CabGates

DaskC

CgetT

Cab

StartAndGo

Cin
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The path stub is simply mapped onto a LOTOS gate, in the same way as ordinary actio

forbid any interaction on these stubs.

Stubs are mostly used ase visual cues for the moment. Eventually, they will be part of a

(and a tool) where they will be refined and will represent different levels of abstraction

timethread map.

4.5.3 Abort

The abort operator and its LOTOS interpretation are presented in figure 46. Suppose aStorm

timethread that destroys (Sdestroy) all instances of Plane, wherever they are. In STDL, the optio

AbortedOn  shows that a timethread can be aborted, and the construct Abort  shows the aborting

event.

 

Figure 46: Example of an abort

We map the abort onto the LOTOS disabling operator ([> ), and the aborting event (Sdestroy)

becomes an interaction point between the two timethread. In this way, an abort really k

instances of a timethread until a new instance is triggered. This special symbol must there

used with special care.

Timethread  Plane is
   AbortedOn  (Sdestroy)
   Trigger  (Pready)
   Action  (TPflight)
   Result  (Phangar)
EndTT

Plane :=
   (
      Pready;
      (
         TPflight;
         Phangar; stop
      )
   )
  [> Sdestroy; stop  (* L1 *)

where PlaGates  is
Pready, TPflight, Phangar, Sdestroy

and StoGates  is
Sbegin, Sdestroy, Sstop

Timethread  Storm is
   Trigger  (Sbegin)
   Abort  (Sdestroy)
   Result  (Sstop)
EndTT

Storm :=
   Sbegin
   (
      Sdestroy;
      Sstop; stop
   )  (* L1 *)

Plane
Pready

Storm

TPflight
Phangar

Sbegin
Sdestroy

Sstop

Plane

PlaGates

Storm

StoGates

Sdestroy
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4.5.4 Loss

When we want to consider robustness in a timethread map, we often use a Loss symbol to express

that a token can be lost along a timethread path. In figure 46, a cab can get lost (foreve

being asked by the dispatcher to take a traveler.

 

Figure 47: Example of a loss

The STDL Loss  segment becomes an alternate path with a hidden gate (here Caccident) followed

by stop .

4.5.5 Tags

The following examples deal with the tag mechanism introduced in sections 4.1.3 and 4.

figure 46, the timethread Traveler is an adaptation of the timethread presented in figure 18. H

we see that if a traveler does not phone a dispatcher, the tag M becomes equal to Bus and then the

traveler cannot take a cab (Tcab) to get to the airport.

Figure 48: Example of tags

The STDL Tag and Guard  constructs are used to express assignations to tags and gu

alternatives (fig. 46). 

Timethread  Cab is
   Trigger  (Cin)
   Action  (DaskC)
   Loss  (Caccident)
   Result  (CgetT)
EndTT

Cab :=
   Cin;
      (
         DaskC;
         (
            hide  Caccident in
            Caccident; stop
            []
            CgetT; stop
         )
      )  (* L1 *)

Cab
Cin

DaskC
CgetT

Caccident

M=Bus

[M ne Bus]

M=Cab

Tairport
Tgo

Tbus

TcabTphoneD

Tnew

Traveler
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Figure 49: Example of tags in STDL and LOTOS

Assignations of values to tags are done via the LOTOS let  operator. Mechanisms to transfer tag

on synchronization points (SyncOr1 and SyncOr2) are essential to maintain the availability of ta

all along a timethread path. We also interpret STDL guards as LOTOS guards withou

transformation. During the mapping process, the type Tag is created:

type  Tag is  Boolean, NaturalNumber
sorts  Tag
opns  Bus,
     Cab  :  -> Tag
     N : Tag -> Nat          (* Tag-to-natural mapping operator *)
     _eq_,
     _ne_ : Tag, Tag -> Bool (* Tag equivalence operators *)
eqns forall  x, y: Tag
    ofsort  Nat
    N(Bus) = 0;              (* Bus is mapped onto 0 *)
    N(Cab) = Succ(N(Bus));   (* Cab is mapped onto 1 *)
    ofsort  Bool
    x eq y = N(x) eq N(y);
    x ne y = not(x eq y);
endtype

This abstract data type provides constructors (Bus and Cab) and natural-based equivalenc

operations (eq and ne). Boolean operations are also supported (not, and, or, xor, implies, and iff).

Timethread  Traveler is

   Trigger  (Tnew)
   Choice
         Tag (M = Bus)
      Or
         Action  (TphoneD)
         Tag (M = Cab)
   EndChoice

   Action  (Tgo)

   Choice
         Action  (Tbus)
      Or
         Guard  (M ne  Bus)
         Action  (Tcab)
   EndChoice

   Result  (Tairport)

EndTT

Traveler :=
   Tnew;
   (
      hide  SyncOr1 in
      (
         ( let  M: Tag = Bus in  SyncOr1 ! M; stop )
         []
         TphoneD;
         ( let  M: Tag = Cab in  SyncOr1 ! M; stop )
      )
      |[SyncOr1]|
      SyncOr1 ? M:Tag;
      Tgo;
      (
         hide  SyncOr2 in
         (
            (Tbus; SyncOr2 ! M; stop )
            []
            ([M ne Bus]-> Tcab; SyncOr2!M; stop )
         )
         |[SyncOr2]|
         SyncOr2 ? M:Tag;
         Tairport; stop
      )
   )
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Tag flow is interpreted in the same way. In figure 46, we modify the previous example in or

get two separate timethreads, Traveler and Transportation. The tag M is passed to the secon

timethread at the synchronization point Tgo and then becomes the tag C. 

Figure 50: Example of tag flow

The STDL descriptions and LOTOS mapping are very similar to the previous example, e

that there are two timethreads now synchronizing on gate Tgo. This mechanism is simple and ye

powerful.

Figure 51: Example of tag flow: STDL and LOTOS

Timethread  Traveler is

   Trigger  (Tnew)
   Choice
         Tag (M = Bus)
      Or
         Action  (TphoneD)
         Tag (M = Cab)
   EndChoice
   Result  (Tgo !  M)

EndTT

Traveler :=
   Tnew;
   (
      hide  SyncOr1 in
      (
         ( let  M: Tag = Bus in  SyncOr1 ! M; stop )
         []
         TphoneD;
         ( let  M: Tag = Cab in  SyncOr1 ! M; stop )
      )
      |[SyncOr1]|
      SyncOr1 ? M:Tag;
      Tgo ! M; stop
   )

Timethread  Transportation is

   Trigger  (Tgo ? C:Tag)
   Choice
      (
         Action  (Tbus)
      Or
         Guard  (C ne  Bus)
         Action  (Tcab)
      )
   Result  (Tairport)

EndTT

Transportation :=
   Tgo ? C:Tag;
   (
      hide  SyncOr2 in
      (
         (Tbus; SyncOr2 ! C; stop )
         []
         ([C ne Bus] -> Tcab; SyncOr2 ! C; stop )
      )
      |[SyncOr2]|
      SyncOr2 ? C:Tag;
      Tairport; stop
   )

M=Bus

[C ne Bus]

M=Cab

Tairport

Tbus

TcabTphoneD

Tnew

Traveler Transportat ion

CM

Tgo
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4.6 Mappings

The question that could be raised at this point is whether the process of translating 

constructs into LOTOS could be defined precisely. Since showing this completely would re

considerable space, we will limit ourselves to providing a simple mapping table (fig. 52) w

should show that this can be done, without entering into details. Only the rewrite rules that

the LOTOS code are enumerated. These mappings are part of the mapping method that

implemented by a compiler.

How to Read this Table

• The left side shows STDL constructs and their context while the right side presen

corresponding LOTOS code generated.

• Characters in bold  indicate code input from the STDL source or code output to 

LOTOS destination.

• Characters in italic  represent grammar rules that are copied as is from STDL input

to LOTOS output. No special mappings are necessary for these rules.

• Rules between brackets (<Rule> ) refer to the grammar rules. <ROP> is however not a

grammar rule, but it refers to the Rest Of Path, which usually is {<Seg>} <Result> .

• These mappings generate level 1 specifications without recursion. We presen

identify other levels (level 1 with recursion and level 3) for pertinent rules only. Lev

is not considered in this table.

• Optional rules are between [  and ] , and list of rules are between {  and } .

• Comments are between (*  and *) .

• Lists of LOTOS gates (such as GateList ) are computed from the list of activitie

found in a timethread description. We do not tell how they are computed here.
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As a short example, we can take a look at the <Async>  rule:

If part of the STDL code (with rules) is

Async  (DaskC ! Tag1 ! Tag2) <Seg 1> <Seg 2> <Result>

Then the LOTOS code generated is:

               (

                  DaskC ! Tag1 ! Tag2 ; stop

                  |||

                  <Seg 1> <Seg 2> <Result>

               )

An then <Seg1> <Seg 2> and <Result>  are replaced with their own corresponding LOTO

code.

Mapping Table

(* Rule <Async> *)
Async ( EventId  [ SendTagValues ] ) <ROP>

(
   EventId  [ SendTagValues ] ; stop
   |||
   <ROP>
)

Input STDL Code Output LOTOS Code
(* Rule <Timethread> *)
Timethread  TTid  Is
   <StubOrTT>
EndTT

process  TTid  [ GateList ] : noexit :=
   <StubOrTT>
endproc

(* Rule <Stub> *)
Stub
   <Trigger>
   <Result>
EndStub

<Trigger>  (  <Result>  )

or, at a level 3:

<Trigger>
(
   <Result>
   |||
   TTid  [ GateList ] (* refers to <Timethread> *)
)
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(* Rule <Aborted> *)
AbortedOn ( EventId )
[<Internals>] <Trigger> <FirstPath>

hide EventId  in 
(
   [<Internals>] <Trigger> <FirstPath>
)
[> EventId ; stop

or, at level 1 with recursion:

hide EventId  in 
(
   [<Internals>] <Trigger> <FirstPath>
)
[> EventId ;
   TTId  [ GateList ] (* refers to <Timethread> *)

(* Rule <Constrained> *)
Constrained
[<Internals>] <Trigger> {<Seg>} <Result>

At level 1, it has no impact. At level 3 we find:

hide SyncCS in
   [<Internals>]
   WP_CS [ GateList ]
   |[SyncCS]|
   TTId Sub [ GateList ]

where

   process WP_CS [ GateList ] : noexit :=
      <Trigger> ;
      (  SyncCS; stop  
         |||
         WP_CS  [ GateList] )       
   endproc
  
   process TTId Sub [ GateList ] : noexit :=
      SyncCS;  
      {<Seg>}
      TTId Sub [ GateList ]
   endproc

(* Rule <Internal> *)
Internal  Identifier  { ,  Identifier } hide Identifier  { ,  Identifier }  in

(* Rule <Trigger> *)
Trigger  ( TriggerId  [ RecTagValues ] ) TriggerId  [ RecTagValues ] ;

(* Rule <FirstPath> *)
<FirstPath>

(  {<Seg>} <Result>  )

or, at level 3:

(
   {<Seg>} <Result>
   |||
   TTid  [ GateList ]
)

(* Rule <Result> *)
Result  ( ResultId  [ SendTagValues ] )

ResultId  [ SendTagValues ] ; stop

or, at level 1 with recursion:

ResultId  [ SendTagValues ] ;  TTid  [ GateList ]
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(* Rule <Delayed> used with Wait *)
(* Similar approach for Trigger *)
Wait Delayed ( EventId  [ RecTagValues ] ) <ROP>

(
   hide Delay in
      Delay;
      EventId  [ RecTagValues ] ;
      <ROP>
)

(* Rule <Time> used with Wait *)
(* Similar approach for Trigger *)
Wait Time ( EventId  [ RecTagValues ] ) <ROP>

(
   hide TimeOut, SyncTO in
   (
      TimeOut;
      SyncTO! TOut; stop
      []
      EventId  [ RecTagValues ] ;
      SyncTO! OK; stop
   )
   |[SyncTO]|
   SyncTO ?ResultTO:Tag;
   <ROP>
)

(* Rule <Abort> *)
Abort  ( EventId ) EventId ;

(* Rule <Action> *)
Action  ( ActionId ) ActionId ;

(* Rule <Async> *)
Async ( EventId  [ SendTagValues ] ) <ROP>

(
   EventId  [ SendTagValues ] ; stop
   |||
   <ROP>
)

(* Rule <Sync> *)
Sync ( EventId  [ RecTagValues ] ) EventId  [ RecTagValues ] ;

(* Rule <Choice> *)
Choice
   [<Guard One>] {<Seg One>}
   { Or  [<Guard Next >] {<Seg Next >} }*
EndChoice
<ROP>

(
 hide  SyncOR in
   (  [<Guard One>] {<Seg One>}  SyncOR; stop
     { []  [<Guard Next >] {<Seg Next >} SyncOR;stop  }*
   )
   |[SyncOR]|
   SyncOR;
   <ROP>
)

(* Rule <OrFork> *)
OrFork
   [<Guard Cont >] Continue
   { Or  [<Guard Next >] <Path> }*
EndOrFork
<ROP>

(
   [<Guard Cont >] <ROP>
   { []  [<Guard Next >] <Path> }*
)

(* Rule <Path> *)
Path  {<Seg>} <Result> EndPath {<Seg>} <Result>
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Figure 52: Mappings from STDL to LOTOS

(* Rule <Loop> *)
Loop
   <CompSymb>
      [Guard Comp] {<Seg Comp>}
   <OptSymb>
      [Guard Opt ] {<Seg Opt >}
EndLoop
<ROP>

Loop [ GateList ]
...    (* Closing parenthesis, if any *)  
where
   process Loop [ GateList ] : noexit :=
      {<Seg Comp>}
      (
         [Guard Opt ] {<Seg Opt >}
         Loop [ GateList ]
         []
         [<Guard Comp>] <ROP>
      )
   endproc

(* Rule <Loss> *)
Loss ( [<Guard>] LossId )  <ROP>

(
   hide  LossId  in
      [Guard]  LossId ; stop
      []
      <ROP>
)

(* Rule <Par> *)
Par
   {<Seg One>}
   { And {<Seg Next >} }*
EndPar
<ROP>

(
 hide  SyncAND in
   (  {<Seg One>}  SyncAND; stop
     { |[SyncAnd]|  {<Seg Next >} SyncAND; stop  }*
   )
   |[SyncAND]|
   SyncAND;
   <ROP>
)

(* Rule <AndFork> *)
AndFork
   <Path One>
   { And <Path Next > }
EndAndFork
<ROP>

(
   <Path One>
   { |||   <Path Next > }
   |||
   <ROP>
)

(* Rule <SegStub> *)
SegStub ( SegStubId ) SegStubId ;

(* Rule <Wait> *)
Wait ( EventId  [ RecTagValues ] ) EventId  [ RecTagValues ] ;

(* Rule <Tag> *)
Tag ( TagId  = ValueId ) <ROP> (let TagId  : Tag = ValueId  in <ROP>)

(* Rule <Guard> *)
Guard ( GuardExpr )  <ROP> ([ GuardExpr ] ->  <ROP>)
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5.1 Introduction

The previous chapters introduced the LOTOS interpretation method for timethreads. W

relate this method to real-time and distributed (RTD) systems design. To do so, we first pre

short overview of a timethread-oriented life-cycle methodology (§5.1.1). Then, diffe

techniques related to this methodology are discussed. Section 5.2 presents the complete 

procedure of a timethread map onto LOTOS. We use the Traveler System introduced in section

3.3 to generate two specifications (level 1 and level 3). We shortly discuss a few transform

techniques in section 5.3. Finally, we present validation techniques in section 5.4

transformation and validation techniques are based on LOTOS techniques and too

simulation, testing, and verification.

5.1.1 Overview of a Life-Cycle Methodology

We can design RTD systems with timethreads in many different ways. Figure 53 prese

instance of a partial life-cycle (from requirements to the implementation) oriented tow

timethreads. We used a timethread to show the sequence of activities in this approach.
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Figure 53: Elements of a timethread-oriented life-cycle

In [BuC 93], the authors discussed the timethread-centered design of RTD systems. We 

here to the previous figure:

➂ Requirements: They are usually expressed in natural language (English). T

describe the functionalities of a system to be built.

➧ Requirements Capture: Different scenarios are generated in order to discover 

functionalities to be expressed with timethreads. 

♣ Composition: The different timethreads are composed together to form a timeth

map which presents end-to-end causality paths within the system (the big picture

process usually involves several timethread transformations. Different techniqu

get a formal specification, to support transformations, and to validate the resulting

against the requirements (or previous maps) can be used.

➸ Components Discovery: Components are associated to timethread activities. They

be given in the requirements or discovered along the design process. The ou

called a timethread-role map. A role notation is proposed in [BuC 93], wher

architectural components are of three types: carriers, workers, and teams.

➻ Collaboration: From the constraints expressed in the causality flow of the timethr

role map, we derive a more detailed control flow between components. In the resultin

collaboration graph, containing architectural components and control paths draw

arrows, timethreads are no longer needed.

REQ.

➂ ➧ ♣ ➸ ➻ ⑥
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⑥ Implementation: This is the final, working system. Of course, many intermediate st

such as the components design and the overall validation, are here left absent b

the collaboration (➻) and the implementation (⑥). This is because timethreads are le

useful when we get closer to the implementation, so we concentrate on the early

of the life-cycle.

This life-cycle is one among the many possible ones that can use timethreads for RTD 

design. We adopted this one because it concentrates first on the functionalities and the end

causality paths, and then on the architectural components. In this way, we enhance the us

of timethreads.

In this thesis, we do not attack architectural problems. This is a complex topic that will have

discussed in other theses. Therefore, the mapping, transformation and validation technique

current chapter are related to the phases that concern timethreads only (➧ and ♣).

5.1.2 Limitations of the Proposed Techniques

The mapping, transformation, and validation techniques we propose in the current chapter

unique nor perfect, although they represent a few ideas that could be developed much 

Most of them are not formally defined and have not been thoroughly tested yet. Proving 

way that such methods work properly and efficiently is in fact a very complex task for an

Because this is only preliminary work, we present these techniques using simple examples

to the Traveler System.

5.2 Mapping Techniques

Section 3.1 presented our solution to the timethread-map-to-LOTOS mapping. The Traveler

System can help us illustrate this mapping. The following four subsections use four methods

decomposition, LAEG, timethread mapping, and composition) for the generation of a LO

specification corresponding to the Traveler System timethread map. Note that we do not devel

further the timethread mapping method introduced in chapter 4. In order to do so, we woul

to write a compiler, and this still represent a large amount of work.
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5.2.1 Map Decomposition

The map decomposition method generates a LARG representing timethreads interactions,

SDTL representation of the timethreads included in the map. We also decide here which ac

are to be hidden from a LOTOS viewpoint.

Hiding

The hiding of activities defines the interface of systems and processes. This is usually a de

decision, mostly related to a topology of components in an architecture. However, we pr

here two simple hiding rules for timethread maps which do not have any commitment to a s

architecture yet. We suppose that a system is represented as a box on which we superimpose

timethreads:

• Activities within the box (system’s boundaries) are globally hidden.

• Actions along a timethread path are locally hidden. We consider them as internal

In the Traveler System (fig. 15), we consider that all activities are internal (globally hidde

except for Tnew and Tdest which represent the interface of the system. Actions such as Cgarage,

Dready, and Tairport are locally hidden within the LOTOS processes corresponding to 

respective timethreads. Note that TCride and TPflight, although interpreted as Action  in STDL,

are considered as events because timethreads have to synchronize on these gates. Ther

cannot hide them locally; these actions are part of the interface of their respective timethre

These rules could be modified in a tool. LOTOS offers much flexibility w.r.t. gate hiding, an

LOTOS interpretation method for timethreads is still valid w.r.t. whichever choices are mad

LARG

The first step of the map decomposition method is the generation of a LARG representi

topology of interacting timethreads. Figure 54 shows the LARG of the traveler system. The

four processes corresponding to the four timethreads in the map. These processes inte

different events which are included in the gate sets. We observe that the interface of the 

Traveler_Example is composed of two events: Tnew and Tdest. All other activities are hidden

globally. Due to a lack of space, we do not show all activities in the LARG, but we use itali

label sets that enumerate them below the diagram. 
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Figure 54: LARG of the Traveler System

The italicized label sets correspond to the following gates:

• GSHiddenGlobal is TphoneD, TgetinC, TCride, TgetoutC, TgetonP,

TPFlight, TgetoffP, Pready, Phangar, Din, DaskC, Dout, Cin, Cout

• GSPlane is Pready, TgetonP, TPFlight, TgetoffP, Phangar

• GSTrav is Tnew, TphoneD, TgetinC, TCride, TgetoutC, TgetonP,

TPFlight, TgetoffP, Tdest

• GSDisp is Din, TphoneD, DaskC, Dout

• GSCab is Cin, DaskC, TgetinC, TCride, TgetoutC, Cout

The actions locally hidden within timethreads (not shown in the diagram) are:

• Plane: No action is hidden.

• Traveler: Tairport

• Dispatcher: DlookforC, Dfillstats, Dready

• Cab: CgoD, Cgarage

Plane

GSPlane

Traveler

GSTrav

TgetoutC Cab

GSCab

TphoneD DaskC
Dispatcher

GSDisp

Traveler_Example Tnew, Tdest

hide GSHiddenGlobal  in

TCride,
TgetinC,TgetonP,

TgetoffP
TPflight,
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 Four

LARG

 onto
STDL

The second step consists in describing the paths of individual timethreads in STDL.

descriptions are needed, one for each timethread (fig. 55).

Figure 55: STDL descriptions of timethreads in the Traveler System

These descriptions follow the rules and examples presented in the previous chapter.

5.2.2 Application of LAEG Method

In order to generate LOTOS structural expressions from LARGs, we have to analyze the 

and transform it into a binary grouped one. A binary grouped LARG allows a direct mapping

LOTOS.

Timethread  Traveler is
   Internal  Tairport
   Trigger  (Tnew)
   Async  (TphoneD)
   Sync  (TgetinC)
   Action  (TCride)
   Sync  (TgetoutC)
   Action  (Tairport)
   Sync  (TgetonP)
   Action  (TPflight)
   Sync  (TgetoffP)
   Result  (Tdest)
EndTT

Timethread  Dispatcher is
   Constrained
   Internal DlookforC , Dfillstats , Dready
   Trigger  (Din)
   Loop
      Compulsory
         Sync  (TphoneD)
         Action  (DlookforC)
         Async  (DaskC)
         Action  (Dfillstats)
      Optional
         Action  (Dready)
   EndLoop
   Result  (Dout)
EndTT

Timethread  Cab is
   Constrained
   Internal CgoD, Cgarage
   Trigger  (Cin)
   Loop
      Compulsory
         Sync  (DaskC)
         Sync  (TgetinC)
         Action  (TCride)
         Sync  (TgetoutC)
      Optional
         Action  (CgoD)
   EndLoop
   Action  (Cgarage)
   Result  (Cout)
EndTT

Timethread  Plane is
   Trigger  (Pready)
   Sync  (TgetonP)
   Action  (TPflight)
   Sync  (TgetoffP)
   Result  (Phangar)
EndTT
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LARG Analysis

By applying the LARG analysis defined in [Bor 93], we find no structural ambiguity (see §2.

Therefore, we can use the Grouping algorithm to generate a binary grouped LARG equiva

the LARG of figure 54.

 

Many different groupings can result from this algorithm. Design decisions such as perform

and location of components and/or processes should indicate which grouping is the

However, no such metrics have been defined yet. Since we think that we should not be con

with such problems at a timethread level, any grouping that preserves the semantics or the 

LARG is valid for execution and validation. Figure 56 shows one possible grouping.

Figure 56: Binary grouped LARG of the Traveler System

In this equivalent LARG, hidden gates (global and local to timethreads) and interfaces ha

been modified in the processes and the original semantics is preserved. Note that an em

set, such as the one linked to Plane, means that the processes involved are interleaving.

Traveler_Example Tnew, Tdest

hide GSHiddenGlobal in

Plane

GSPlane

Traveler

GSTrav

DaskC
Cab

GSCab

Dispatcher

GSDisp

TphoneD, TgetinC,
TCride, TgetoutC, TgetonP,

TPflight, TgetoffP
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From the binary grouped LARG, we can derive the structural section, called behaviour section in

LOTOS, of the LOTOS specification (see [Bor 93] for more details). Note that a groupi

represented in LOTOS as parenthesis. Specification 3 presents the interfaces of the sys

processes (with hidden activities), and the interacting processes. Line numbers are not

specifications; they are used for referencing the code.

1 (* Traveler_Example; Daniel Amyot, March 29, 1994 *)
2 (* Level 1 specification of the Traveler system *)
3
4 specification  Traveler_Example[Tnew  (* New traveler wants to travel *),
5                                Tdest (* Traveler arrives to destination *) ] : noexit
6
7 behaviour  (* Structure obtained from the LARG *)
8
9 hide   (* hidden interactions GSHiddenGlobal  *)
10     TphoneD,        (* Traveler phones Dispatcher for a cab *)
11     TgetinC,        (* Traveler gets in the cab *)
12     TCride,         (* Traveler and cab ride *)
13     TgetoutC,       (* Traveler gets out the cab *)
14     TgetonP,        (* Traveler gets on the plane *)
15     TPflight,       (* Traveler and plane flight *)
16     TgetoffP,       (* Traveler gets off the plane *)
17     Din,            (* Dispatcher is in the office *)
18     DaskC,          (* Dispatcher asks for a cab *)
19     Dout,           (* Dispatcher is not in the office *)
20     Cin,            (* Taxi driver in the cab *)
21     Cout,           (* Taxi driver not in the cab *)
22     Pready,         (* Plane is ready *)
23     Phangar         (* Plane goes to the hangar *)
24
25 in
26
27     Traveler[Tnew, TphoneD, TgetinC, TCride, TgetoutC, TgetonP, TPflight, TgetoffP, Tdest]
28     |[TphoneD, TgetinC, TCride, TgetoutC, TgetonP, TPflight, TgetoffP]|
29     (
30         Plane[Pready, TgetonP, TPflight, TgetoffP, Phangar]
31         |||
32         (
33             Dispatcher[Din, TphoneD, DaskC, Dout]
34             |[DaskC]|
35             Cab[Cin, DaskC, TgetinC, TCride, TgetoutC, Cout]
36         )
37     )
38
39 where
40
41 (*  Local hidden actions:              *)
42 (*  --------------------               *)
43 (*  Traveler: Tairport                         *)
44 (*  Plane:                                     *)
45 (*  Dispatcher: DlookforC, Dfillstats, Dready  *)
46 (*  Cab: CgoD, Cgarage                         *)
47
48 (* Process definitions have to be included here *)
49 endspec  (* Specification Traveler_Example *)

Specification 3: Structure obtained from figure 56
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For the specification to be complete, process definitions generated from STDL description

to be included between lines 47 and 49.

5.2.3 Generation of Behaviour Expressions

To generate the missing processes in specification 3, we generate LOTOS behaviour exp

from the STDL descriptions of figure 55. We use here the mapping method introduced in s

4.3 to generate four processes corresponding to the four timethreads in the Traveler System

(specifications 4 to 7).

It must be understood that we dot not, at present time, have a complete algorithm to tr

SDTL descriptions into LOTOS processes. Such an algorithm is the object of further res

However, by using the principles developed in chapter 4, a manual and intuitive trans

process (similar to the process of obtaining code from a flowchart) is possible. We also b

that a compiler could automate this translation process. For instance, such compiler wou

to:

• Implement lexical and semantical analysis.

• Manage gate parameters.

• Manage Abstract Data Types (for tags): type definition, message passing, ta

availability, consistency...

• Generate the structure from the interaction part of the LARG description. This was

already introduced in the LAEG method.

• Generate LOTOS processes corresponding to single timethreads.

• Manage unique names for additional internal synchronization gates.

• Etc.

By manually translating SDTL to LOTOS, we get the four following processes:

Timethread Traveler

This process is straightforward to generate. We simply have a sequence of activities. Th

difficulty resides in the asynchronous event TphoneD.

50 (* Timethread Traveler *)
51     process  Traveler[Tnew, TphoneD, TgetinC, TCride, TgetoutC, TgetonP, TPflight, TgetoffP,
52                      Tdest] : noexit  :=
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53         hide  Tairport in   (* hidden action *)
54         Tnew;
55         (
56             TphoneD; stop   (* in-passing interaction *)
57             |||
58             (
59                 TgetinC;   (* rest of the path *)
60                 TCride;
61                 TgetoutC;
62                 Tairport;
63                 TgetonP;
64                 TPflight;
65                 TgetoffP;
66                 Tdest; stop
67             )
68         )
69     endproc  (* Traveler *)
70
71 (*-------------------------------------------------------*)

Specification 4: Process Traveler

Timethread Dispatcher

A sub-process DispatcherLoop is needed here to simulate the loop part of the timethread. A

we have the asynchronous event DaskC which complicates the process generation.

72 (* Timethread Dispatcher *)
73     process  Dispatcher[Din, TphoneD, DaskC, Dout] : noexit  :=
74         (* hidden actions *)
75         hide
76             DlookforC,   (* Dispatcher looks for a cab *)
77             Dfillstats,  (* Dispatcher fills statistics *)
78             Dready       (* Dispatcher is ready for next traveler *)
79         in
80         Din; DispatcherLoop[TphoneD, DlookforC, DaskC, Dfillstats, Dready, Dout]
81         where
82
83         process  DispatcherLoop[TphoneD, DlookforC, DaskC, Dfillstats, Dready, Dout]: noexit :=
84             (* Compulsory segment *)
85             TphoneD;
86             DlookforC;
87             (
88                 DaskC; stop   (* in-passing interaction *)
89                 |||
90                 Dfillstats;
91                 (
92                     (* Optional segment *)
93                     Dready; DispatcherLoop[TphoneD,DlookforC, DaskC,Dfillstats, Dready, Dout]
94                     []
95                     (* Exit Loop *)
96                     Dout; stop
97                 )
98             )
99         endproc  (* DispatcherLoop *)
100     endproc  (* Dispatcher *)
101
102 (*-------------------------------------------------------*)

Specification 5: Process Dispatcher
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Timethread Cab

This process needs a sub-process CabLoop to manage the loop part of its correspondi

timethread.

103 (* Timethread Cab *)
104     process  Cab[Cin, DaskC, TgetinC, TCride, TgetoutC, Cout] : noexit  :=
105         (* hidden actions *)
106         hide
107             CgoD,    (* Cab goes to wait the dispatcher *)
108             Cgarage  (* Cab goes to the garage *)
109         in
110         Cin; CabLoop[DaskC, TgetinC, TCride, TgetoutC, CgoD, Cgarage, Cout]
111         where
112
113         process  CabLoop[DaskC, TgetinC, TCride, TgetoutC, CgoD, Cgarage, Cout] : noexit  :=
114             (* Compulsory segment *)
115             DaskC;
116             TgetinC;
117             TCride;
118             TgetoutC;
119             (
120                 (* Optional segment *)
121                 CgoD; CabLoop[DaskC, TgetinC, TCride, TgetoutC, CgoD, Cgarage, Cout]
122                 []
123                 (* Exit Loop *)
124                 Cgarage;
125                 Cout; stop
126             )
127         endproc  (* CabLoop *)
128     endproc  (* Cab *)
129
130 (*-------------------------------------------------------*)

Specification 6: Process Cab

Timethread Plane

This is the easiest process of the four. We simply have a sequence of activities which is inte

in the following way:

131 (* Timethread Plane *)
132     process  Plane[Pready, TgetonP, TPflight, TgetoffP, Phangar] : noexit  :=
133         (* no hidden action in the timethread *)
134         Pready;
135         (
136             TgetonP;
137             TPflight;
138             TgetoffP;
139             Phangar; stop
140         )
141     endproc  (* Plane *)

Specification 7: Process Plane
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5.2.4 Composition of the Complete Specification

The complete specification is obtained simply by adding the process definitions to the end

LOTOS structure generated from the LARG. If a timethread map contains tags, an abstra

type Tag must also be added. This ADT could be automatically generated from the timeth

STDL descriptions.

The specification developed here is at a level 1 (§4.1.2). Other levels can be use

specification in appendix B (Traveler_Level3) is the level 3 interpretation of the Traveler System.

The modifications brought to the current level 1 specification to transform it to a lev

specification are italicized. The transformation of processes Traveler and Plane are

straightforward, but processes Dispatcher and Cab need to have a more complex mechanism

manage constrained-start timethread in a recursive environment. The structure o

specification is kept unchanged.

5.3 Transformation Techniques

The purpose of this section is to give a short overview of several simple timeth

transformations (see §2.1.4). The categorization of these transformations, their impact, an

enumeration is still an ongoing research topic (see [BoL 94]). Nevertheless, we introduce 

few transformation techniques and their impact on SDTL and LARG descriptions, and o

resulting LOTOS specification. We also relate these transformations to LOTOS equivalen

extension relations. Two short examples, which we reuse in chapter 6 (in the Telepresence

system), will help us illustrate a few concepts, techniques, and new issues.

5.3.1 Equivalence Relations

The concept of transformation brings about some notions of relations (equivalence, exte

reduction, and conformance, as presented in [Led 91 and BSS 86]) because obviously time

that are one transformation of the other must be related in some sense.

Equivalence is by far the most interesting relation. LOTOS proposes many levels of equiv

between two specifications. These equivalence relations are found in many semantic m

including Labeled Transition Systems (LTS), the underlying model of LOTOS. Among the mo

popular relations related to LTS (see [BoB 87] and [CPT 92]), we find, from the weakest 

strongest relation: 
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• Trace equivalence

• Testing equivalence

• Weak bisimulation equivalence

• Strong bisimulation equivalence

• Equality

Many other equivalence relations (other bisimulations, congruences)  have been defined o

years, but it is not our goal to discuss them here. The point is that they all measure behaviour

equivalence, i.e., whether or not two specifications behave in the same way according to 

criteria.

Timethreads do not fundamentally intend to express the behaviour of a system, but its ca

paths. Hence, this difference leads to a concept that we could call path equivalence, which

measures that two timethreads (or perhaps timethread maps) have equivalent causality pa

equivalence will remain informally defined here, as it is still an open issue. However, in ou

example, we attempt to relate it to LOTOS equivalence relations. 

5.3.2 First Example: Splitting a Sequence

One of the simplest timethreads is the sequence. We will use one derived from the Traveler

example: the timethread Plane of figure 57. Its LARG, SDTL, and LOTOS descriptions are a

presented in order to observe the complete impact of a transformation on this sequence.

Figure 57: Timethread Plane and its LARG, SDTL, and LOTOS descriptions

LARG:

where GSPlane is:
Pready, TgetonP, TPflight,
TgetoffP, Phangar

Timethread  Plane is
   Trigger  (Pready)
   Path
      Action  (TgetonP)
      Action  (TPflight)
      Action  (TgetoffP)
      Result  (Phangar)
   EndPath
EndTT

Plane :=
   Pready;
   (
      TgetonP;
      TPflight;
      TgetoffP;
      Phangar; stop
   ) (* L1 *)

TPflight

TgetoffP

Phangar
Pready

Plane

TgetonP
Plane

GSPlane
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The transformation which interests us here is a timethread cutting followed by the composi

the two resulting parts. We would like the resulting map (composed of two intera

timethreads) to be equivalent in some way to the original sequence.

Assume we want to split our sequence in two interacting timethreads between the a

TgetonP  and TPflight . We first cut the timethread Plane  into a new Plane  and a timethread

Flight . Then, we compose them on a new internal action TPLeave  to form the map shown in

figure 58.

Figure 58: Transformation applied to the sequence of fig. 57

Such transformation has a profound impact on the SDTL and LARG descriptions. A

timethread is created, and so are a new process and a new interaction. The resulting LOTO

is also different, although the resulting behaviour is strongly similar to the behaviour o

original specification.

LARG:

where GSPlane is: Pready, TgetonP, TPLeave
and GSFlight is: TPLeave, TPflight, TgetoffP,
Phangar

Timethread  Plane is
   Trigger  (Pready)
   Path
      Action  (TgetonP)
      Result  (TPLeave)
   EndPath
EndTT

Timethread  Flight is
   Trigger  (TPLeave)
   Path
      Action  (TPflight)
      Action  (TgetoffP)
      Result  (Phangar)
   EndPath
EndTT

hide  TPLeave in
   Plane |[TPLeave]| Flight
where

Plane :=
   Pready;
   (
      TgetonP;
      TPLeave; stop
   ) (* L1 *)

Flight :=
   TPLeave;
   (
      TPflight;
      TgetoffP;
      Phangar; stop
   ) (* L1 *)

TPflight

TgetoffP

Phangar
Pready

Plane

TgetonP

TPLeave

Fl ight

Flight

GSFlight

Plane

GSPlane
TPLeave
86 Formalization of Timethreads Using LOTOS 



Transformation Techniques

here is

ps are

aps

ept for

 the

vel 1

he two

litting in

 in the

on

lence

 and 3

tions,

 could

e path
With relation to the discussion on equivalence concepts (§5.3.1), the first question to ask 

whether or not this transformation preserves the original path, i.e., whether those two ma

path equivalent or not. Although we do not have a formal definition of path equivalence, the m

of figures 57 and 58 seem equivalent from a timethread viewpoint. A token originating at Pready

in either map will follow the same path, lead to the same activities in the same order (exc

the new activity TPLeave  which is internal and therefore of no concern to us), and then give

same result without being able to go anywhere else.

Now, to relate this to LOTOS equivalence relations, we show the LTS of each map (le

without recursion) in figure 59:

Figure 59: LTSs of maps of fig. 57 and fig. 58

In this case we observe a weak bisimulation equivalence between the two maps, i.e., t

systems behave in the same way to any external observer. This is known as process sp

[CPT 92] and [Lan 90]. However, if we have a level 1 specification with recursion, we cannot

relate the resulting LTSs to any existing LOTOS equivalence relation. The reason is that

second map, as soon as the TPLeave  is reached in Plane , a new token can be placed on Pready ,

while the timethread Plane  of the first map needs to wait until Phangar  is reached before a new

token is allowed to be placed on Pready . Therefore, an accumulation of tokens may occur 

TPflight  in the second map while this was impossible in the first map. The existing equiva

relations based on behaviour do not cover such concepts yet. Also, if we consider level 2

specifications, LTSs become more complex and other problems may arise.

This timethread transformation leads to a reorganization of SDTL and LARG descrip

resulting in a path equivalent LOTOS specification. Of course, a new LOTOS path equivalence is

to be defined according to our needs, but this is still a complex research issue. A tool

manage this type of technique by allowing transformations which are “assumed” to preserv

equivalence. It could also generate automatically the new SDTL and LARG descriptions.

Pready

TgetonP

TPflight

Pready

TgetonP

TPflight

i (TPLeave)

TgetoffP

Phangar TgetoffP

Phangar

Original Map Transformed Map
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5.3.3 Second Example: Extending a Sequence

The second example is concerned with other types of relation called extensions. These relations

do not preserve equivalence between an original specification and a transformed one. T

related to functionality extension, as presented in [CPT 92]. In timethread terms, we say t

add alternative paths to a timethread.

Assume the short Traveler sequence presented in figure 60, where we also find the SDTL

LOTOS descriptions. The LARG is not given since the extension will not affect it.

Figure 60: Timethread Traveler and its SDTL and LOTOS descriptions

Now, suppose we want to extend the system by allowing the traveler to either take the 

usual, or the bus (TBusRide ). To do so, we use a OR-Fork/OR-Join (SDTL Choice  construct)

where one branch has action TCride  and the other branch has TBusRide . After the

transformation, we get the timethread, SDTL description, and LOTOS process sho

figure 61.

Timethread  Traveler is
   Trigger  (Tnew)
   Path
      Action  (TCride)
      Result  (Tdest)
   EndPath
EndTT

Traveler :=
   Tnew;
   (
      TCride;
      Tdest; stop
   ) (* L1 *)

TCride

Tdest
Tnew

Traveler
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Figure 61: Extension applied to the sequence of fig. 60

The resulting SDTL description sees its previous action TCride  replaced with a choice betwee

TBusRide  and TCride . The gate TBusRide  is also obviously added to the LARG interface (n

shown here). Now, can we say that the resulting LOTOS process is related in any way

original one? To answer this question, we can develop their LTSs (fig. 62).

Figure 62: LTSs of processes of fig. 60 and fig. 61

At a level 1 (without recursion), such transformation leads a specification which extends the

original specification. The LOTOS extension relation ext is formally defined in [BSS 87 and

Led 91]. Intuitively, S1 ext S2 means that S1 has more traces (due to additional paths) than S2, but

it deadlocks less often in an environment whose traces are limited to those of S2. Therefore, this

timethread transformation can be related to a LOTOS relation again.

Timethread  Traveler is
   Trigger  (Tnew)
   Path
      Choice
            Action  (TBusRide)
         Or
            Action  (TCride)
      EndChoice
      Result  (Tdest)
   EndPath
EndTT

Traveler :=
   Tnew;
   (
      hide  SyncOr in
      (
         TBusRide;
         SyncOr; stop
         []
         TCride;
         SyncOr; stop
      )
      |[SyncOr]|
      SyncOr;
      Tdest; stop
   ) (* L1 *)

TCride

Tdest
Tnew

Traveler TBusRide

Tnew

TCride

Tdest

Tnew

TCride

Tdest

TBusRide

Tdest

i  (SyncOr)i  (SyncOr)

Original Map Transformed Map
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Most timethread transformations could be related in one way or another to LOTOS conform

equivalence, extension, and reduction relations. Although relations such as path equivalen

to be defined, we think that many LOTOS CPTs and relations could be adapted in order to

Timethread Correctness Preserving Transformations (TCPTs). These TCPTs could form the bas

of transformations allowed in a timethread design tool. This is however an open issue we w

discuss further in this thesis.

5.4 Validation Techniques

Techniques to validate a design against given requirements are desirable. In the LOTOS

such validation techniques have many aspects, and many tools exist to apply them. 

timethreads world, validation is still a research topic. What is to be validated and how this s

be done is an open issue. However, we think we can apply some of the LOTOS vali

techniques to a timethread map to get meaningful results. 

Different aspects of a timethread map and its corresponding LOTOS specification c

analyzed or validated:

• We can play the design to see whether we captured all the pertinent information i

requirements. This can be done by executing the specification.

• We can discover concurrency, non-determinism, collision, and race problems

would have to be solved at a later stage when the design gets closer to the archit

• The executability of LOTOS can help us understand problems related to the order

events and to interactions between timethreads.

• Properties such as the absence of unwanted deadlocks can be verified in a s

design.

• We can verify whether or not a refined design conforms to a previous design, in 

not to introduce or remove functionalities inadvertently, or to check consist

between successive designs.

• Test cases derived from previous designs can be used to validate new designs.

This enumeration is not exhaustive. Other validation aspects exist, but we consider th

mentioned to be among the most important ones for LOTOS. In a multi-formalism appr

other validation aspects, such as performance requirements, could be added. However, w

need other formalisms suitable for these new aspects (e.g., Petri nets) and corresp

interpretation methods.
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We consider that LOTOS specifications generated from timethread maps are not full beh

specifications. In a complete Traveler System, it is unlikely that a cab or a plane will accept on

and only one traveler at a time. This illustrates a major difference between a path specification

and a behaviour specification. We do not consider every detail at the timethread abstraction le

Behaviour issues are usually solved later at the architecture level (not discussed in this thes

then the validation strategies are changed accordingly.

A timethread is a scenario or a path description. It is not intended to be a simulation

prediction model. However, it is still useful to simulate the path behaviour described 

timethread. We can test, for example, that a sequence of causes a; b; c; will cause the effect d; and

the rest of the timethread path. 

In order to validate a timethread map, LOTOS provides us interesting facilities such as:

• The capacity to focus on single timethreads or on a topology of interacting timethr

• The use of different levels of specifications,

• The availability of three major validation techniques: simulation, testing 

verification.

We must recall here that what we really validate is the LOTOS specification, which is a proj

of a timethread map. Because of the semantic gap between timethreads and LOTOS, we

validate every aspect of a timethread map.

Diagnostics are here based on names in the map. We preserve the identifiers of timethrea

(processes), activities (gates), tags (value identifiers), and values (ADT) in the ma

procedure. Therefore, a problem found using LOTOS validation tools can be related directl

corresponding problem in the timethread map, simply because the names correspond.

5.4.1 Interactive Simulation

We consider the specification Traveler_Example (spec. 3) to be useful mostly because of 

executability. Simulating such a LOTOS specification helps the designer to ensure th

timethread map corresponds to the functionality defined in the requirements, or to detect p

problems which will have to be solved during later stages of the design. An interactive simu

can effectively lead to some questions that the designer will have to answer at a later stage
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 design
Many tools (ELUDO, LOLA, SMILE, and CAESAR) allow the simulation of LOTOS

specifications. During our research, we concentrated on the ELUDO-XELUDO and LOLA tools.

The next three examples present the usefulness of the simulation in early stages of the

process.

Simulation of a Complete Specification Using XELUDO

Figure 63: Simulation of Traveler_Example using XELUDO
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We can simulate a simple scenario in a level 1 complete specification by using the tool XEL

an X-Windows based version of ELUDO. Figure 63 presents the history window 

Traveler_Example simulation. This trace shows that a traveler got to her destination, and th

more actions are possible (LOTOS deadlock). This level 1 specification leads to a de

because there is no recursion. Simulation helps designers validate the ordering of activit

their availability.

Simulation of a Complete Specification Using LOLA

LOLA also provides means to simulate specifications. In this example, we executed the l

specification Traveler_Level3 to show that we can use any level of specification, even mix

level specifications. The trace of figure 64 raises a few questions that cannot be raised 

level 1 specification. 

Figure 64: Simulation of Traveler_Level3 using LOLA
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From this simulation, the designer can see that the dispatcher, after receiving two reques

two travelers (tphoned ), finally finds a taxi (daskc ). The designer could wonder what was h

initial intention here: how many requests can the dispatcher accumulate before he te

travelers he cannot take any more requests? Is there any means for the dispatcher to tell 

travelers that they would have to call back later, when the system allows it? In the first lo

timethread Dispatcher, is it normal that the dispatcher fills his statistics (dfillstats ) without

having any news from the first taxi? Also, following the semantics we gave to the timethre

taxi can only take one traveler. Is that what we really intended? Should we specify a max

number of travelers (say 3) that a taxi can take in? Does the same thing happen with trave

planes? All these questions could be raised by executing a simple sequence from a tim

diagram. These issues would have to be solved in some way during the later stages of the

process (at the architecture level).

Simulation of a Single Process Using ELUDO

Most tools allow the simulation of single processes and compositions of processes

functionality provides the opportunity to simulate single timethreads and topologies of inter

timethreads. In the next example (fig. 65), we use ELUDO to simulate a single process (Traveler,

level 3).

Figure 65: Simulation of process Traveler using ELUDO
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We observe (fig. 65) that the activity TphoneD occurred after Tdest. This means the dispatche

received the phone call after the traveler arrived to her destination! What is misleading here

absence of two interacting timethreads: Dispatcher and Cab. They would have constrained (refe

to figure 15) the event TphoneD to occur before TgetinC, and thus before Tdest.

This example shows that the simulation of single timethreads, although useful in some ca

less interesting than the execution of complete timethread maps because the contex

interacting timethreads) is absent. This sometimes results in traces difficult to under

However, once this limitation is understood, the traces can become meaningful.

5.4.2 Testing

Different testing strategies based on LOTOS can be used to validate a timethread ma

[Led 91] and [Mye 79] for further development). In our case, we suggest some sort of design

testing where we execute a high-level specification (or play the design) with the intent of fin

errors or problems. The different executions are called test cases. “A good test case is one that ha

a high probability of detecting an as-yet undiscovered error” [Mye 79].

Although we will use design testing later on to test conformance between original

transformed specifications, this must not be considered as conformance testing. The latter aims at

testing if an implementation conforms to a specification. This topic is not covered in this the

One way to apply a design testing strategy in LOTOS is the composition of acceptance and

rejection test cases with our non-deterministic specifications. 

An acceptance test represents a valid scenario that the timethread map and its corres

LOTOS specification have to be able to execute (without deadlock). The map and its specif

must not be able to execute rejection tests, which are invalid scenarios. These test case

derived from the requirements or from previous timethread maps and specifications.

There are many similarities between this technique and another one called grey-box testing, used

to test design representations [Pro 92]. We already have a design represented as a

sequence of inputs, decisions, and actions in a testable form, in this case a timethread ma

LOTOS specification. We also use a black-box testing technique (LOTOS testing bas

acceptance and rejection). Some elements are however missing in our case in order to

complete grey-box testing technique:
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• We need the definition of a set of test attributes for timethread maps;

• We need ways to measure design coverage;

• We need heuristics for the generation of test cases.

These three missing elements are research issues. Once the test cases are available, w

different LOTOS validation tools (such as LOLA or ELUDO). 

Testing of a Level 1 Specification Using LOLA

For our Traveler System, we can use the map of figure 14 to derive one acceptance test cas

one rejection test case (spec. 8). We assume here we will apply them to the level 1 spec

Traveler_Example. The test AcceptTest1  expresses that the system has to accept the a 

traveler (Tnew) and lead her to the destination (Tdest ). This is required from the use case 

figure 14. RejectTest1  tests that, at a level 1, a traveler gets to her destination before the s

allows another new traveler.

Specification 8: Test cases for level 1 Traveler System

If we had developed intermediate designs and maps, we could have used them to derive

complex test suite.

In LOTOS, test cases are represented as processes. They are then composed (synchroni

the system. An acceptance test passes if the composition reaches the end of the test case

use the gate Success). A rejection test passes if the composition does not reach the end of th

case.

(* Accept Test Case for level 1 *)
    process  AcceptTest1[Tnew, Tdest, Success] : noexit  :=
        Tnew;
        Tdest;
        Success; stop
    endproc  (* AcceptTest1 *)

(*-------------------------------------------------------*)

(* Reject Test Case for level 1 *)
    process  RejectTest1[Tnew, Tdest, Success] : noexit  :=
        Tnew;
        (* There should not be a second Tnew possible *)
        Tnew; 
        Tdest;
        Success; stop
    endproc  (* RejectTest1 *)
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LOLA implements this black box testing methodology. It follows the definition of Testing

Equivalence of de Nicola and Hennessy, and it outputs one of the three following results:

• MUST PASS (Must test): Given a specification L and a test T, T is a must test of L if it

terminates for every execution of the system when applied to L.

• MAY PASS (May test): Given a specification L and a test T, T is a may test of L if it

terminates for at least one execution of the system when applied to L.

• REJECT (Reject test): Test which is neither may or must, i.e., no execution terminate

successfully.

To compose these test cases with the specification, we use the LOLA command TestExpand.

TestExpand makes a complete state exploration and calculates the type of response (mus

reject). It needs three arguments: the depth of search in the labeled transition system (-1 m

limit), the success event, and the test process. The acceptance test gives the following res

lola> TestExpand -1 Success AcceptTest1
 Composing behaviour and test :

    Analysed states       = 12
    Generated transitions = 15
    Duplicated states     = 0
    Deadlocks             = 0

    Process Test = accepttest1
    Test result  = MUST PASS.

                   successes = 4
                       stops = 0
                       exits = 0
               cuts by depth = 0

Our acceptance test case is a must test. Therefore, our timethread map is consiste

equivalent) with the use case of section 3.3.1.

We can also compose our reject test case with the specification. LOLA outputs:

lola> TestExpand -1 Success RejectTest1

 Composing behaviour and test :

    Analysed states       = 8
    Generated transitions = 7
    Duplicated states     = 0
    Deadlocks             = 4

    Process Test = rejecttest1
    Test result  = REJECT.
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                   successes = 0
                       stops = 4
                       exits = 0
               cuts by depth = 0

All possible traces led to deadlocks, and the Success event could not have been reached. T

rejection test was rejected as it was supposed to be. Therefore, our specification behaved p

Testing of a Level 3 Specification Using LOLA

Another test suite that assesses what the level 3 specification of our system must accept a

is presented in specification 9.

Specification 9: Test cases for level 3 Traveler System

TestExpand performs a state exploration of the composition of the system under test with 

case. If the number of states is infinite (this happens with level 3 specifications), then we 

use this command. For this reason, LOLA provides another command (OneExpand) that executes

random traces of the composition. OneExpand has four important arguments: the depth or

the success event, the test process, and the seed (used for random number generation).

(* Accept Test Cases for level 3 *)
    process  AcceptTest1[Tnew, Tdest, Success] : noexit  :=
        Tnew;
        Tdest;
        Success; stop
    endproc  (* AcceptTest1 *)

    process  AcceptTest2[Tnew, Tdest, Success] : noexit  :=
        Tnew;
        (* This time, because of the recursion, a second *)
        (* traveler is allowed *)
        Tnew;
        Tdest;
        Success; stop
    endproc  (* AcceptTest1 *)

(*-------------------------------------------------------*)

(* Reject Test Case for level 3 *)
    process  RejectTest1[Tnew, Tdest, Success] : noexit  :=
        Tnew;
        Tdest;
        (* A traveler cannot get to her destination *)
        (* before leaving! *)
        Tdest;
        Success; stop
    endproc  (* RejectTest1 *)
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Because OneExpand does not explore all possible states, we have to apply our test cas

times, using different seeds, to insure the validity of the result. In our example, we limited t

the number of times each of our three tests is executed. Different seeds (4, 7, 11, 13, 1

used.

The results of the three following sets of tests are cumulated in figure 66. Note that we lim

100 events the depth of the search of the rejection test case. For a result from a rejection t

meaningful, we have to be sure the depth is high enough.

lola> OneExpand -1 Success AcceptTest1 Seed
lola> OneExpand -1 Success AcceptTest2 Seed
lola> OneExpand 100 Success RejectTest1 Seed

Figure 66: Results of testing (Traveler_Level3) using LOLA

From these results, we can conclude with a certain degree of confidence that the two acc

tests are must tests, and the rejection test is a reject test. Therefore, the designer has mo

confidence in his system to be valid w.r.t. the use case and the requirements.

Test case Seed Result Transitions
 generated

AcceptTest1 4 SUCCESSFUL EXECUTION 48

AcceptTest1 7 SUCCESSFUL EXECUTION 37

AcceptTest1 11 SUCCESSFUL EXECUTION 54

AcceptTest1 13 SUCCESSFUL EXECUTION 65

AcceptTest1 17 SUCCESSFUL EXECUTION 57

AcceptTest2 4 SUCCESSFUL EXECUTION 44

AcceptTest2 7 SUCCESSFUL EXECUTION 82

AcceptTest2 11 SUCCESSFUL EXECUTION 55

AcceptTest2 13 SUCCESSFUL EXECUTION 82

AcceptTest1 17 SUCCESSFUL EXECUTION 82

RejectTest1 4 REJECTED EXECUTION 100

RejectTest1 7 REJECTED EXECUTION 100

RejectTest1 11 REJECTED EXECUTION 100

RejectTest1 13 REJECTED EXECUTION 100

RejectTest1 17 REJECTED EXECUTION 100
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Many more interesting and useful test cases could be generated for a specification wh

activities are observable. When we make an activity internal or hidden in LOTOS, we cann

it afterwards by using traditional LOTOS black-box testing because the test case c

synchronize on the corresponding gate. By making everything visible, we obtain a grey 

which all cause-effect relations can be tested. This feature is desirable for design testing an

box testing [Pro 92], and our method allows it.

5.4.3 Verification

This third validation technique aims at demonstrating consistency between two designs. 

helps proving desirable properties of a system such as the absence of deadlock. Verific

usually very costly (and sometimes impossible) because it implies exhaustive search in 

number of system states. ELUDO and LOLA are not powerful verification tools, but we ca

use them to verify a few properties.

Verification of a Level 1 Specification Using LOLA

The best verification feature of LOLA is the command TestExpand presented in the previous

section. TestExpand verifies the testing equivalence between two processes (or two de

Other equivalence relations (bisimulation, trace equivalence...) exist and can be verifie

other tools (such as Squiggle). Although what we really need is a definition of path equivalence,

testing equivalence fills most of needs of timethread maps verification.

Another interesting feature of LOLA is the expansion function Expand. This command calculates

the EFSM (Extended Finite State Machine) of a behaviour or a specification. This EFSM c

used as an underlying model for model checking, with other tools. It can also help in fi

deadlocks in a specification. The following example shows that the EFSM of the le

specification Traveler_Example has 14 deadlocks. The latter are due here to the fact that we

with a specification without recursion. In other words, such deadlocks were explicitely inc

in the specification (stop ) by the designer. If they occur in a recursive specification (as in a 

stopping RTD system), then this indicates a design problem.

lola> Expand -1

    Analysed states       = 221
    Generated transitions = 539
    Duplicated states     = 319
    Deadlocks             = 14
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The automaton obtained can be normally checked to verify that the behaviour is as desire

cases. In practice, the goal can be daunting, as it can be seen from this example, wher

large number of states and transitions were obtained from a small specification. A rec

specification may also lead to an infinite number of states. In that case, the EFSM is trunca

the specification is partially verified only. 

Verification of Process Cab Using ELUDO

ELUDO includes a tool called SELA, which performs the symbolic expansion of a process o

specification. The output is a tree-like structure that shows all possible traces of events. Th

can help the designer finding undesirable sequences of events. This process is very si

LOLA’s expansion.

An example of symbolic tree output from SELA is shown in figure 67. The process Cab (level 1)

has been expanded and all possible sequences are presented in the tree. Undesirable dea

be found in this way.

 

Figure 67: Verification of process Cab using SELA
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Other Verification Methods

Large symbolic expansion graphs such as those obtained from LOLA or SELA can be ins

automatically by using a procedure called model-checking. The graph is transformed into 

Kripke structure on which we perform model checking. Properties to be checked can be exp

using a temporal logic formula. LMC [Ghr 92] is a LOTOS model checker that can veri

properties expressed in the temporal logic language CTL. The tool CAESAR also prov

model checker (called ALDEBARAN).

Other verification tools using goal-oriented execution, trace theory, or equivalence relations

be integrated into a timethreads-LOTOS verification environment.
102 Formalization of Timethreads Using LOTOS 



CHAPTER 6 Case Study: Telepresence 
A Multimedia System Design 
Example
ich are

diary.

 other's

pts to

ryday

l-time

e our

cifying,

y mostly

works,
6.1 Introduction

“Telepresence is a set of computer, audio-video and telecommunications technologies, wh

carefully integrated to enable people to work together using technology as an interme

Properly deployed, telepresence conveys in users the feeling of being present in each

offices from remote distances. More than simple video-conferencing, telepresence attem

duplicate the subtle social protocols, degrees of confidentiality, intimacy and trust in eve

relationships and interactions when remote persons are brought together.” [Man 93].

Telepresence represents a very complete multimedia system. The complexity of such rea

and distributed system makes its design a true challenge. In this chapter, we will us

techniques based on the Timethread notation and the formal language LOTOS to help spe

refining, and validating a first design. 

A designed system must be reliable and reusable as much as possible. This case stud

deals with reliability concerns. Reusability, expressed in terms of role architectures, frame

class hierarchies, and objects [Buh 93] will not be covered in order to simplify the problem.
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The Telepresence system presented in section 6.2 is designed from a user-centered view

Many assumptions are made to simplify its complexity. This system is neither a com

telepresence system nor an existing one. We only use ideas from the telepresence proje

interesting and challenging scenarios allowing us to use our approach. In section 6.3, the L

interpretation method for timethreads is applied to the example in order to get the firs

specification from the first timethread map. Section 6.4 presents the factoring transform

leading to a second timethread map and its corresponding LOTOS specification. W

overview the validation and consistency of the two specifications.

6.2 The Telepresence System

6.2.1 General Telepresence System

A complete Telepresence system might offer many different types of services to simulate vir

presence and other facilities:

• Electronic mail.

• VoiceMail (using a computer mail program or using the phone).

• VideoMail.

• Visual contact.

• Teleconference.

• Data exchange.

• Desk Automated Network (for instance, a group of people working on the s

document), where everything is integrated/distributed.

• Receptionist (Virtual Automated Attendant), etc.

Many hardware and software components are usually required to provide such services:

• Users’ workstations (PC, Macintosh, Sun...) with a lot of RAM,

• Color monitors (possibly more than one per user),

• Microphones (e.g., a small PZM microphone),

• Speakers (with volume control),

• Color camera unit (usually small, possibly more than one per user),

• Phones,

• Different high-speed networks,

• Servers’ workstations (Sun...),

• Audio/Video switching devices,
104 Formalization of Timethreads Using LOTOS 



The Telepresence System

nly one

 need

an be

 as

uting

blem,

d real

ethod

ial

sic
• VCRs,

• Codecs (Compressors/Decompressors, Picturetel units),

• Integrated Interactive Intermedia Facility (IIIF Server, software) [Mil 92],

• Telepresence Communication Server (TCS, software) [Man 93],

• Voice Server (software) [Jac 93], etc.

We can have many different views of a telepresence system, and we will concentrate on o

of them. A user-centered design is a viewpoint where the functions provided by the system

to be those functions that will fulfill the communication needs of the user. This design c

achieved by specifying, for example, the user interface. “The design of the user interface serves

the driving thrust for the development focus of Telepresence teams” [Man 93]. We use this

approach in order to get a first LOTOS “prototype” allowing us to play the design (by exec

the specification) and validate it against the requirements.

The use of many simplification assumptions will help us in concentrating with the real pro

without committing to detailed solutions too soon. We do not aim at designing a complete an

Telepresence system in this chapter. A simple system is complex enough to illustrate the m

and design issues.

6.2.2 Informal Description and General Assumptions

This case study emphasizes on the visual contact service, which can be considered as a spec

application of the teleconferencing capabilities of a complete Telepresence system. To simplify

further, we will constrain our Telepresence system, from a user’s perspective, to the ba

components (names and icons) presented in figure 68:

Figure 68: Basic components

In order to describe the functionalities of the system, two concepts have to be introduced: 

a) User b) Computer c) Monitor d) Camera e) Speakerf) Microphone
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Initiator-Responder concept: The user who initiates a connection is called the initiator, and the

one who is being contacted is the responder. The system must provide the correct functionaliti

to satisfy a user who can be in any (or both) of these roles. 

Door concept: A door is a means to protect a user’s privacy. An initiator can look int

responder’s office only when the responder’s door is open. A responder can open or close

door at anytime. This is a simplified definition of the door concept introduced in the

telepresence project [Man 93], where a complex protocol is needed to provide flexibility i

privacy management. In our Telepresence system however, a user will not be allowed to lock t

door, to glance at one’s door, to select users for whom the door is always open or closed, e

The visual contact service functionalities can be informally described, from a user’s viewpoint

the following way:

Initiator : During the connection phase, an initiator sends a Contact request to a responder, the

he/she waits for a Report telling whether the access was successful or denied, or if a tim

occurred (when the request is lost somewhere in the system). If the contact is establish

transmission phase starts and the initiator receives images on his/her monitor and his/her s

play the responder’s voice. The initiator can Terminate the transmission (and the connection) 

any time after the transmission has started, and then he/she is allowed (Next) to contact another

responder. An initiator can contact only one responder at a time.

Responder: At any time, a responder can Open or Close his/her door to allow or deny access 

initiators’ connection requests. A signal appears on the responder’s monitor as long as an 

is looking into the responder’s office. During this transmission phase, the camera an

microphone record images and voice to be transmitted.

Any user can be initiator and/or responder. Also, a responder can contact a third us

necessarily the one looking in his/her office. There is no constraint on the number of ini

who can look into a specific responder’s office. 

In section 6.3, we will describe this Telepresence system as two different entities: an initiato

system under design (SUD) and a responder SUD. Later, the two systems will be merged i

complete system in order to allow peer-to-peer relationship, i.e., a complete system A can be

initiator and a complete system B responder, and vice-versa. This approach is similar to 

Message Transfer Unit example developed in [Buh 93].
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Although we are able to describe a few properties and functionalities of the system, we 

intend to formulate a detailed specification, neither with timethreads nor with LOTOS. We

get a “projection” of the end-to-end paths onto LOTOS behaviour and processes, and w

have to get as much information as possible from these specifications and diagrams.

6.3 The First Timethread Map

The approach consists of a timethread-centered design, leading to a timethread map interp

a LOTOS specification for simulation, refinement, and validation. We will try to think of 

method as a CAD tool, i.e., with a timethread graphical editor, automated translation

timethread map into LOTOS, automated support of transformations, and other functionalit

the validation1. Of course, no such integrated tool exists yet, but the design process nee

type of tool, and therefore we think we should get used to this way of thinking.

6.3.1 General View of the Approach

We use here an approach based mostly on the timethread-centered design and on the

interpretation method for timethreads. We intend to:

• Define the basic components (as few as possible, only pertinent ones).

• Build use cases, using timethreads, for the description of individual scenarios.

• Combine and complete those timethreads to form end-to-end paths in our

timethread map.

• Perform the LOTOS interpretation method for timethreads in order to get the

specification.

• Use the specification as a means to “play the pictures”, for partial validation again

requirements.

The first step was already covered in section 6.2.2 where the basic components were id

(see figure 68).

1. A specification is generally validated against previous specifications or the requirements.
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6.3.2 Basic Scenarios

We present here a few steps involved in the production of a first timethread map. Sp

scenarios are investigated and some design decisions must be taken. This is one of th

possible ways leading to timethreads discovery, and the pertinence of the resulting map is 

the scope of this thesis. However, we try to get a map as meaningful and realistic as poss

the sake of the case study.

The following scenarios are grouped into three categories, more or less expressed 

requirements: connection phase, transmission phase, and door management.

Connection Phase
The timethread in figure 69a shows a very simple use case [Jac 93] of the initiator’s conn

phase. This  high-level scenario shows a sequence of interactions between the user in an

role and the Telepresence system. When a Contact request is sent, the resulting event is a Report.

Such use case, although very simple, is useful in early stages of the design process (es

when we start from a “blank sheet”) to understand simple cause-to-effect relationships w

committing to any internal detail. Simple test cases can also be derived from such descr

However, no more use cases will be shown in this chapter for space reasons.

“An initiator can contact only one responder at a time” means that a user cannot initiate mo

one telepresence session at the same time. We therefore have to constrain the number of 

of the Connection timethread during the connection phase. This is expressed in figure 69b, w

the Next event indicates that a new connection can be established. Note that we added an

Fork to indicate that the initiator can look at the report whenever he/she wants.

The requirements indicate three types of reports: Success, Denied, and TimeOut. We can use tags

to tell the initiator which internal path has been taken (fig. 69c). The addition of these alt

paths is an instance of extension, as introduced in section 5.3.3.
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Figure 69: Connection phase

We know that, during the connection phase, the responder’s door has to be checke

timethread Knocking (fig. 70a) shows one possible sequence. Also, the resulting event 

DoorChecked) has to report the accessibility of the responder (tag values Access or Denied). We

use a tag mechanism (fig. 70b) to manage the flow of information from timethread Knocking to

the timethread to which it will somehow be connected (in occurrence, Connection). Note that this

timethread and its activities are internal to the system, i.e., hidden from the users.

 

Figure 70: Connection phase and Knocking sequence
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Figure 69c presents the complete connection phase, which is a composition of the two time

already developed. A Contact request will cause (in passing) a Knock event in the Knocking

timethread. The result, returned in DoorChecked, will cause a time waiting place to stop waiting

without a timeout, and the tag Resp will be available to the guards G1 to G3 (see §6.3.3 for a

description of the guards). If the Knocking request is lost, then a timeout will occur and t

internal TimeOut (time waiting place) will be performed, causing Report to tell the user about the

timeout. We added the KnockLost internal event to test robustness in our design.

Transmission Phase
The transmission phase is first represented by the simple Transmission timethread of figure 71.

When an internal event Transmit occurs, the Signal is displayed on the responder’s monitor a

this causes the microphone to record the voice (RecordVoice) and, concurrently, the camera t

record the image (RecordImage). The initiator’s monitor then displays the image (PlayImage)

while the speaker outputs the voice (PlayVoice). Then, either the transmission continues or t

Disconnect activity is performed, causing the end of reception (EndRec).

Figure 71: Transmission phase

In the requirements, the initiator can Terminate the transmission, therefore the disconnection d

not have to remain as non-deterministic as in the previous figure. In figure 72, we ad

Disconnection timethread managing this event. It is connected to a waiting place RecState on the

timethread Transmission. The waiting places described in the Timethread notation do not 

any options corresponding to what we want to represent here. We do not want the Transmission

timethread to always wait for an event or for a timeout.

At this point, we feel the need for a new type of waiting place that waits a synchronization

and then outputs a corresponding tag (say Sig, with the value Yes), or continues if no

synchronization occurred and then outputs the tag with another value (No). 

EndRec

Transmit

Disconnect

PlayVoice

PlayImage RecImage

RecVoice

Signal

Transmission
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To this end, we introduce the new symbol  to denote such a new type of waiting place, 

we call Signal .

Figure 72: Transmission phase and disconnection management

The addition of Signal  as a waiting place option (<WPOptions> ) shows the extensibility power

of the STDL grammar:

<WPOptions> = [<Delayed> | <Timed> | <Signal>]

A LOTOS interpretation of a generic signal waiting place could be:

(* Waiting place signal management *)
hide  SyncSig in
(
   EventName; SyncSig ! Yes; stop   (* Synchronization *)
   []
   SyncSig ! No; stop               (* No synchronization *)
)
|[SyncSig]|
SyncSig ? Sig: Tag;

The tag Sig can then be used to constrain forthcoming choices, as with the guards G8 and G9.

Looking at the previous figure, we see a strong coupling between the information recorde

the information played, i.e., we cannot record more than one image before it is played. We

loosen this coupling by splitting the Transmission timethread into two parts, one managing t

transmission and the other (Reception) managing the reception. This is shown in figure 73, wh

the two timethreads communicate via two internal events: Receive and SendState. Note that the

implementation of the waiting place Receive might require the existence of a buffer (or a queu

between Reception and Transmission, unless decided otherwise at a later design stage, perha

the architecture level.
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ete the
Figure 73: Transmission phase - Decoupling

Again, we used a signal waiting place to decide, with the help of guards G6 and G7, whether or

not other information has to be transmitted. Two new internal results were added to compl

timethreads: Played and EndSend.

Door Management
The requirements also indicate that a responder can Open or Close his/her door at any time. This

is expressed by the two timethreads of figure 74.

Figure 74: Door management (Open and Close)

These timethreads both result in updating the door state either with the value Open or with the

value Close.
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6.3.3 First End-to-end Paths Timethread Map

In the previous section, we discovered the basic functionalities of the Telepresence system from a

user interface viewpoint. We constructed our timethreads following the connection

transmission phases, and the door management. We can compose our timethreads to form

timethread map representing end-to-end paths of our Telepresence system (figure 75).

Figure 75: First Telepresence timethread map (end-to-end paths)

This timethread map captures the big picture of the system. It is not concerned with deta

protocols, data, transmission of data, control of hardware, etc. Only interesting paths

relevant components are shown here. Note that, although they are not explicitly drawn 

diagram, we assume that the initiator SUD and the responder SUD both have cameras, s

and microphones.

Many steps have been involved in the generation of this timethread map. The most importan
are:

• The separation of the Initiator SUD from the Responder SUD.

• The connection of Reception and Connection on the waiting place EndRec.
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• The connection of Knocking and Transmission on the starting event Transmit.

• The connection of Knocking, OpenDoor and CloseDoor on the Memory waiting place

DoorState (see below for the definition of such waiting place).

• The creation and update of guards G1 to G9 based on the different tags. The

definitions are:
[G1]  is [ResultTO eq TOut]
[G2]  is [(ResultTO eq OK) and (Resp eq Denied)]
[G3]  is [(ResultTO eq OK) and (Resp eq Access)]
[G4]  is [DS eq Close]
[G5]  is [DS eq Open]
[G6]  is [Sig eq No]
[G7]  is [Sig eq Yes]
[G8]  is [Sig eq No]
[G9]  is [Sig eq Yes]

We extended again our notation with the creation of a new type of waiting place called Memory.

This is reflected in the STDL grammar with the addition of a new waiting place op

(<WPOptions> ) also named Memory. The purpose of a memory waiting place is to act as a

variable, or a buffer, local to a waiting place. It has a default value, and it always provides it

recent value to a tag that can be used later to determine choices along the timethread pat

also synchronize anytime with other timethreads, so no one really has to wait. The given L

interpretation for a memory waiting place named WPName is:

   process  TimethreadName [TTGates..., WPName] : noexit  :=
      (* hidden memory cell for internal use *)
      hide  WPNameMem in
      WPNameMemory [WPName, WPNameMem] (InitValue)
      |[WPNameMem]|
      TimethreadName2[TTGates..., WPNameMem]
      where

      process  TimethreadName2[TTGates..., WPNameMem] : noexit  :=
         (* Timethread interpretation using WPNameMem instead of WPName *)
         ...
      endproc  (* TimethreadName2 *)
   
      process  WPNameMemory [WPName, WPNameMem] (Mem: Tag): noexit  :=
         (* Process that can synchronize with external timethreads *)
         (* or with TimethreadName2 *)
         (* Get a new value *)
         WPName ? NewMem: Tag; WPNameMemory [WPName, WPNameMem] (NewMem)
         []
         (* Provide the current value *)
         WPNameMem ! Mem; WPNameMemory [WPName, WPNameMem] (Mem)
      endproc  (* WPNameMemory *)
   endproc  (* TimethreadName *)
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Again, this is an another example of the extensibility of the notation and the STDL gramma

to the modularity of the interpreted timethreads (1 timethread = 1 LOTOS process),

extensions do not result in complex LOTOS mappings.

6.3.4 Application of the LOTOS Interpretation Method

At this point, we consider our timethread map to be interesting enough to be mappe

LOTOS. We therefore use the LOTOS interpretation method for timethreads.

Map Decomposition
The first step consists in deriving the LARG and the STDL descriptions from the timethread

In figure 85, we present the STDL descriptions of the seven timethreads found in figure 7

interactions between these timethreads are expressed in the LARG of figure 77. Again, we

the one-to-one relationship between the timethreads and the processes.

Application of the LAEG Method
As usual, the LARG generated cannot be directly mapped onto LOTOS. Therefore, we ap

Grouping algorithm in order to get a binary grouped LARG (fig. 78). The solution we get is

among the hundreds possible equivalent solutions, but any of them can be use for validati

structure generated can be found in the specification of Appendix C, lines 45 to 81.
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Timethread Connection is

   Constrained

   Trigger  (Contact)

   Async (Knock)

   Wait Time  (Doorchecked ? Resp)

   Choice

         Guard  (ResultTO eq  TOut)  (* [G1] *)

         Tag  (Rpt = TimeOut)

      Or

         Guard  ( (ResultTO eq  OK) and  (Resp eq  Denied) )  (* [G2] *)

         Tag  (Rpt = Denied)

      Or

         Guard  ( (ResultTO eq  OK) and  (Resp eq  Access) )  (* [G3] *)

         Wait  (EndRec)

         Tag  (Rpt = Success) 

   EndChoice

   AndFork  

      Path  Result  (Report !  Rpt) EndPath

   EndAndFork

   Result (Next)

EndTT

Timethread Transmission is

   Internal  Signal, RecImage, RecVoice

   Trigger  (Transmit)

   Loop

      Comp

         Guard  (Sig eq  Yes)  (* [G7] *)

         Action  (Signal)

         Par

               Action  (RecImage)

            And

               Action  (RecVoice)

         EndPar

         Async  (Receive)

         Wait Signal  (SendState)

      Opt

         Guard  (Sig eq  No)  (* [G6] *)

   EndLoop

   Result  (EndSend)

EndTT

Timethread  Reception is

   Internal  PlayImage,PlayVoice, Disconnect

   Trigger  (Receive)

   Par

         Action  (PlayImage)

      And

         Action  (PlayVoice)

   EndPar

   Wait Signal  (RecState)

   OrFork

         Guard  (Sig eq  Yes) (* [G9] *)

         Continue

      Or

         Guard  (Sig eq  No)  (* [G8] *)

         Path Result  (Played) EndPath

   EndOrFork

   Async  (SendState)

   Action  (Disconnect)      

   Result  (EndRec)

EndTT
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Figure 76: STDLdescriptions of the first Telepresence map

Figure 77: LARG of the first Telepresence map

Some interfaces (italicized label sets) were too lengthy to put in the diagram, but the

enumerated here: 

• GSConn is Contact, Knock, DoorChecked, EndRec, Report, Next

Timethread  Disconnection is

   Trigger  (Terminate)

   Result  (RecState)

EndTT

Timethread  (Knocking) is

   Trigger  (Knock)

   Loss  (KnockLost)

   Wait Memory  (DoorState ? DS)

   Choice

         Guard  (DS eq  Close)  (* [G4] *)

         Tag (Rep = Denied)

      Or

         Guard  (DS eq  Open)  (* [G5] *)

         Async  (Transmit)

         Tag (Rep = Access)

   EndChoice

   Result  (DoorChecked !  Rep)

EndTT

Timethread  (Closing) is

   Trigger  (Close)

   Tag  (D = Close)

   Result  (DoorState !  D)

EndTT

Timethread  (Opening) is

   Trigger  (Open)

   Tag  (D = Open)

   Result  (DoorState !  D)

EndTT

Contact, Report, Close, Open, Terminate, NextTelepresence

Connection

GSConn

Knocking

GSKnock

Transmission

GSTrans

Closing

Close, DoorState

Opening

Open, DoorState

Receive,
SendState

Transmit

hide Knock, DoorState, DoorChecked, Transmit, Receive, SendState,
         EndSend, RecState, Played, EndRec in

Reception

GSRecpt

Disconnection

Terminate, RecState

Knock,
DoorChecked

DoorStateDoorState

RecState

EndRec
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• GSKnock is Knock, DoorState, Transmit, DoorChecked

• GSRecpt is Receive, RecState, Played, SendState, EndRec

• GSTrans is Transmit, Receive, SendState, EndSend

We find them again in the next LARG:

Figure 78: Binary grouped LARG of the first Telepresence map

Generation of Behaviour Expressions
LOTOS processes are then generated following the STDL descriptions. Notice that w

interpreted the signal and memory waiting places found in the timethread map. In Appen

we found the level 1 (without recursion) interpretation of the Telepresence system.

As mentioned in section 4.5.5, mechanisms to ensure the availability of tags all along time

paths are necessary. They are often needed for the synchronization points of the interpret

STDL Choice and Par constructs. Instances of such internal tag flow are found in lines 11

126, and in lines 262 to 272 of the Telepresence specification. Also, since LOTOS requires a

gates to have the same number and type of experiment offers (same number of tags in ou

dummy tags are needed on several occasions. For instance, in line 102, the second tag

SyncTOCon is a dummy tag; it is offered because other gates in the synchronization nee

experiment offers. This dummy tag could have any value since it will not be used in guards

Contact, Report, Close, Open, Terminate, NextTelepresence

Connection

GSConn

Knocking

GSKnock

Transmission

GSTrans

Closing

Close, DoorState

Opening

Open, DoorState

Receive,
SendState

hide Knock, DoorState, DoorChecked, Transmit, Receive, SendState,
         EndSend, RecState, Played, EndRec in

Reception

GSRecpt

Disconnection

Terminate, RecState

Knock,
DoorChecked

DoorState

RecState

EndRec Transmit
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To generate a level 1 specification with recursion, a few changes have to be introduced (f

The following twelve lines have to be slightly modified (modifications are italicized):

Figure 79: Modifications to get a level 3 Telepresence specification

Composition of the Complete Specification
The simple composition procedure consists in adding the process definitions to the st

generated from the LARG. The final result is the level 1 specification Telepresence described in

Appendix C.

6.3.5 Validation of the First Specification

We can now play the design and validate some functionalities against the requirements a

cases. For this purpose, we use validation techniques (§5.4) on a level 1 specificatio

recursion. We consider this level adequate for validation because:

• It is more realistic than a level 1 without recursion,

• A level 3, which is more complex, does not bring much enhancement sinc

Connection timethread is constrained to one instance at a time, and thus this cons

Knocking and Transmission also to one instance at a time.

We give examples of simulation and testing scenarios in Appendix D. We discuss the resul

Simulation
We executed one sequence with ELUDO to look for possible problems with our first timet

map. Several problems were discovered, and we can relate them to the emphasized even

1 to 6 in Appendix D.I). 

Stop becomes an off-end recursion of the calling process. Not all stop become recursive, only 
those following a resulting event:
134  Next; Connection[Contact, Knock, DoorChecked, EndRec, Report, Next]
177  [Sig eq Yes] (* [G7] *) -> (EndSend; Transmission[Transmit, Receive, SendState, EndSend] )
189  RecState; Disconnection[Terminate, RecState]
228  EndRec; Reception[Receive, RecState, Played, SendState, EndRec]
231  [Sig eq No] (* [G6] *) -> (Played; Reception[Receive, RecState, Played, SendState, EndRec] )
258  KnockLost; Knocking2[Knock, DoorStateMem, Transmit, DoorChecked]
274  Knocking2[Knock, DoorStateMem, Transmit, DoorChecked]
293  DoorState ! D; Opening[Open, DoorState]
304  DoorState ! D; Closing[Close, DoorState]

For process TLoop to be able to call Transmission, the gate Transmit has to be added:
145  Transmit; TLoop [ Transmit , Receive, SendState, EndSend, Signal, RecVoice, RecImage]
148  process  TLoop [ Transmit , Receive, SendState, EndSend, Signal, RecVoice, RecImage]: noexit :=
175  (TLoop [ Transmit , Receive, SendState, EndSend, Signal, RecVoice, RecImage])
Formalization of Timethreads Using LOTOS 119 



Case Study: Telepresence A Multimedia System Design Example

ugh

er the

e

race.

ice by

here

 to the

ner

e right

It

g. For

e, this

ws that

D

/she

chanism

rown

t recall

ication

thread
• The event Terminate was accepted before any transmission started (box 1), altho

the requirements specified that the disconnection should be available only aft

transmission starts. The interface of our Telepresence system should not allow the us

of Terminate at this point. This error leads to other problems also shown in the t

For instance, box 3 indicates that the same transmission could be terminated tw

the initiator. This will affect a second transmission later on, as shown by box 6 w

the second transmission is terminated while the first one was aimed. This is due

cumulation of Terminate events, which is not appropriate at this point. The desig

now knows that a mechanism is needed to ensure Terminate is not allowed, or not

considered, before the beginning of the transmission, and that only one Terminate must

be considered for a given connection.

• As indicated with box 2, images and voice data are not necessarily received in th

order. The timethread map and the Receive waiting place do not specify any ordering. 

is the responsibility of the designer to develop a way to express a FIFO orderin

instance, a FIFO waiting place could be invented and used for Receive. Although this

might not be essential at a timethread level in order to keep the diagram simpl

problem definitely needs to be solved at the architecture level.

• This trace detects another problem related to the disconnection phase. Box 4 sho

the initiator SUD still receives information after the disconnection (Disconnect and

EndRec) and even after a new Contact request. Box 5 indicates that the initiator SU

also plays this information. The latter can mislead the initiator who thinks he

contacted someone else. Again, the designer learns that the system needs a me

to ensure that all information contained in buffers and queues is played (or th

away) before the disconnection to be considered complete.

Simulation helps the designer to find such problems and to ask many questions. We mus

that this timethread map does not intend to solve all the problems issued from specif

executions. The problems are noted and they will be solved later on, possibly in a new time

map (if the solution is obvious in the timethread domain) or at the architecture level.
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Testing
Appendix D.II presents three simple test cases, based on Connection phase use cases (fig. 69),

that were applied to the Telepresence specification with the help of the tool LOLA.

The first acceptance test (spec. 13) and the first rejection test (spec. 14) helped in valida

output of the Report when the door is closed. No problem was detected.

The second acceptance test case (spec. 13), which was more complex, aimed at testing

the Report output was always Success (or possibly TimeOut) when the responder Opens his/her

door. This process was proved to be a MAY PASS test case. Although our test was genera

executed successfully (99.94% of the finished executions), it was not always the cas

problem seems to be that when a responder Opens the door, the update of the internal state is 

instantaneous and a Knocking request might have just the time to decide that the door is clo

denying the access as a result. The OneExpand command of LOLA helped in finding an

unsuccessful execution revealing this race problem. TestExpand with the option -s  could also be

very useful to get all the unsuccessful executions. Testing the Telepresence specification can

therefore be useful in finding problems associated to specific scenarios.

Knowing when to stop testing the specification becomes a legitimate question at this 

Usually, we can stop when there are no more bugs to discover, or when there is no money

left [Pro 92]. More practially, we could define different software-reliability measurem

[MuA 89] for timethreads. For instance we could test that:

• All valid use cases or scenarios can be executed;

• All invalid scenarios stated in the requirements are rejected;

• All timethread activities and paths can be traversed;

• All loops are traversed a certain number of times;

• All combinations of tag values & guards are executed;

• etc

We also might have to truncate to a certain depth the LTS corresponding to the L

specification (when branches are infinitely long), and to execute a certain number of tim

tests related to non-deterministic choices. To get confidence in our design, we therefor

different coverage criteria. We do not provide them in this thesis; we only present instances

of testing. Coverage of timethread maps is still a research issue.
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6.4 Transformations and Second Timethread Map

We are now at a stage where end-to-end timethreads have to be factored in order to get o

SUD that satisfies the requirements of both system roles (initiator and responder). The fa

procedure is explained, for the Message Transfer Unit example, in [Buh 93] and [BuC93]. In this

section, we will not repeat everything that has been said about the whole method. We conc

instead on the transformation phase, on some points in the mapping phase, and finally

validation phase.

6.4.1 Transformation Phase

Getting one SUD that includes both roles (initiator and responder) from the timethread m

figure 75 might seem a very complex task. However, timethreads allow transformations tha

this factoring. The procedure can be explained in three steps, which are illustrated for a 

timethread in figure 80.

Figure 80: Factoring procedure

(a) Original end-to-end timethread (b) The cut (timethread splitting)

(c) Combining functionalities (d) Merging inputs and outputs
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Factoring Procedure
Assume we start with a simple end-to-end timethread triggered by T on the initiator side, causing

some activities (not shown here) in the responder’s system, and resulting into R back in the

initiator’s system. Figure 80(a) presents such a timethread, which is very similar to timeth

Reception and Knocking from the Traveler System.

• Because the timethread spans over two systems (with complementing roles), w

assume that these systems communicate with each other to implement the ca

flow. Hence, we can cut the end-to-end timethread to make explicit the communic

of the two systems. In figure 80(b), this cut results in three interacting timethr

which are assumed to be path equivalent to the original one (see the discussion 

equivalence in §5.3.2).

• Now that we have enhanced communication functionalities between the syste

must combine the functionalities of both systems into one initiator-responder sy

To do so, we mirror the middle timethread (the one in the responder system) and

it into the new complete system (fig. 80(c)). We added arrows to express the cau

flow more clearly. At this point, the factoring is completed.

• Although our goal might be considered achieved in figure 80(c), we may wish to 

only one input channel and one output channel on which the messages are multip

In this case, we have to merge inputs together and merge outputs together to get

realistic model. We did so in figure 80(d), and we obtained a system that poss

functionalities of both initiator and responder roles, with only two uni-directio

channels. This last step is sometimes not needed as it might lead to overspecifica

Communication
Such complete SUD can be easily connected to another similar SUD. For instance, fig

shows two communicating systems. The output of the first system interacts with the input

second system, and the input of the first system interacts with the output of the second sys
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Figure 81: Two interacting complete systems

The interactions can also occur via an underlying service or medium (gray box in fig. 81

latter is placed between the two systems and could manage  the routing, the retransmissi

Two complete Telepresence  systems could communicate, for example, via an underlying ser

provider that can transport data (voice, video, requests, responses...) over some mediu

reliable way. For instance, this could be a XTP protocol over a high-speed ATM optic 

network.

Figure 82: Two complete systems interacting via a medium

Allowing these types of communication may however lead to causality flow problems. In f

81, when a token goes from system 1 to system 2, it has a non-deterministic choice betwe

alternatives. One of them, i.e., where the token goes directly from T1 to the end result R2, was not

allowed in the original system. This problem has to be taken care of with tags and guar

adding tags indicating the path of provenance before going out of a system, it is poss

resolve this non-determinism. We also need guards on each alternative when entering a sy

that we can use tag values to guide the tokens to their right path. This mechanism is use

second Telepresence map (fig. 84).

Telepresence Factoring
The factoring transformation is now about to be applied to the first Telepresence map. The vertical

cut will occur between the initiator and the responder. If we take the map of figure 75 as it 

create five new timethreads after the cut. However, this number can be reduced to four if we

a transformation on timethread Reception before the cut. Figure 83 illustrates this transformatio

System 1 System 2

T1

T2

R2
R1

System 1

Medium

System 2

T1

T2

R2

R1
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Figure 83: Transformation of Async in Reception

The asynchronous event SendState  is transformed into Reception. We extract a parallel path

resulting in SendState  and another parallel path which is the continuation of the orig

Reception timethread. This path equivalence relation has the advantage of reducin

communication coupling between systems after the cut.

This transformation having been applied, we now execute the factoring procedure by cutt

timethreads and combining the functionalities (as in fig. 80). We assume here that we w

explicitely show that there are two unidirectional channels per system only. Therefore, we u

last step (d) defined in the factoring procedure, and we merge inputs and outputs. The 

timethread map is presented in the next figure:

Disconnect

SendStateS

...
...

Disconnect

SendStateS

...
...

C
u

t

C
u

t

Transformed to

Reception Recept ion
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Figure 84: Second Telepresence timethread map (1SUD)

Here are some comments on figure 84:

• Timethreads Disconnection, Connection, Transmission, Opening, and Closing are kept

unchanged because they were not affected by the cut.

• The dotted vertical line shows were the cut was done.
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• The merging of inputs results in a new and complex timethread called Data. It includes

some paths and functionalities from the original Reception and Knocking timethreads.

• Two new external events are created for communication (DIn  and DOut). They also

take care of the tags flow.

• As discussed previously in this section, tags and guards have been added to 

non-determinism associated to communication. The tag oP (standing for output path)

indicates the last path taken and is sent to a communicating system via the resultDOut.

The other system receives this information as iP  (input path). This tag is then used i

the new guards G10 to G13 to route tokens correctly. These guards are:

[G10]  is [iP eq RDataIn]
[G11]  is [iP eq KDataOut]
[G12]  is [iP eq RDataOut]
[G13]  is [iP eq KDataIn]

This complex transformation leads us to a map representing a single Telepresence SUD that has

functionalities of both roles (initiator and responder) defined in the requirements.

Note that the identity of some original timethreads (Knocking and Reception) appears to be lost in

the factored map. We can see that tags and guards in timethread Data intend to preserve the

possible causality paths in the system, but somehow we lose some structural infor

identified in the first map. Mechanisms to ensure we can still access this information wou

welcome here. This is yet another research topic to be addressed in future work.

6.4.2 Mapping Phase

We apply now the interpretation method in order to get our second LOTOS specification 

Telepresence system. We first apply the decomposition to get the STDL and LARG descript

then we binary group the latter using the LAEG method. Finally, the LOTOS specificati

generated from these descriptions.

STDL Descriptions
Since timethreads Disconnection, Connection, Transmission, Opening, and Closing have not been

affected by the factoring procedure, their STDL descriptions remain unchanged (refer to fig

In figure 85, we present the descriptions of timethreads Data, Knocking, and Reception.
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Timethread Data is

   Internal  PlayImage, PlayVoice, Disconnect

   Trigger  (DIn ? iP ? iRep)

   OrFork

         Guard  (  not ((iP eq  KDataOut) or  (iP eq  RDataOut)) ) (* [Gadded] *)  Continue

      Or

         Guard  (iP eq  KDataOut) (* [G11] *)       (* End of Knocking *)

         Path  Result  (DoorChecked !  iRep) EndPath

      Or

         Guard  (iP eq  RDataOut) (* [G12] *)       (* End of Reception *)

         Path  Result  (SendState) EndPath

   EndOrFork

   Choice

         Guard  (iP eq  RDataIn) (* [G10] *)        (* Body of Reception *)

         Path

            Par

                  Action  (PlayImage)

               And

                  Action  (PlayVoice)

            EndPar

            Wait Signal  (RecState)

            OrFork

                  Guard  (Sig eq  Yes) (* [G9] *)  Continue

               Or

                  Guard  (Sig eq  No)  (* [G8] *)

                  Path Result  (Played) EndPath

            EndOrFork

            AndFork

                  Path

                     Action  (Disconnect)

                     Result  (EndRec)

                  EndPath

            EndAndFork

            Tag  (oP = RDataOut)

         EndPath

      Or

         Guard  (iP eq  KDataIn) (* [G13] *)        (* Body of Knocking *)

         Path

            Wait Memory  (DoorState ? DS)

            Choice

                  Guard  (DS eq  Close) (* [G4] *)

                  Tag  (oRep = Denied)

               Or

                  Guard  (DS eq  Open) (* [G5] *)

                  Async  (Transmit)

                  Tag  (oRep = Access)

            EndChoice

         EndPath

   EndChoice

   Result (DOut  !  oP !  oRep)

EndTT
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Figure 85: STDLdescriptions of the second Telepresence map

The STDL grammar works well when used in a constructive approach, i.e, no problem o

when we build timethreads from simple ones to more complex ones. However, when transfo

a timethread, we may observe a limitation of the grammar w.r.t. mixing choices and or-

When the timethread Data is triggered (DIn ), the token has to take one out of the four paths

front of it. This is why guards have been placed. However, what is implicit here is an or-fork

three possible paths: one guarded with [G11] , another guarded with [G12] , and the last one

(unguarded) which leads to the continuation of the timethread. This last path then has a

between two sub-paths, guarded with [G10]  and [G13] . Now, the problem is that a deadloc

may occur at this point. When a token has ip=KDataOut  as information, it may non-

deterministically follow the ungarded path of the or-fork, and then deadlock in front of the ch

A simple solution to this problem is presented in figure 83. By adding a guard to the third o

of the or-fork, we can route the tokens correctly. The guard ([Gadded] in the right timethread)

must forbid access to its path to tokens that are allowed to take one of the other paths. To

such guard must have the following format: not ((first guard) Or  (second guard)

Or ...) . In our case, we have:

[Gadded]  is [not( (iP eq KDataOut) or (iP eq RDataOut) )]

Figure 86: Internal transformation

This solution was adopted in the STDL description of Data. If a tool was to automate the

factoring transformation, this feature would have to be included.

Timethread Knocking is

   Trigger  (Knock)

   Loss  (KnockLost)

   Tag  (oP = KDataIn)

   Result  (DOut !  oP)

EndTT

Timethread  Reception is

   Trigger  (Receive)

   Tag  (oP = RDataIn)

   Result  (DOut !  oP)

EndTT

Internaly transformed to

[G11]
[G12]

[G13]

[G10]

[G11]
[G12]

[G13]

[G10] [Gadded]
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LARG Description
The Telepresence1SUD LARG containing our eight interacting timethreads is shown in figure

Figure 87: LARG of the second Telepresence map

We enumerate here the interfaces (italicized label sets) which were too lengthy for our diag

• GSConn is Contact, Knock, Doorchecked, EndRec, Report, Next

• GSData is DIn, DOut, SendState, DoorChecked, DoorState, Transmit,

RecState, Played, EndRec

• GSTrans is Transmit, Receive, SendState, EndSend

Binary Grouped LARG
With the help of the LAEG method, we generate the binary grouped LARG (fig. 78) from

ungrouped one.

Telepresence1SUD

Connection

GSConn

Knocking

Knock, DOut

Transmission

GSTrans

Closing

Close, DoorState

Opening

Open, DoorState

Transmit,

hide Knock, DoorState, DoorChecked, Transmit, Receive, SendState,
         EndSend, RecState, Played, EndRec in

Disconnection

Terminate, RecState

DoorChecked

DoorStateDoorState

RecState

EndRec

Contact, Report, Close, Open, Terminate, Next, DIn, DOut

Data

GSData

Reception

Receive, DOut

Knock Receive

SendState
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Figure 88: Binary grouped LARG of the second Telepresence map

As usual, the interfaces and hidden activities from the ungrouped LARG are kept unchan

the binary grouped LARG.

Mapping on LOTOS
As suggested by the method, the structure part of the specification (lines 52 to 81 of spec

generated from the binary grouped LARG. The processes corresponding to the indi

timethread are (manually) derived from the STDL descriptions. Appendix C (spec. 16) pre

the complete LOTOS specification named Telepresence_1SUD. We consider that a level 1

specification with recursion is sufficient for validation purposes in this thesis. Therefore, the

3 specification will not be given nor used.

Contact, Report, Close, Open, Terminate, Next, DIn, DOut

Connection

GSConn

Knocking

Knock, DOut

Transmission

GSTrans

Closing

Close, DoorState

Opening

Open, DoorState

hide Knock, DoorState, DoorChecked, Transmit, Receive, SendState,
         EndSend, RecState, Played, EndRec in

Reception

Receive, DOut

Disconnection

Terminate, RecState

DoorState

RecState

EndRec

Telepresence1SUD

Data

GSData

Knock

Receive

Transmit,
DoorChecked

SendState
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6.4.3 Validation Phase

New Specification
Telepresence_1SUD (spec. 16) contains the functionalities of the initiator and the responder r

The validation of such a specification is not obvious at first sight, since end-to-end behavio

not present in the same way as in the first specification. Each time an initiator sends da

responder (or a responder to an initiator), the resulting event is DOut with some associated tag

values. Each time a responder or an initiator receives data, the external event is DIn. The

specification shows the correct paths, but many forbidden scenarios could occur without 

constraints from the environment. For instance, an initiator could receive voice and vide

even if he/she did not send any contact request.

To keep this fact in mind when we play this specification is a tedious task. One natural w

constraining this specification correctly is by composing the latter with a similar system (§6

Therefore, we will not use the specification Telepresence_1SUD as is, but we will transform it

into a process as part of a new specification corresponding to the communicating syst

figure 81. Two process instances will be synchronized on their communication channels (Din  and

DOut).

We can easily create such specification (called Telepresence_2Systems in spec. 10). We double the

gates in the global interface in order for each systems (1 and 2) to have their own co

interfaces. Then, we synchronize two instances of the process Telepresence_1SUD on the

channels In1Out2  and In2Out1 1. These are all the modifications needed to get 

communicating systems we wanted. Of course, we could specify a medium in between (as

81). This would allow us to test more closely the robustness of the system. However, since

not want the model to become too complex, we will stick to the first option.

1. In this example, we choose to hide these channels from users
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Specification 10: Telepresence (2 systems composed together)

Validation Strategy
We need to validate Telepresence_2Systems against the requirements and the previo

specification (Telepresence) in order to see that:

• It conforms1 to the specification Telepresence (which was itself assumed to conform t

the requirements). The conformance checking is due to the presumed 

equivalence” between the two specifications, resulting from the factoring transfo

tion. 

• It does not create more problems than there were in Telepresence.

• It solves some problems found in Telepresence.

1. As explained in section 5.4.2, we still use design testing to check conformance between specificatio
and not conformance testing

specification  Telepresence_2Systems [ Contact1, Contact2,  
                                      Report1,  Report2, 
                                      Close1,  Close2, 
                                      Open1, Open2,
                                      Terminate1, Terminate2,
                                      Next1, Next2] : noexit

... (* Definition of libraries and the Tag ADT *)

behaviour  (* Composition of the 2 similar systems *)

hide  In1Out2, In2Out1 in

      Telepresence_1SUD [Contact1, Report1, Close1, Open1, Terminate1, Next1,
                         In1Out2, In2Out1]
   |[In1Out2, In2Out1]|
      Telepresence_1SUD [Contact2, Report2, Close2, Open2, Terminate2, Next2,
                         In2Out1, In1Out2]

where

   process  Telepresence_1SUD [ Contact,  (* Initiator want to contact responder *)
                               Report,   (* Result of a contact *)
                               Close,    (* Close user’s door *)
                               Open,     (* Open user’s door *)
                               Terminate,(* Initiator terminates a connection *)
                               Next,     (* Get ready for next connection *)
                               DIn, DOut (* Incoming/Outgoing data*) ] : noexit  :=

   ...  (* LOTOS code from the original specification Telepresence_1SUD *)

   endproc  (* Telepresence_1SUD *)

endspec  (* Telepresence_2Systems *)
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Hence, we can re-apply the simulation sequences and test cases used in section 6.3.5. N

cases can be derived from the Telepresence specification. Also, specific test cases validating t

factoring procedure and its communication aspects can be generated.

In the validation examples, we will use testing only. To simplify the approach, simulation

verification are not used here, although they would be necessary in a real-life validation. We

the three test cases (spec. 13: AcceptTest1, spec. 13: AcceptTest2, and spec. 18: RejectTest1)

previously defined in appendix D.II. Of course, they are adapted to match the new gate 

(Contact1 , Result2 ...). 

We also add another rejection test called RejectTest2 (spec. 20). This last test was not in th

previous test suite. We create it here in order to ensure that we have no additional error re

invalid scenarios due to communication between systems.

Telepresence_2Systems does not intend to solve the problems we detected earlier in Telepresence

(§6.3.5). The former is the result of a factoring transformation that preserves path equiva

Therefore, we will not create additional test cases for these problems, which obviously wil

persisted in the second specification.

Many other test cases could be generated for design testing. However, to simplify the resu

to ease comparisons, we will consider the four tests presented only.

Testing Results
Appendix F presents the results of our four test cases. Here are some general conclusio

this experiment:

• Telepresence_2Systems has more internal events (due to DIn  and DOut) than

Telepresence, leading to an increased number of possible states and transitions.

• AcceptTest2 is again a MAY PASS test case. This time, 99.92% of the finishe

executions terminated successfully. This ratio compares to the 99.94% found in s

6.3.5. Note that we could use simulation or the LOLA command OneExpand, or the -s

option of TestExpand, to reveal the same race problem with the knocking request w

was already detected in Telepresence.
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• All three common test cases (AcceptTest1, AcceptTest2, and RejectTest1) performed

similarly. They did not detect any major difference between the original specifica

and the transformed one. Therefore, they failed in proving that Telepresence_2System

does not conform to Telepresence.

• The last rejection test case (RejectTest2) checked that a Contact request does not

directly lead to a Result (with any parameter) on the other user’s side. Such pro

tests that the guards we added correctly route tokens, according to their prior pa

which tags were associated. The result showed that no problem was detected w

scenario.

This validation, although very superficial, did not detect unknown problems with this se

specification of the Telepresence system. Hence, we might have a certain degree of confiden

that Telepresence_2Systems conforms to Telepresence.
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This chapter presents several topics that go beyond the thesis objectives. However, we bel

following discussion to be useful by placing the thesis achievements in a wider context a

opening new horizons. The next sections are closely related to many issues developed

previous chapters. We chose to emphasize four main topics which are: the architecture, the

grammar, validation in general, and a few ideas on possible tools.

7.1 Towards a First Architecture

Why would we need another design methodology using formal methods while several a

exist? For instance, the Lotosphere Methodology [LOT 92], based on the conventional st

refinement, offers powerful structuring and abstraction facilities that allow designers to ma

control of the different aspects of the design at all levels along the design trajectory. T

achieved by enabling formal statements of design constraints and objectives in the structur

design. The quality of the design is improved because of the mathematical foundatio

LOTOS, that allow verification of properties and extensive support for simulation and testin
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We believe that what we need is a thinking tool, a methodology more intuitive and appealin

the one proposed in the Lotosphere project. It has to be used in the framework of a pr

design process that engineers in industry can use without having to be formalists themselv

Lotosphere Methodology takes a formal method (LOTOS) and tries to build a complete d

methodology on it. In our approach, we start from some visual design concepts, very nat

designers. Then, we use formal methods to help formalizing parts of the visual notation with

formal methods offer the best. This concept was called interpretation methods (§3.1) in [Bor 93].

This research direction seems, from our viewpoint, to be very promising.

Although we know from this thesis that we can capture the main requirements with a time

map and then get the corresponding LOTOS specification, this does not mean that we 

complete design methodology. We at least need a more complete implementation-oriented

such as an architectural specification, of our timethread-designed system. Obtaini

architectural design consistent with a timethread design is however a complex task. Two

approaches are distinguished for this purpose: derivation (fig. 89a) and validation (fig. 89b).

Derivation: In this approach, an architectural specification of the system (AD) is obtained from

the LOTOS mapping of the timethread design (TD) on which some correctness preservin

transformations are applied. This new specification is mapped to an architectural design.

Validation: Here, we have to design both the timethread map and a sketch of an archit

independently. We then map the two designs onto LOTOS specifications (TV and AV) using

different interpretation methods. Finally, we try to validate the LOTOS specification obta

from the architectural design (AV), using verification or test cases derived from the LOTO

specification generated from the timethread design (TV).
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Figure 89: Derivation and validation approaches

The advantages of using CPTs in the derivation approach is quite obvious: no need for

validation or for the generation of test cases. Although this solution is theoretically appe

CPTs are often difficult to define and also hard to apply. Also, the derivation appr

necessitates a reverse-mapping going from LOTOS to a particular architecture model, and

not have any such method yet. 

In [BuC 94b], the authors discussed an option we could relate to our validation app

(introduced in section 5.1.1). They explain how a timethread map allows the designer to l

several architecture options, leading to a collaboration graph (see the definition on next

where roles and communications are more closely defined. We reproduced, in figure 90, th

going from a timethread map ♣, to timethread-role map ➸, to the collaboration graph ➻ (the first

architecture) previously presented in figure 53.

LOTOS

Specification

LOTOS

Specification

Timethread
Design

Architectural
Design

MappingMapping

Validation

(a) Derivation approach

(b) Validation approach

LOTOS

Specification

LOTOS

Specification

Timethread
Design

Architectural
Design

MappingMapping

CPTs

TD

TV

AD

AV
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Figure 90: From timethread maps to collaboration graphs

A role organization is usually composed of simple role components (called carriers, workers

teams by the authors) to which timethread activities are associated. Carriers carry whole se

of timethread forward, while taking care of concurrency issues. Workers do the functional

for carriers. We can think of workers as having point responsibilities along timethreads. T

express collaboration grouping.

A timethread-role map is a timethread map on which we superimpose a role organization. W

compare different organizations of configurations w.r.t. the same timethread map, all

designers to consider robustness, cost, and performance issues. Once the designer

configuration that satisfies his/her major criterion, he/she tries to derive a so-called collaboration

graph.

While timethread maps show causality flow paths, collaboration graphs show control flow 

They also aim at solving concurrency issues. Transforming timethread-role maps into co

ration graphs leads to potentially many solutions, so human judgement, commitments, and

decisions are required to determine the best one. This type of graph is considered to be

high-level architecture, based on roles instead of concrete hardware or software componen

Some heuristics and guiding rules to help in getting a collaboration graph from a timethrea

are presented in [BuC 94b], but no automated transformation procedure exists yet. This is w

can relate this approach to validation. By defining an interpretation model for a collaboratio

graph in order to get a corresponding LOTOS specification, we could validate the latter a

the specification generated from a timethread map. What is interesting here is that collab

graphs and timethread maps are not independent. Because of a certain degree of dep

(heuristics and guiding rules), we can informally derive a collaboration graph from a timet

map and then perform a formal verification according to some equivalence or conform

criterion.

♣ ➸ ➻
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Of course, we acknowledge that much work remains to be done in this area. Neverthele

believe that this approach, which combines many advantages of formality and informalit

lead (especially if automated) to better and more rapidly obtained RTD system designs.

7.2 STDL

7.2.1 Features Evaluation

A context-free grammar is often used to give a formal syntax specification of a language. W

an EBNF grammar (§4.2.3) to define in an abstract way the allowed paths of a single time

The grammar rules forbid many types of incorrect timethreads, without the help of addi

static or dynamic semantic rules.

STDL considers single timethreads as entities in their own right. It provides readable descr

that will ease the design of compilation tools. 

Modifications can be brought to the language in order to expand or adapt it. This is also ea

the three grammar rules <Seg>, <GenOptions> , and <WPOptions> .

This language is well-suited for a constructive approach, i.e., starting from a simple timet

the designer can make it more complex by adding segments. STDL also possesse

constructors that can be straightforwardly mapped onto LOTOS operators, and many le

specifications can also be generated from the same STDL description. The tag mechanism

a powerful feature that allow a more complete management of unfeasible paths, especia

transformations such as factorings (§6.4.1).

STDL, as it is now, is a major step towards the creation of a compiler tool that will gen

formal (LOTOS) specifications from timethread maps. We think that STDL is a language su

for LOTOS and a whole family of languages with multi-way rendezvous. In fact, we always

in mind a multi-formalism context while developing STDL. Therefore, because it is a ge

language describing timethreads for what they are, we believe other formal languages m

used as output of other interpretation methods, perhaps at the cost of minor modificat

STDL.
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7.2.2 Current Limitations

STDL is neither a perfect language, nor the ultimate solution to all our design problems.

want this language to improve with time, we first have to be honest and acknowledge its c

limitations and those of the LOTOS interpretation method. Hence, we decided to point out 

section some of these limitations:

• STDL is an incomplete timethread description language because it does not m

timethread interactions; we had to use LARGs as a formal means to express th

better language that would include both STDL and LARGs, in a consistent way, i

needed.

• We do not have any formal proof that a STDL description (with the map LARG)

the generated LOTOS specification are representative of the corresponding time

map. Timethreads semantics is informal and therefore, since we cannot go for

from informal to formal, the formal semantics we gave to timethreads is hard to p

correct, complete and consistent. We simply did our best in that matter, and perh

is hard to do otherwise!

• Because we do not have a complete algorithm (or a compiler) yet, the mapping p

(from STDL to LOTOS) is not guaranteed. We saw that, with a level 1 specifica

the mapping method seems straightforward and correct. Level 2 and 3 specific

are more complex and the mapping may proved to be much more difficult th

appeared for level 1.

• STDL was influenced by the limitations of our interaction model (LARGs). Since

LARGs only have synchronous interactions where no direction is specified,

grammar had to include these features, although they belong to the interaction d

This led to the creation of the constructors Sync  and Async , and the tag flow operators

? and ! .

• The STDL tag mechanism is strongly related to LOTOS Abstract Data T

(especially booleans and natural numbers) and the value offer operators ? and ! .

Although this eases the mapping onto LOTOS, this coupling might be a problem 

considering other formal languages as output to other interpretation methods.
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7.2.3 Possible Enhancements

The current STDL is a context-free grammar that expresses the syntax rules of the langu

course, as expressed in section 7.2.2, this is insufficient. We must define a set of seman

(static and dynamic) to complete the language. These rules combined with a set of co

mapping algorithms would formalize the language and the translation procedure.

STDL is a language that offers a lot of extension possibilities. We could extend it to in

grammar rules to describe timethread interactions in a map. This new Timethread Map

Description Language (or TMDL) would require constructors representing interactions, glo

hide operator for systems internal events, recursive groupings (needed for binary grou

static semantic rules indicating valid and invalid interactions, etc. We believe SDTL can be r

as is, to describe single timethreads.

We mentioned (§7.2.1) ways to extend the STDL grammar. New segments can be added

<Seg> rule, when a new timethread construct is created. <GenOptions>  allows the addition of

new global options to a single timethread. Finally, <WPOptions>  allows different options for a

waiting place. Of course, other grammar rules could be defined or modified to adapt new fe

or to suit a new target formal language. We could, for instance, add to junction points s

options similar to the ones defined in <WPOptions> .

To give a more precise idea of an extension of the <WPOptions>  rule, we defined two new types

of waiting place, called Signal and Memory, in the Telepresence system (§6.3.2 and 6.3.3). Thi

transformed STDL in the following way:

<WPOptions> = [<Delayed> | <Timed> | <Signal> | <Memory>]
<Signal> = Signal
<Memory> = Memory

We also gave, in those sections, the LOTOS interpretation of such waiting places. Althou

want to express causality paths instead of behaviour at the timethread abstraction level, 

that a few enhanced waiting places were very useful to play the design. This approach led 

much more realistic description of the Telepresence system and a better management of 

causality paths.
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By adding simple options corresponding to LOTOS internal waiting place machinery, we 

simulate many types of waiting places:

• Normal (multiway rendezvous we have by default)

• Delayed (defined in the grammar)

• Time (defined in the grammar)

• Signal (defined in the Telepresence system)

• Memory (defined in the Telepresence system)

• Bounded buffer (unordered)

• FIFO or LIFO queues

• Priority queues (we could create priority tags)

• One-to-many, many-to-one, and many-to-many interactions. These types cou

used, for instance, in the Traveler system where a cab could wait for 4 travele

(maximum) or a timeout before leaving. Then a plane could wait for 200 people b

leaving, etc. These waiting places could be very useful for a mapping onto Petr

which supports many-to-many interactions in an elegant way.

Most of these complex waiting places could be useful at late stages in the timethread devel

process, before the mapping to an architecture where buffers, mailboxes, queues, etc., are

needed for communication management.

Inventing a simple and clear notation to distinguish the above cases and possibly many other

is however not a trivial thing. We suggested the use of letters inside waiting places to show

and memory waiting places, but some people may find this solution too cumbersome. 

always is a trade-off between capturing every detail and making the big picture clear. Too

notation gets in the way of the latter, but again, a tool might hide such precise details at an a

level and show them at the user’s request.
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7.3 Validation

Perhaps one of the greatest strength resulting from the interpretation method concept is 

validation allows a designer to use many existing tools to simulate, test, and verify dif

criteria, requirements, situations, scenarios, etc, in a timethread design.

We know that validation is necessary, even with incomplete descriptions, through any 

process. A design should always be validated in some way (simulation, test cases...) 

previous designs, and ultimately against the requirements. Good validation tools are of 

needed at all stages. 

We have discussed validation issues all along the design of the Traveler system and the

Telepresence system. Although timethreads were not created to become a simulation mod

showed that timethread-based validation can help playing a design and point out di

categories of problems. An error model regroups these categories for a given notation.

Since we used LOTOS as the formal underlying model for timethread maps, our error 

helps designers to detect problems such as:

• Bad ordering of events,

• Unfeasible or unwanted synchronizations,

• Unfeasible or unwanted paths,

• Race conditions between tokens,

• Absence of path equivalence and/or conformance w.r.t. other specification

requirements,

• Incorrect communication between systems, etc...

As we saw from the many examples we gave in the thesis, LOTOS offers many facilitie

useful tools to detect these categories of problems. In fact, we can use all well-known L

validation techniques to simulate, test, and verify a timethread-oriented specification. The

difference with respect to traditional LOTOS validation is that we play with possible paths in

of possible behaviour. Thus, the techniques have to be slightly adapted to accommodate t

of thinking.
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Of course, the use of other formalisms (we already mentioned Petri nets, event structures,

target outputs of interpretation methods would allow other fault models. For inst

performance and time constraints can hardly be validated with LOTOS. A Petri net (with 

extension) specification of a timethread map might be a better choice for these catego

problems. In fact, we are not the only ones believing that using more than one form

representing a system under design offers some advantages. In [BoC 93], another multi-for

approach is discussed. The authors propose to build a meta-language for design, based o

notations, that would use the specification and validation strengths of different forma

Although they use different techniques and ideas, this interest in multi-formalism makes us

we might be going in a useful research direction.

7.4 Tool Support

Timethreads and interpretations methods are more useful if tools can support them. In this 

we speculate on what is required and expected from such tools.

7.4.1 Internal Representation of Timethreads

Formal, Visual, and Internal Representations

In this thesis, we defined part of the formal representation of timethreads. We explained in sectio

7.2 that STDL could be extended with grammar rules representing the LARG interactions,

forming TMDL. If we add semantic rules to check valid interactions, consistency, missin

invalid information, etc., we get a better formal representation of a timethread map.

Timethreads are a visual notation, thus graphical and spatial information have to be re

somewhere. Our formal representation, as it is now, does definitely not include such inform

An additional visual representation of timethread maps, internal to tools, is therefore need

Although this is outside of the scope of this thesis, we think it could be composed of some

grammar, suitable for 2-D graphs description, and a set of data specifying visual details.

A timethread tool would need a general description, called internal representation, including both

the formal representation and the visual representation. We show the structure of this i

representation in figure 91. 
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Figure 91: Internal representation of a timethread map

In order to maintain consistency between formal and visual representations, a tool might 

set of consistency rules as part of the internal representation. 

This internal representation of timethreads maps will be especially useful for interactive d

and for automated generation of formal methods specifications.

Construction and Recognition

We see two different ways of using the internal representation in a tool: a recognition approach

and a construction approach. 

In a recognition approach (fig. 92a), the designer works on the visual representation

Graphical User Interface (GUI) only. When the timethread map is satisfactory, the tool u

recognition method to generate the map formal description. This leads however to some m

difficulties:

• The visual representation has to be complete and rich enough to provide a

information needed to construct the formal description.

• We need a recognition method to compute or evaluate a formal representation 

visual one instead of simple consistency rules. We believe the former to be 

complex to define and implement than the latter.

• Since the recognition is done when the map is finished, the designer does not k

this map is valid or not since no semantic rules have been applied.

Internal Representation

TMDL

SDTL Interactions
Grammar

Semantic
Rules

Graph
Grammar?

Visual
Information

Visual RepresentationFormal Representation

Consistency
Rules
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With this approach, we lose in a sense the need for a separate formal representation. Ev

would have to be included in one model (the visual representation), and then the 

representation would only be a projection of this model.

Figure 92: Recognition and construction approaches

The construction (fig. 92b) is slightly different. In this approach, the designer still works o

visual representation via the tool GUI, but at the same time, the formal representation is bu

consistency is checked. The user applies construction commands and these are tra

internally into transformation rules. Since the latter are validated by the semantics o

language, the mutual consistency of these various representations is assured. The comple

thus created by construction, from a simple timethread to a complex map. In this way, th

constrains the construction commands allowed to the designer, and only valid timethread

can result.

Of course, we still are looking for better solutions, but this one seems promising and feasibl

is part of work to be done in other theses and projects.

Interpretation Methods and Internal Representation

The visual interpretation includes all the information that is not pertinent to interpret

methods. Therefore, formal specifications are generated from the formal description of time

maps only. The same formal description can be used as input to different interpretation me

Formal
Rep.

Visual Rep.

Recognition

Method

Formal
Rep.

Visual Rep.

Consistency

Rules

Formal
Rep.

Visual Rep.

Consistency

Rules
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7.4.2 Timethread Editor

The purpose of an editor is to provide a GUI allowing the designer to construct and tran

timethread maps. Using a construction approach, the GUI would mostly manage the 

representation while consistency rules would update the formal representation. We can imp

many different features in such a tool:

• The input could be a text file, a mouse-driven interface, or a pen-based interface.

• The GUI would allow commands for timethread construction and transformation.

commands and operations allowed would be based on CPTs, extension or equiv

criterion, and semantic rules. Such operations could look like:

- Add/remove a timethread, and action, an event,

- Connect timethreads (synchronously/asynchronously),

- Insert a loop, a choice, a stub...,

- Hide actions, events...,

- Parallelize actions,

- Split/merge/factor timethreads...,

- etc...

• Abstraction facilities (hiding, stubs, layering, magnifications...) could be implemen

• The tool could provide interactive management of tags and guards to elim

unfeasible paths.

• Options for timethreads and waiting places (as defined in STDL) could be used.

• Timethreads would have attributes such as different colors, patterns, shapes...

• Comments, annotations and pictures could be inserted.

• We could provide a library of stubs for reuse.

This list is not exhaustive. Many other features could be defined in an editor to help hi

express more intuitively and clearly causality paths in a system.
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7.4.3 Interpretation Tools

An interpretation tool maps the formal description of a timethread map onto a formal langua

using an interpretation method. We can program many such tools, which are generally com

but they all have the same input: a TMDL description.

We can also define different options for specific tools. For instance, a LOTOS interpretatio

could generate different levels of specifications. Each timethread in a TMDL description co

associated to a specific level (1, 2, or 3), with or without recursion.

Interpretation tools might have to do some internal processing of the TMDL description

instance, interactions in a plain TMDL description have to be binary grouped (using the L

method) before LOTOS code can be output.

7.4.4 Validation Tools

These tools already exist. This is one of the most important benefits of interpreting timeth

Different target formal languages naturally lead to different validation tools and technique

already saw many LOTOS-based techniques and tools for simulation, testing, and verifi

These types of tools exist for most formal languages, and they could all be used to v

particular aspects of timethread designs.

7.4.5 Other tools

Optimistically, we can foresee other tools especially useful at later stages of the design pro

• Going towards an architecture, we could add role architectures to timethread 

leading to more realistic architectural specifications.

• We could have “intelligent” tools suggesting candidate architectural solutions by u

different heuristics.

• We could design tools that, based on experience and specific architectural cri

would propose different skeletons of collaboration graphs that fit a role archite

and a timethread map. Control and data could be inserted at this point.
150 Formalization of Timethreads Using LOTOS 



Tool Support

 using

ering

signer

mated
• We could add animation to tools, in order to show problematic scenarios detected

validation tools. 

• Performance analysis might be useful to designers, especially when consid

different candidate architectures. A tool to analyze performance according to de

criterion would be very welcome.

• We could even think, for the last stages of the design process, about partially auto

code generation.

As one can see, there is still much room left for hard work and imagination.
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8.1 Conclusion

8.1.1 Objectives and Requirements Achieved

This thesis presented a LOTOS interpretation method for timethreads. We demonstrated t

possible to generate meaningful LOTOS specifications, from timethread maps (O1 in chapter 1),

that can be used to validate and play the design in the early stages of the life-cycle metho

(O2). We showed how tools can support this transformation (O3), and we discussed man

resulting issues and difficulties (O4).

We believe our four main objectives (O1 to O4 in chapter 1) were achieved. We also conside

the five requirements, also enumerated in chapter 1, in the following way:

R1) Timethreads are a description model suited for RTD systems. We assume de

do not really change their way of thinking and working by using them.

R2) Our method is based on a multi-formalism approach. Although we used LOTO

this thesis, other target formalisms can be considered. We had in mind

generality of STDL to satisfy this requirement.
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R3) If tools are supported, designers do not have to be LOTOS experts to us

method, although a minimal knowledge is always useful. They simply have to

already existing validation and verification tools that generally possess 

friendly interfaces.

R4) Major system functionalities and basic scenarios are captured via a visual no

(timethreads, in occurrence) easier to conceptualize than plain textual descrip

R5) Design tools are not yet available for our method, but major steps towards

creation have been taken. Validation and verification tools however already 

This reuse is an important advantage of our method.

8.1.2 Contributions

Four major contributions of this thesis were introduced in section 3.2:

LOTOS Interpretation Method for Timethreads

Based on the concept of formal interpretation method, our approach generates L

specifications from timethread maps (chapters 3 and 4). In this thesis, we completed the 

by providing the mapping sub-method for single timethreads. This method was succe

applied to two case studies.

Timethread Grammar

We defined a Single Timethread Description Language (STDL) to represent single timeth

(chapter 4). We used a context-free grammar to express construction rules. This gr

formalizes parts of the Timethread notation by itself, without any major reference to target f

languages. Transformation and mapping rules were enumerated for the generation of L

code from STDL descriptions. Static and dynamic semantic rules are still needed to compl

language.
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Techniques

Chapter 5 presented several techniques in the context of part of a timethread life

methodology. We applied the interpretation method (mapping techniques) to get a LO

specification from the Traveler system. Then, we introduced several LOTOS-bas

transformation techniques. We discussed notions of equivalence, extension, and conforma

timethread context. Validation techniques were also described. We largely discussed sim

testing, and verification techniques w.r.t existing LOTOS tools. These techniques help des

in their thinking and analysis process by providing different ways to play the design and the

to discover potential problems early in the design process.

Case Studies

We developed two case studies in the thesis. The Traveler system was a case study used 

illustrate the different steps of our approach. It provided a dynamic context easy to unde

The second case study, the Telepresence system (chapter 6), was a more complex real-life RT

system. The visual contact service was defined in terms of its functionalities and 

components. A first timethread map was constructed from basic use cases and mapp

STDL and LARG descriptions. We then manually generated its LOTOS specification usin

interpretation method, and then validated it against the requirements with simulation and t

Some test cases and simulation scenarios led to the discovery of several problems. We

transformation called factoring to get the second timethread map. We generated the corres

STDL, LARGs, and LOTOS specification. We validated the latter against the requirement

the previous specification to check conformance.

Other contributions have been identified along the thesis:

• Our LOTOS specifications use what we called a timethread-oriented style, different

from other traditional specification styles that usually describe a system’s com

behaviour. This new style leads to specific approaches for validation and conform

checking because one deals with causality paths instead of pure behaviour.

• We identified different complexity options, known as levels of specification, for the

generation of LOTOS specifications from timethread maps.

• We defined a tag mechanism very useful for path control in a timethread map.
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• The STDL grammar can be extended in many ways, thanks to some rules for optio

and segments definitions. We also identify possible enhanced waiting places. Two of

them (Memory and Signal ) were used in the Telepresence system.

• In chapter 7, we discussed ways of using our approach to get a first archite

consistent with its timethread map.

• Also in chapter 7, different ideas on a complete timethread-oriented design to

introduced. We discussed internal representations and tools for timethread 

edition, interpretation, and validation. 

8.2 Future Work

Objective O4 was to present problems with the approach and resulting research issues.

topics presented in this thesis require further attention. We can easily define short-term an

term research issues. We believe the most important ones are the following:

Short-Term Research Issues

• We use two different models to represent our timethread maps (LARGs and S

This causes non-homogeneity problems. STDL could be extended to in

timethread interactions, thus forming a more uniform Timethread Map Description

Language (TMDL in section 7.2.3).

• A grammar is not powerful enough to be a complete language by itself. Semantic rules

are also needed. Defining these rules for TMDL would improve this langua

usefulness.

• Tools are still missing. We believe a compiler that would generate LOTOS

specifications from TMDL descriptions is essential. Tag management and sem

rules also have to be considered.
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Long-Term Research Issues

• The definition of Timethread Correctness Preserving Transformations (TCPTs) based

on LOTOS CPTs would represent a major step towards a more complete method

• Interpretation methods for other target formal semantic model, e.g. Petri nets, 

take advantage of the multi-formalism validation allowed by our approach. 

• Since we mostly deal with real-time systems, introduction of data and time con

might be needed sooner or later. Extensions to the LOTOS language concerning

ADTs, modularity, and typed gates should be studied in the future.

• More complete definitions of path equivalence, conformance, and extension rela

between timethreads would be an asset for design validation purpose.

• How not to lose identity of previous timethreads in factored maps (§6.4.1) is a res

topic that deserves closer attention.

• The integration of architecture notations and timethread maps needs to be stud

our approach to be useful later in the life-cycle methodology.

• To automate our process, we need tools and GUIs that would generate T

descriptions.

• Other real-life case studies could be an excellent way to test and improve the m

defined in this thesis.
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Appendices
Appendix A. STDL Syntax Diagrams

Timethread Timethread TTId Is StubOrTT EndTT

StubOrTT

Stub

GenOptions
Internals

Trigger FirstPath

Stub Stub Trigger Result EndStub

GenOptions
Aborted Constrained

Aborted AbortedOn ( EventId )

Constrained Constrained

Internals Internal Identifier
, Identifier

Trigger Trigger WPOptions ( TriggerId
RecTagValues

)

FirstPath
Seg

Result

Result Result ( ResultId
SendTagValues

)
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WPOptions
Delayed

Timed

Delayed Delayed

Time Time

Seg

Abort

Action

AndFork

Async

Choice

Loop

Loss

OrFork

Par

SegStub

Sync

Tag

Waiting

Abort Abort ( EventId )

Action Action ( ActionId )

Async Async ( EventId
SendTagValues

)

Sync Sync ( EventId
RecTagValues

)

Choice Choice
Guard Seg

Or
Guard Seg

EndChoice
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OrFork OrFork
Guard

Continue Or
Guard

Path EndOrFork

Path Path
Seg

Result EndPath

Loop Loop LoopComp LoopOpt EndLoop

LoopComp CompSymb
Guard Seg

LoopOpt OptSymb
Guard Seg

CompSymb
Comp

Compulsory

OptSymb
Opt

Optional

Loss Loss (
Guard

LossId )

Par Par
Seg

And
Seg

EndPar

AndFork AndFork Path
And Path

EndAndFork

SegStub SegStub ( SegStubId )

Waiting Wait WPOptions ( EventId
RecTagValues

)

Tag Tag ( TagId = ValueId )

RecTagValues ? TagId
RecTagValues

SendTagValues ! TagId
SendTagValues
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Guard Guard ( GuardExpr )

GuardExpr

TagId EqOp ValueId

not ( GuardExpr )

( GuardExpr ) BoolOp ( GuardExpr )

EqOp
eq

ne

BoolOp

and

or

xor

implies

iff

ActionId Identifier

EventId Identifier

LossId Identifier

ResultId Identifier

SegStubId Identifier

TagId Identifier

TriggerId Identifier

TTId Identifier

ValueId Alphanum

Identifier Letter
Alphanum

Alphanum
Digit

Letter
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Appendix B. Specification Traveler_Level3

The following specification is the level 3 interpretation of the Traveler System. The modifications

done to the level 1 specification of chapter 5 to transform it to a level 3 specification are italicized.

The transformation of processes Traveler ans Plane are straightforward, but processes Dispatcher

and Cab need to have a more complex mechanism to manage constrained-start timethre

recursive environment.

1 (* Traveler_Level3; Daniel Amyot, March 29, 1994 *)
2 (* Level 3 specification of the Traveler system *)
3
4 specification  Traveler_Level3[Tnew  (* New traveler wants to travel *),
5                               Tdest (* Traveler arrives to destination *) ] : noexit
6
7 behaviour  (* Structure obtained from the LARG *)
8
9 hide   (* hidden interactions *)
10     TphoneD,        (* Traveler phones Dispatcher for a cab *)
11     TgetinC,        (* Traveler gets in the cab *)
12     TCride,         (* Traveler and cab ride *)
13     TgetoutC,       (* Traveler gets out the cab *)
14     TgetonP,        (* Traveler gets on the plane *)
15     TPflight,       (* Traveler and plane flight *)
16     TgetoffP,       (* Traveler gets off the plane *)
17     Din,            (* Dispatcher is in the office *)
18     DaskC,          (* Dispatcher asks for a cab *)
19     Dout,           (* Dispatcher is not in the office *)
20     Cin,            (* Taxi driver in the cab *)
21     Cout,           (* Taxi driver not in the cab *)
22     Pready,         (* Plane is ready *)
23     Phangar         (* Plane goes to the hangar *)
24
25 in
26
27     Traveler[Tnew, TphoneD, TgetinC, TCride, TgetoutC, TgetonP, TPflight, TgetoffP, Tdest]
28     |[TphoneD, TgetinC, TCride, TgetoutC, TgetonP, TPflight, TgetoffP]|
29     (
30         Plane[Pready, TgetonP, TPflight, TgetoffP, Phangar]
31         |||
32         (
33             Dispatcher[Din, TphoneD, DaskC, Dout]
34             |[DaskC]|
35             Cab[Cin, DaskC, TgetinC, TCride, TgetoutC, Cout]
36         )
37     )
38
39 where
40
41 (*  Local hidden actions:                      *)
42 (*  --------------------                       *)
43 (*  Traveler: Tairport                         *)
44 (*  Plane:                                     *)
45 (*  Dispatcher: DlookforC, Dfillstats, Dready  *)
46 (*  Cab: CgoD, Cgarage                         *)
47
48
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49 (* Timethread Traveler *)
50     process  Traveler[Tnew, TphoneD, TgetinC, TCride, TgetoutC, TgetonP, TPflight, TgetoffP
51                      Tdest] : noexit  :=
52         hide  Tairport in   (* hidden action *)
53         Tnew;
54         (
55             TphoneD; stop   (* in-passing interaction *)
56             |||
57             (
58                 TgetinC;   (* rest of the path *)
59                 TCride;
60                 TgetoutC;
61                 Tairport;
62                 TgetonP;
63                 TPflight;
64                 TgetoffP;
65                 Tdest; stop
66             )
67             |||
68             (* recursion for level 3 *)
69             Traveler[Tnew, TphoneD, TgetinC, TCride, TgetoutC, TgetonP, TPflight, TgetoffP,
70                     Tdest]
71         )
72     endproc  (* Traveler *)
73
74 (*-------------------------------------------------------*)
75
76 (* Timethread Dispatcher *)
77     process  Dispatcher[Din, TphoneD, DaskC, Dout] : noexit  :=
78         (* hidden actions *)
79         hide
80             DlookforC,   (* Dispatcher looks for a cab *)
81             Dfillstats,  (* Dispatcher fills statistics *)
82             Dready,      (* Dispatcher is ready for next traveler *)
83             SyncCS       (* Internal synchronization for level 3 constrained start *)
84         in
85         DispatcherWP_CS[Din, SyncCS]
86         |[SyncCS]|
87         DispatcherSub[SyncCS, TphoneD, DlookforC, DaskC, Dfillstats, Dready, Dout]
88         where
89
90         (* Waiting Place Machinery *)
91         process  DispatcherWP_CS[Din, SyncCS] : noexit  :=
92             Din;
93             (
94                 SyncCS; stop   (* Allows one token to go *)
95                 |||
96                 DispatcherWP_CS[Din, SyncCS]  (* Accumulation of Din *)
97             )
98         endproc  (* DispatcherWP_CS *)
99
100         (* Rest of the timethread *)
101         process  DispatcherSub[SyncCS, TphoneD, DlookforC, DaskC, Dfillstats, Dready, Dout]
102                 : noexit  :=
103             SyncCS; DispatcherLoop[SyncCS, TphoneD, DlookforC, DaskC,Dfillstats,Dready,Dout]
104             where
105
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106             process  DispatcherLoop[ SyncCS, TphoneD, DlookforC, DaskC,Dfillstats,Dready,Dout]
107                     : noexit  :=
108                 (* Compulsory segment *)
109                 TphoneD;
110                 DlookforC;
111                 (
112                     DaskC; stop   (* in-passing interaction *)
113                     |||
114                     Dfillstats;
115                     (
116                         (* Optional segment *)
117                         Dready;
118                         DispatcherLoop[ SyncCS,TphoneD,DlookforC,DaskC,Dfillstats,Dready,Dout]
119                         []
120                         (* Exit Loop *)
121                         Dout;
122                         DispatcherSub[SyncCS,TphoneD,DlookforC,DaskC,Dfillstats,Dready,Dout]
123                     )
124                 )
125             endproc  (* DispatcherLoop *)
126         endproc  (* DispatcherSub *)
127     endproc  (* Dispatcher *)
128
129 (*-------------------------------------------------------*)
130
131 (* Timethread Cab *)
132     process  Cab[Cin, DaskC, TgetinC, TCride, TgetoutC, Cout] : noexit  :=
133         (* hidden actions *)
134         hide
135             CgoD,    (* Cab goes to wait the dispatcher *)
136             Cgarage, (* Cab goes to the garage *)
137             SyncCS   (* Internal synchronization for level 3 constrained start *)
138         in
139         CabWP_CS[Cin, SyncCS]
140         |[SyncCS]|
141         Cabsub[SyncCS, DaskC, TgetinC, TCride, TgetoutC, CgoD, Cgarage, Cout]
142         where
143
144         (* Waiting Place Machinery *)
145         process  CabWP_CS[Cin, SyncCS] : noexit  :=
146             Cin;
147             (
148                 SyncCS; stop   (* Allows one token to go *)
149                 |||
150                 CabWP_CS[Cin, SyncCS]  (* Accumulation of Cin *)
151             )
152         endproc  (* DispatcherWP_CS *)
153
154         (* Rest of the timethread *)
155         process  Cabsub[SyncCS, DaskC, TgetinC, TCride, TgetoutC, CgoD, Cgarage, Cout]
156                 :  noexit  :=
157             SyncCS; CabLoop[SyncCS, DaskC, TgetinC, TCride, TgetoutC, CgoD, Cgarage, Cout]
158             where
159
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160             process  CabLoop[ SyncCS, DaskC, TgetinC, TCride, TgetoutC, CgoD, Cgarage, Cout]
161                     : noexit  :=
162                 (* Compulsory segment *)
163                 DaskC;
164                 TgetinC;
165                 TCride;
166                 TgetoutC;
167                 (
168                     (* Optional segment *)
169                     CgoD; CabLoop[ SyncCS, DaskC, TgetinC, TCride, TgetoutC,CgoD,Cgarage,Cout]
170                     []
171                     (* Exit Loop *)
172                     Cgarage;
173                     Cout; Cabsub[SyncCS, DaskC, TgetinC, TCride,TgetoutC,CgoD, Cgarage, Cout]
174                 )
175             endproc  (* CabLoop *)
176         endproc  (* Cabsub *)
177     endproc  (* Cab *)
178
179 (*-------------------------------------------------------*)
180
181 (* Timethread_Plane *)
182     process  Plane[Pready, TgetonP, TPflight, TgetoffP, Phangar] : noexit  :=
183         (* no hidden action in the timethread *)
184         Pready;
185         (
186             TgetonP;
187             TPflight;
188             TgetoffP;
189             Phangar; stop
190             |||
191             (* recursion for level 3 *)
192             Plane[Pready, TgetonP, TPflight, TgetoffP, Phangar]
193         )
194     endproc  (* Plane *)
195 endspec  (* Specification Traveler_Level3 *)

Specification 11: Traveler System, Level 3
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Appendix C. Specification Telepresence

This specification is the level 1 interpretation (without recursion) of the Telepresence System

(chapter 6). 

1 (* Specification Telepresence, 14 April 1994 *)
2 (* Level 1 specification, without recursion *)
3
4 specification  Telepresence[ Contact,  (* Initiator want to contact responder *)
5                             Report,   (* Result of a contact *)
6                             Close,    (* Close user's door *)
7                             Open,     (* Open user's door *)
8                             Terminate,(* Initiator terminates a connection *)
9                             Next      (* Get ready for next connection *) ] : noexit
10
11 library
12    Boolean, NaturalNumber
13 endlib
14
15 (* Tag ADT definition. All possible tags are enumerated here. *)
16 type Tag is  Boolean, NaturalNumber
17 sorts  Tag
18 opns  No, Yes,                    (* Tags *)
19      Success, Denied, TimeOut,
20      Open, Close,
21      Access,
22      OK, TOut      : -> Tag
23      N         : Tag -> Nat      (* Tag-to-Nat function *)
24      _eq_,
25      _ne_ : Tag, Tag -> Bool     (* Tag equivalence *)
26 eqns  forall  x, y: Tag
27     ofsort  Nat
28     N(No)      = 0;
29     N(Yes)     = Succ(N(No));
30     N(Success) = Succ(N(Yes));
31     N(Denied)  = Succ(N(Success));
32     N(TimeOut) = Succ(N(Denied));
33     N(Open)    = Succ(N(TimeOut));
34     N(Close)   = Succ(N(Open));
35     N(Access)  = Succ(N(Close));
36     N(OK)      = Succ(N(Access));
37     N(TOut)    = Succ(N(OK));
38     ofsort  Bool
39     x eq y     = N(x) eq N(y);
40     x ne y     = not(x eq y);
41 endtype
42
43 behaviour  (* Architecture obtained from the LARG *)
44
45 hide   (* hidden interactions *)
46    Knock,        (* Send a checkdoor request *)
47    DoorState,    (* Check the responder's door state *)
48    DoorChecked,  (* The responder's door has been checked *)
49    Transmit,     (* Begin transmission of voice and images *)
50    Receive,      (* Start the reception *)
51    SendState,    (* Indicate to the responder wether the initiator disconnects *)
52    EndSend,      (* The transmission is ended *)
53    RecState,     (* Indicate wether the initiator asked to terminate *)
54    Played,       (* Voice and image messages were played *)
55    EndRec        (* The connection has terminated *)
56
Formalization of Timethreads Using LOTOS 171 



Specification Telepresence
57 in
58
59    (
60       (
61          Connection[Contact, Knock, DoorChecked, EndRec, Report, Next]
62          |||
63          Transmission[Transmit, Receive, SendState, EndSend]
64       )
65       |[Receive, SendState, EndRec]|
66       (
67          Disconnection[Terminate, RecState]
68          |[RecState]|
69          Reception[Receive, RecState, Played, SendState, EndRec]
70       )
71    )
72    |[Knock, DoorChecked, Transmit]|
73    (
74       Knocking[Knock, DoorState, Transmit, DoorChecked]
75       |[DoorState]|
76       (
77          Opening[Open, DoorState]
78          |||
79          Closing[Close, DoorState]      
80       )
81    )
82
83 where
84
85 (*-------------------------------------------------------*)
86
87 (* Timethread Connection *)
88    process  Connection[Contact, Knock, DoorChecked, EndRec, Report, Next] : noexit  :=
89       (* hidden gates for time WP and choice *)
90       hide
91          TimeOutCon,
92          SyncTOCon,
93          SyncOrCon
94       in
95       Contact;
96       (
97          Knock; stop
98          |||
99          (* Wait Time Mechanism *)
100          (
101             TimeOutCon;
102             SyncTOCon ! TOut ! TOut; (* The 2nd tag is a dummy used for synchro only *)
103             stop
104             []
105             DoorChecked ? Resp: Tag;
106             SyncTOCon ! OK ! Resp;
107             stop
108          )
109          |[SyncTOCon]|
110          SyncTOCon ? ResultTO: Tag ? Resp: Tag; (* Tags have to follow *)
111          (* Choice Mechanism *)
112          (
113             [ResultTO eq TOut] (* [G1] *) ->
114                ( let  Rpt: Tag = TimeOut in  SyncOrCon ! ResultTO ! Resp ! Rpt; stop )
115             []
116             [(ResultTO eq OK) and (Resp eq Denied)] (* [G2] *) ->
117                ( let  Rpt: Tag = Denied in  SyncOrCon ! ResultTO ! Resp ! Rpt; stop )
118             []
119             [(ResultTO eq OK) and (Resp eq Access)] (* [G3] *) ->
120                ( let  Rpt: Tag = Success in
121                   EndRec;
172 Formalization of Timethreads Using LOTOS 



Specification Telepresence
122                   SyncOrCon ! ResultTO ! Resp ! Rpt; stop
123                )
124          )
125          |[SyncOrCon]|
126          SyncOrCon ? ResultTO: Tag ? Resp: Tag ? Rpt: Tag;
127          (
128             Report ! Rpt; stop
129             |||
130             Next; stop
131          )
132       )
133    endproc  (* Connection *)
134
135 (*-------------------------------------------------------*)
136
137 (* Timethread Transmission *)
138    process  Transmission[Transmit, Receive, SendState, EndSend] : noexit  :=
139       hide
140       (* hidden actions *)
141          Signal,    (* Someone is observing *)
142          RecVoice,  (* The micro records the voice *)
143          RecImage   (* The camera records the image *)
144       in
145       Transmit; TLoop [Receive, SendState, EndSend, Signal, RecVoice, RecImage]
146
147    where
148       process  TLoop [Receive, SendState, EndSend, Signal, RecVoice, RecImage] : noexit  :=
149          (* hidden gate for Par and Signal WP *)
150          hide
151             SyncAndTra,
152             SyncSigTra
153          in   
154          Signal;
155          (
156             RecImage; SyncAndTra; stop
157             |[SyncAndTra]|
158             RecVoice; SyncAndTra; stop
159          )
160          |[SyncAndTra]|
161          SyncAndTra;
162          (
163             Receive; stop
164             |||
165             (* Waiting place signal management *)
166             (
167                SendState; SyncSigTra ! Yes; stop
168                []
169                SyncSigTra ! No; stop
170             )
171             |[SyncSigTra]|
172             SyncSigTra ? Sig: Tag;
173             (
174                [Sig eq No] (* [G6] *) ->
175                   (TLoop [Receive, SendState, EndSend, Signal, RecVoice, RecImage])
176                []
177                [Sig eq Yes] (* [G7] *) -> (EndSend; stop )
178             )
179          )
180       endproc  (* TLoop *)
181    endproc  (* Transmission *)
182
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183 (*-------------------------------------------------------*)
184
185 (* Timethread Disconnection *)
186    process  Disconnection[Terminate, RecState] : noexit  :=
187       Terminate;
188       (
189          RecState; stop
190       )
191    endproc  (* Disconnection *)
192          
193 (*-------------------------------------------------------*)
194
195 (* Timethread Reception *)
196    process  Reception[Receive, RecState, Played, SendState, EndRec] : noexit  :=
197       hide
198       (* hidden actions *)
199          PlayImage,    (* The monitor shows the image *)
200          PlayVoice,    (* The speaker plays the voice *)
201          Disconnect,   (* Update disconnection status *)
202       (* hidden gates for Par and Signal WP *)
203          SyncAndRec,
204          SyncSigRec
205       in
206       Receive;
207       (
208          (
209             PlayImage; SyncAndRec; stop
210             |[SyncAndRec]|
211             PlayVoice; SyncAndRec; stop
212          )
213          |[SyncAndRec]|
214          SyncAndRec;
215          (* Waiting place signal management *)
216          (
217             RecState; SyncSigRec ! Yes; stop
218             []
219             SyncSigRec ! No; stop
220          )
221          |[SyncSigRec]|
222          SyncSigRec ? Sig: Tag;
223          (
224             [Sig eq Yes] (* [G9] *) -> 
225                (SendState; stop
226                |||
227                Disconnect;
228                EndRec; stop
229                )
230             []
231             [Sig eq No] (* [G8] *) -> (Played; stop )
232          )
233       )
234    endproc  (* Reception *)
235
236 (*-------------------------------------------------------*)
237
238 (* Timethread Knocking *)
239    process  Knocking[Knock, DoorState, Transmit, DoorChecked] : noexit  :=
240       (* hidden gates for signal WP *)
241       hide
242          DoorStateMem  (* Memory cell for internal use *)
243       in
244       (* Waiting place with memory management *)
245       DoorStateMemory [DoorState, DoorStateMem] (Close)
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246       |[DoorStateMem]|
247       Knocking2[Knock, DoorStateMem, Transmit, DoorChecked]
248       where
249
250       process  Knocking2[Knock, DoorStateMem, Transmit, DoorChecked] : noexit  :=
251          (* hidden gates for lost and choice *)
252          hide
253             KnockLost,    (* The knock request is lost *)
254             SyncOrKno     (* Internal synchro. for the OR fork *)
255          in
256          Knock;
257          (
258             KnockLost; stop
259             []
260             DoorStateMem ? DS: Tag;
261             (
262                [DS eq Close] (* [G4] *) ->( let  Rep: Tag = Denied in  SyncOrKno ! DS ! Rep; stop )
263                []
264                [DS eq Open] (* [G5] *) ->
265                   ( let  Rep: Tag = Access in
266                      Transmit; stop
267                      |||
268                      SyncOrKno ! DS ! Rep; stop
269                   )
270             )
271             |[SyncOrKno]|
272             SyncOrKno ? DS: Tag ? Rep : Tag;
273             DoorChecked ! Rep;
274             stop
275          )
276       endproc  (* Knocking2 *)
277    
278       process  DoorStateMemory [DoorState, DoorStateMem] (Mem: Tag): noexit  :=
279          DoorState ? NewMem: Tag; DoorStateMemory [DoorState, DoorStateMem] (NewMem)
280          []
281          DoorStateMem ! Mem; DoorStateMemory [DoorState, DoorStateMem] (Mem)
282       endproc  (* DoorStateMemory *)
283
284    endproc  (* Knocking *)
285
286 (*-------------------------------------------------------*)
287
288 (* Timethread Opening *)
289    process  Opening[Open, DoorState] : noexit  :=
290       Open;
291       (
292          let  D: Tag = Open in
293          DoorState ! D; stop
294       )
295    endproc  (* Opening *)
296
297 (*-------------------------------------------------------*)
298
299 (* Timethread Closing *)
300    process  Closing[Close, DoorState] : noexit  :=
301       Close;
302       (
303          let  D: Tag = Close in
304          DoorState ! D; stop
305       )
306    endproc  (* Closing *)
307
308 endspec  (* Telepresence *)

Specification 12: Telepresence System, Level 1 Without Recursion
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Appendix D. Validation of Telepresence, Level 1 with Recursion

We present here the validation of the level 1 specification Telepresence (with recursion) a

different scenarios. We use the simulation and testing techniques presented in section 5.4.

D.I Simulation

The following sequence of activities is a complex scenario (connection-transmission-conne

obtained with the help of ELUDO, that reveals a few problems associated to the current de

(* Tree generated by Isla *)
Telepresence[Contact, Report, Close, Open, Terminate, Next]()
Terminate ;
Contact;
Open;
hidden DoorState !Open:Tag;
hidden Knock;
hidden DoorStateMem !Open:Tag;
hidden SyncOrKno !Open:Tag !Access:Tag;
hidden DoorChecked !Access:Tag;
hidden SyncTOCon !OK:Tag !Access:Tag;
hidden Transmit;
hidden Signal;
hidden RecImage;
hidden RecVoice;
hidden SyncAndTra;
hidden SyncSigTra !No:Tag;
hidden Signal;
hidden RecImage;
hidden RecVoice;
hidden SyncAndTra;
hidden Receive ;
hidden PlayImage;
hidden PlayVoice;
hidden SyncAndRec;
Terminate ;
hidden RecState;
hidden SyncSigRec !Yes:Tag;
hidden SendState;
hidden SyncSigTra !Yes:Tag;
hidden EndSend;
hidden Disconnect;
hidden EndRec;
hidden SyncOrCon !OK:Tag !Access:Tag !Success:T ...;
Report !Success:Tag;
Next;
Contact ;
hidden Receive ;
hidden PlayImage ;
hidden PlayVoice ;
hidden SyncAndRec;
hidden RecState ;
hidden SyncSigRec !Yes:Tag ;

1) Terminate accepted before 

transmission starts.

2) Receiving in right order?

5) Information playing after 

Disconnect and EndRec.

4) Previous reception 

continues after Contact.

3) Same transmission 

terminated twice. Will affect a 

second transmision.

6) Second transmission 

terminated while the first one 

was aimed.
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D.II Testing

Two acceptance and one rejection test cases, inspired from the Connection use case, are applied t

the Telepresence specification. We use the testing facilities of LOLA to get meaningful results

First Acceptance Test Case
This process tests whether the possible Reports are Denied or TimeOut when the responder’s doo

is closed (by default in the specification).

Specification 13: Acceptance test case 1 for level 1 Telepresence System

We use LOLA’s command TestExpand to test all possible scenarios. The result, expressed be

shows our test case to be a must pass test. This indicates a valid behaviour from our specificati

lola> TestExpand -1 Success AcceptTest1 -i

 Composing behaviour and test :

    Analysed states       = 139
    Generated transitions = 184
    Duplicated states     = 0
    Deadlocks             = 0

    Process Test = accepttest1
    Test result  = MUST PASS.

                   successes = 46
                       stops = 0
                       exits = 0
               cuts by depth = 0

First Rejection Test Case
This second process tests that Report cannot output Success when the responder’s door is close

(it is initially closed in the specification).

process  AcceptTest1[Contact, Report, Success]: noexit  :=
(* Test for denied or timeout report when the door is closed (default) *)
   Contact;
   (
      Report ! Denied; Success; stop
   []
      Report ! TimeOut; Success; stop
   )
endproc  (* AcceptTest1 *)
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Specification 14: Rejection test case 1 for level 1 Telepresence System

The TestExpand procedure returns reject, meaning that our specification behaves properly.

lola> TestExpand -1 Fail RejectTest1 -i

 Composing behaviour and test :

    Analysed states       = 93
    Generated transitions = 92
    Duplicated states     = 0
    Deadlocks             = 31

    Process Test = rejecttest1
    Test result  = REJECT.

                   successes = 0
                       stops = 31
                       exits = 0
               cuts by depth = 0

Second Acceptance Test Case
This more complex process tests that, when the responder Opens his/her door and the initiato

Contacts the responder, the Report should output a Success or possibly a TimeOut when the

initiator Terminates the connection.

Specification 15: Acceptance test case 2 for level 1 Telepresence System

process  RejectTest1[Contact, Report, Fail]: noexit  :=
(* Test for denied or timeout report when the door is closed (default) *)
   Contact;
   Report ! Success; Fail; stop
endproc  (* RejectTest1 *)

process  AcceptTest2[Contact, Open, Terminate, Report, Success]: noexit  :=
(* Test for success (or timeout) report when the responder opens the door *)
   Open;
   Contact;
   (
      Terminate;
      (
         Report ! Success; Success; stop
         []
         Report ! TimeOut; Success; stop
      )
   []
      Report ! TimeOut; Success; stop
   )
endproc  (* AcceptTest2 *)
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Since the transition system generated from the Telepresence specification is infinite when there is

a transmission, we must limit the depth of the search (here to 15 events) of the TestExpand

procedure. This generates a huge number of executions (509507) that should give us con

in the result.

lola> TestExpand 15 Success AcceptTest2 -i -y

 Composing behaviour and test :

    Analysed states       = 331916
    Generated transitions = 841382
    Duplicated states     = 0
    Deadlocks             = 40

    Process Test = accepttest2
    Test result  = MAY PASS.

    509507  executions analysed:

                   successes = 63617
                       stops = 40
                       exits = 0
               cuts by depth = 445850

LOLA outputs may pass as a result. On 509507 executions, 63617 were successful, 40 

unsuccessful, and the remaining 445850 were unfinished (they were probably still i

transmission loop).

We can look for specific instances of successful and unsuccessful executions with the OneExpand

command of LOLA. By using different seeds, we were able to find an instance of a Success report

and one of a TimeOut report (fig. 93). We also found one unsuccessful execution where

deadlock was caused by a closed door. Although the responder Opened the door before the

Contact of the initiator, the door did not change its internal state before it was checked b

knocking request. This race condition is therefore due to time lapsed between Open and

DoorState.

LOLA also allows users to take a closer look to its diagnostics. The option -s  of TestExpand

output all traces leading to a deadlock, in the form of a monolithic LOTOS tree with choice

action prefixes only. Other options output the other types of traces:

• -d : traces cut by depth search.

• -a : traces leading to the success event.

• -e : traces leading to exit.
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Figure 93: Scenarios generated with OneExpand for the Telepresence specification

(* Reached a Success  report *)
OneExpand -1 Success AcceptTest2 182 -v -i

 Composing behaviour and test : 

    1  open;
    2  contact;
    3  i; (* doorstate ! open *)
    4  i; (* knock *)
    5  i; (* doorstatemem ! open *)
    6  i; (* syncorkno ! open ! access *)
    7  i; (* transmit *)
    8  i; (* doorchecked ! access *)
    9  i; (* synctocon ! ok ! access *)
   10  terminate;
   11  i; (* signal *)
   12  i; (* recvoice *)
   13  i; (* recimage *)
   14  i; (* syncandtra *)
   15  i; (* syncsigtra ! no *)
   16  i; (* signal *)
   17  i; (* recvoice *)
   18  i; (* receive *)
   19  i; (* playimage *)
   20  i; (* playvoice *)
   21  i; (* syncandrec *)
   22  i; (* recimage *)
   23  i; (* recstate *)
   24  i; (* syncandtra *)
   25  i; (* syncsigrec ! yes *)
   26  i; (* syncsigtra ! no *)
   27  i; (* signal *)
   28  i; (* disconnect *)
   29  i; (* recvoice *)
   30  i; (* recimage *)
   31  i; (* endrec *)
   32  i; (* syncorcon! ok !access !success *)
   33  i; (* receive *)
   34  report  ! success ;
   35  i; (* syncandtra *)
   36  i; (* syncsigtra ! no *)
   37  success;

    Process Test = accepttest2
    Test result  = SUCCESSFUL EXECUTION.

       Transitions generated = 37

(* Reached a TimeOut  report *)
OneExpand -1 Success AcceptTest2 144 -v -i

 Composing behaviour and test : 

    1  open;
    2  contact;
    3  terminate;
    4  i; (* knock *)
    5  i; (* doorstate ! open *)
    6  i; (* knocklost *)
    7  i; (* timeoutcon *)
    8  i; (* synctocon ! tout ! tout *)
    9  i; (* syncorcon !tout !tout !timeout *)
   10  report  ! timeout ;
   11  success;

    Process Test = accepttest2
    Test result  = SUCCESSFUL EXECUTION.

       Transitions generated = 11

(* Deadlock caused by a closed door *)
OneExpand -1 Success AcceptTest2 16 -v -i

 Composing behaviour and test : 

    1  open;
    2  contact;
    3  terminate;
    4  i; (* knock *)
    5  i; (* doorstatemem ! close  *)
    6  i; (* syncorkno ! close ! denied *)
    7  i; (* doorchecked ! denied *)
    8  i; (* doorstate ! open *)
    9  i; (* synctocon ! ok ! denied *)
   10  i; (* syncorcon ! ok !denied !denied *)
   11  stop  

    Process Test = accepttest2
    Test result  = REJECTED EXECUTION.

       Transitions generated = 11
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Appendix E. Specification Telepresence_1SUD

This specification is the level 1 interpretation (with recursion) of the Telepresence System where

functionalities of both roles (Initiator/Responder) are within one SUD (chapter 6).

1 (* Specification Telepresence_1SUD, 28 May 1994 *)
2 (* Level 1 specification, with recursion *)
3
4 specification  Telepresence_1SUD [ Contact,  (* Initiator want to contact responder *)
5                                   Report,   (* Result of a contact *)
6                                   Close,    (* Close user's door *)
7                                   Open,     (* Open user's door *)
8                                   Terminate,(* Initiator terminates a connection *)
9                                   Next,     (* Get ready for next connection *)
10                                   DIn, DOut (* Incoming/Outgoing data*) ] : noexit
11
12 library
13    Boolean, NaturalNumber
14 endlib
15
16 (* Tag ADT definition. All possible tags are enumerated here. *)
17 type Tag is  Boolean, NaturalNumber
18 sorts  Tag
19 opns  No, Yes,                    (* Tags *)
20      Success, Denied, TimeOut,
21      Open, Close,
22      Access,
23      OK, TOut,
24      RDataIn, RDataOut,
25      KDataIn, KDataOut,
26      dummy   : -> Tag
27      N         : Tag -> Nat      (* Tag-to-Nat function *)
28      _eq_,
29      _ne_ : Tag, Tag -> Bool     (* Tag equivalence *)
30 eqns  forall  x, y: Tag
31     ofsort  Nat
32     N(No)       = 0;             (* Tag-to-Natural Mapping *)
33     N(Yes)      = Succ(N(No));
34     N(Success)  = Succ(N(Yes));
35     N(Denied)   = Succ(N(Success));
36     N(TimeOut)  = Succ(N(Denied));
37     N(Open)     = Succ(N(TimeOut));
38     N(Close)    = Succ(N(Open));
39     N(Access)   = Succ(N(Close));
40     N(OK)       = Succ(N(Access));
41     N(TOut)     = Succ(N(OK));
42     N(RDataIn)  = Succ(N(TOut));
43     N(RDataOut) = Succ(N(RDataIn));
44     N(KDataIn)  = Succ(N(RDataOut));
45     N(KDataOut) = Succ(N(KDataIn));
46     N(dummy)    = Succ(N(KDataOut));
47     ofsort  Bool
48     x eq y     = N(x) eq N(y);
49     x ne y     = not(x eq y);
50 endtype
51
52 behaviour  (* Architecture obtained from the LARG *)
53
54 hide   (* hidden interactions *)
55    Knock,        (* Send a checkdoor request *)
56    DoorState,    (* Check the responder's door state *)
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57    DoorChecked,  (* The responder's door has been checked *)
58    Transmit,     (* Begin transmission of voice and images *)
59    Receive,      (* Start the reception *)
60    SendState,    (* Indicate to the responder wether the initiator disconnects *)
61    EndSend,      (* The transmission is ended *)
62    RecState,     (* Indicate wether the initiator asked to terminate *)
63    Played,       (* Voice and image messages were played *)
64    EndRec        (* The connection has terminated *)
65
66 in
67
68    (
69       (
70          Connection[Contact, Knock, DoorChecked, EndRec, Report, Next]
71          |[Knock]|
72          Knocking[Knock, DOut]
73       )
74       |[EndRec]|
75       (
76          Transmission[Transmit, Receive, SendState, EndSend]
77          |[Receive]|
78          Reception[Receive, DOut]
79       )
80    )
81    |[Transmit, DoorChecked, SendState]|
82    (
83       (
84          Data[DIn, DOut, SendState, DoorChecked, DoorState,Transmit, RecState,Played, EndRec]
85          |[RecState]|
86          Disconnection[Terminate, RecState]
87       )
88       |[DoorState]|
89       (
90          Opening[Open, DoorState]
91          |||
92          Closing[Close, DoorState]      
93       )
94    )
95
96 where
97
98 (*-------------------------------------------------------*)
99
100 (* Timethread Connection *)
101    process  Connection[Contact, Knock, DoorChecked, EndRec, Report, Next] : noexit  :=
102       (* hidden gates for time WP and choice *)
103       hide
104          TimeOutCon,
105          SyncTOCon,
106          SyncOrCon
107       in
108       Contact;
109       (
110          Knock; stop
111          |||
112          (* Wait Time Mechanism *)
113          (
114             TimeOutCon;
115             SyncTOCon ! TOut ! dummy; (* The 2nd tag is a dummy used for synchro only *)
116             stop
117             []
118             DoorChecked ? Resp: Tag;
119             SyncTOCon ! OK ! Resp;
120             stop
121          )
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122          |[SyncTOCon]|
123          SyncTOCon ? ResultTO: Tag ? Resp: Tag; (* Tags have to follow *)
124          (* Choice Mechanism *)
125          (
126             [ResultTO eq TOut] ->  (* [G1] *)
127                ( let  Rpt: Tag = TimeOut in  SyncOrCon ! ResultTO ! Resp ! Rpt; stop )
128             []
129             [(ResultTO eq OK) and (Resp eq Denied)] ->  (* [G2] *)
130                ( let  Rpt: Tag = Denied in  SyncOrCon ! ResultTO ! Resp ! Rpt; stop )
131             []
132             [(ResultTO eq OK) and (Resp eq Access)] ->  (* [G3] *)
133                ( let  Rpt: Tag = Success in
134                   EndRec;
135                   SyncOrCon ! ResultTO ! Resp ! Rpt; stop
136                )
137          )
138          |[SyncOrCon]|
139          SyncOrCon ? ResultTO: Tag ? Resp: Tag ? Rpt: Tag;
140          (
141             Report ! Rpt; stop
142             |||
143             Next; Connection[Contact, Knock, DoorChecked, EndRec, Report, Next]
144          )
145       )
146    endproc  (* Connection *)
147
148 (*-------------------------------------------------------*)
149
150 (* Timethread Transmission *)
151    process  Transmission[Transmit, Receive, SendState, EndSend] : noexit  :=
152       hide
153       (* hidden actions *)
154          Signal,    (* Someone is observing *)
155          RecVoice,  (* The micro records the voice *)
156          RecImage   (* The camera records the image *)
157       in
158       Transmit; TLoop [Transmit, Receive, SendState, EndSend, Signal, RecVoice, RecImage]
159
160    where
161       process  TLoop [Transmit, Receive,SendState,EndSend, Signal,RecVoice,RecImage]: noexit :=
162          (* hidden gate for Par and Signal WP *)
163          hide
164             SyncAndTra,
165             SyncSigTra
166          in   
167          Signal;
168          (
169             RecImage; SyncAndTra; stop
170             |[SyncAndTra]|
171             RecVoice; SyncAndTra; stop
172          )
173          |[SyncAndTra]|
174          SyncAndTra;
175          (
176             Receive; stop
177             |||
178             (* Waiting place signal management *)
179             (
180                SendState; SyncSigTra ! Yes; stop
181                []
182                SyncSigTra ! No; stop
183             )
184             |[SyncSigTra]|
185             SyncSigTra ? Sig: Tag;
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186             (
187                [Sig eq No] ->  (* [G6] *)
188                   (TLoop [Transmit, Receive, SendState, EndSend, Signal, RecVoice, RecImage])
189                []    (* Next guard is [G7] *)
190                [Sig eq Yes] -> (EndSend; Transmission[Transmit, Receive, SendState, EndSend])
191             )
192          )
193       endproc  (* TLoop *)
194    endproc  (* Transmission *)
195
196 (*-------------------------------------------------------*)
197
198 (* Timethread Disconnection *)
199    process  Disconnection[Terminate, RecState] : noexit  :=
200       Terminate;
201       (
202          RecState; Disconnection[Terminate, RecState]
203       )
204    endproc  (* Disconnection *)
205          
206 (*-------------------------------------------------------*)
207
208 (* Timethread Reception *)
209    process  Reception[Receive, DOut] : noexit  :=
210       Receive;
211       (
212          let  oP: Tag = RDataIn in  DOut ! oP ! dummy; Reception[Receive, DOut]
213       )
214    endproc  (* Reception *)
215
216 (*-------------------------------------------------------*)
217
218 (* Timethread Knocking *)
219    process  Knocking[Knock, DOut] : noexit  :=
220       hide
221          KnockLost    (* The knock request is lost *)
222       in
223       Knock;
224       (
225          KnockLost; Knocking[Knock, DOut]
226          []
227          ( let  oP: Tag = KDataIn in  DOut ! oP ! dummy; Knocking[Knock, DOut] )
228       )
229    endproc  (* Knocking *)
230
231 (*-------------------------------------------------------*)
232
233 (* Timethread Opening *)
234    process  Opening[Open, DoorState] : noexit  :=
235       Open;
236       (
237          let  D: Tag = Open in
238          DoorState ! D; Opening[Open, DoorState]
239       )
240    endproc  (* Opening *)
241
242 (*-------------------------------------------------------*)
243
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244 (* Timethread Closing *)
245    process  Closing[Close, DoorState] : noexit  :=
246       Close;
247       (
248          let  D: Tag = Close in
249          DoorState ! D; Closing[Close, DoorState]
250       )
251    endproc  (* Closing *)
252
253 (*-------------------------------------------------------*)
254
255    process  Data[DIn, DOut, SendState, DoorChecked, DoorState, Transmit, RecState, Played,
256                 EndRec]: noexit  :=
257
258       (* hidden gates for signal WP *)
259       hide
260          DoorStateMem  (* Memory cell for internal use *)
261       in
262       (* Waiting place with memory management *)
263       DoorStateMemory [DoorState, DoorStateMem] (Close)
264       |[DoorStateMem]|
265       Data2[DoorStateMem,DIn, DOut,SendState, DoorChecked, Transmit,RecState, Played,EndRec]
266       where
267
268       process  Data2[DoorStateMem, DIn, DOut, SendState, DoorChecked, Transmit, RecState, 
269                     Played, EndRec]: noexit  :=
270          (* hidden gates for Choice, Par and Signal WP *)
271          hide
272             SyncOrKno,    (* Internal synchro. for the OR fork *)
273             SyncAndRec,
274             SyncSigRec,
275         (* hidden actions *)
276             PlayImage,    (* The monitor shows the image *)
277             PlayVoice,    (* The speaker plays the voice *)
278             Disconnect    (* Update disconnection status *)
279          in
280
281          DIn ? iP: Tag ? iRep :Tag;
282          (
283             [(iP ne KDataOut) and (iP ne RDataOut)] ->  (* [Gadded] *)
284                (
285                   [iP eq RDataIn] ->     (* [G10] *)  (* Body of Reception *)
286                      (
287                         (
288                            PlayImage; SyncAndRec; stop
289                            |[SyncAndRec]|
290                            PlayVoice; SyncAndRec; stop
291                         )
292                         |[SyncAndRec]|
293                         SyncAndRec;
294                         (* Waiting place signal management *)
295                         (
296                            RecState; SyncSigRec ! Yes; stop
297                            []
298                            SyncSigRec ! No; stop
299                         )
300                         |[SyncSigRec]|
301                         SyncSigRec ? Sig: Tag;
302                         (
303                            [Sig eq Yes] ->   (* [G9] *)
304                               ( let  oP: Tag = RDataOut in  
305                                   DOut ! oP ! dummy;
306                                   Data2[DoorStateMem,DIn,DOut,SendState,DoorChecked,Transmit,
307                                         RecState, Played, EndRec]
308                               |||
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309                               Disconnect;
310                               EndRec; stop
311                               )
312                            []
313                            [Sig eq No]  (* [G8] *) -> 
314                               ( Played; Data2[DoorStateMem, DIn, DOut, SendState, DoorChecked,
315                                               Transmit, RecState, Played, EndRec])
316                         )
317                      )
318                   []
319                   [iP eq KDataIn] ->  (* [G13] *)   (* Body of Knocking *)
320                      (
321                         DoorStateMem ? DS: Tag;
322                         (
323                            [DS eq Close] ->  (* [G4] *)
324                               ( let  oRep: Tag = Denied in  SyncOrKno ! DS ! oRep; stop )
325                            []
326                            [DS eq Open] ->   (* [G5] *)
327                               ( let  oRep: Tag = Access in
328                                  Transmit; stop
329                                  |||
330                                  SyncOrKno ! DS ! oRep; stop
331                               )
332                         )
333                         |[SyncOrKno]|
334                         SyncOrKno ? DS: Tag ? oRep : Tag;
335                         ( let  oP: Tag = KDataOut in
336                            DOut ! oP ! oRep;
337                            Data2[DoorStateMem, DIn, DOut, SendState, DoorChecked, Transmit,
338                                  RecState, Played, EndRec])
339                      )
340                )
341             []
342             [iP eq KDataOut] ->  (* [G11] *)  (* End of Knocking *)
343                (DoorChecked ! iRep;
344                 Data2[DoorStateMem, DIn, DOut, SendState, DoorChecked, Transmit, RecState,
345                       Played, EndRec])
346             []
347             [iP eq RDataOut] ->  (* [G12] *)  (* End of Reception *)
348                (SendState;
349                 Data2[DoorStateMem, DIn, DOut, SendState, DoorChecked, Transmit, RecState,
350                       Played, EndRec])
351          )
352       endproc  (* Data2 *)
353    
354       process  DoorStateMemory [DoorState, DoorStateMem] (Mem: Tag): noexit  :=
355          DoorState ? NewMem: Tag; DoorStateMemory [DoorState, DoorStateMem] (NewMem)
356          []
357          DoorStateMem ! Mem; DoorStateMemory [DoorState, DoorStateMem] (Mem)
358       endproc  (* DoorStateMemory *)
359
360    endproc  (* Data *)
361
362 endspec  (* Telepresence_1SUD *)

Specification 16: Telepresence System (1 SUD), Level 1 With Recursion
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Appendix F. Validation of Telepresence_2Systems

Two acceptance and two rejection test cases, mostly adapted from the test cases in appen

are applied to the Telepresence_2Systems specification. We again make use of the testi

capacities of LOLA. Although they would be necessary in a real-life validation, simulation

verification are not to be used here to simplify the approach.

First Acceptance Test Case
This process tests whether the possible Reports are Denied or TimeOut when the responder’s doo

is closed (by default in the specification). System1 is the initiator and system 2 is the respo

Specification 17: Acceptance test case 1 for Telepresence_2Systems

We use the command TestExpand to test all possible scenarios. The result, expressed be

shows our test case to be a must pass test again. This result suggests that the specification m

conform to the Telepresence specification.

lola> TestExpand -1 Success AcceptTest1 -i

 Composing behaviour and test :

    Analysed states       = 370
    Generated transitions = 506
    Duplicated states     = 0
    Deadlocks             = 0

    Process Test = accepttest1
    Test result  = MUST PASS.

                   successes = 137
                       stops = 0
                       exits = 0
               cuts by depth = 0

First Rejection Test Case
This second process tests that Report cannot output the value Success when the responder’s doo

is closed (by default in the specification). System1 is the initiator and system 2 is the respo

process  AcceptTest1[Contact1, Report1, Success]: noexit  :=
(* Test for denied or timeout report when the door is closed (default) *)
   Contact1;
   (
      Report1 ! Denied; Success; stop
   []
      Report1 ! TimeOut; Success; stop
   )
endproc  (* AcceptTest1 *)
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Specification 18: Rejection test case 1 for Telepresence_2Systems

The TestExpand procedure returns reject, meaning that our specification behaves properly in t

matter, just as Telepresence did before.

lola> TestExpand -1 Fail RejectTest1 -i

 Composing behaviour and test :

    Analysed states       = 233
    Generated transitions = 232
    Duplicated states     = 0
    Deadlocks             = 67

    Process Test = rejecttest1
    Test result  = REJECT.

                   successes = 0
                       stops = 67
                       exits = 0
               cuts by depth = 0

Second Acceptance Test Case
This more complex process tests that, when the responder Opens his/her door and the initiato

Contacts the responder, the Report should output a TimeOut or possibly a Success when the

initiator Terminates the connection. In this example, system 2 is the initiator and system 1 

responder (but this has no repercussion because systems 1 and 2 are perfectly symmetric

Specification 19: Acceptance test case 2 for Telepresence_2Systems

process  RejectTest1[Contact1, Report1, Fail]: noexit  :=
(* Test for denied or timeout report when the door is closed (default) *)
   Contact1;
   Report1 ! Success; Fail; stop
endproc  (* RejectTest1 *)

process  AcceptTest2[Contact2, Open1, Terminate2, Report2, Success]: noexit  :=
(* Test for success (or timeout) report when the responder opens the door *)
   Open1;
   Contact2;
   (
      Report2 ! TimeOut; Success; stop
   []
      Terminate2;
      (
         Report2 ! Success; Success; stop
         []
         Report2 ! TimeOut; Success; stop
      )
   )
endproc  (* AcceptTest2 *)
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Since the transition system generated from the Telepresence specification is infinite when there is

a transmission, we must again limit the depth of the search (here to 15 events) of the TestExpand

procedure. This generates an extremely large number of executions (862999) that should

confidence in the result.

lola> TestExpand 15 Success AcceptTest2 -i -y

 Composing behaviour and test :

    Analysed states       = 521796
    Generated transitions = 1384734
    Duplicated states     = 0
    Deadlocks             = 60

    Process Test = accepttest2
    Test result  = MAY PASS.

    862999  executions analysed:

                   successes = 76919
                       stops = 60
                       exits = 0
               cuts by depth = 786020

LOLA outputs may pass as a result. On 862999 executions, 76919 were successful, 60 

unsuccessful, and the remaining 786020 were unfinished due to the search depth of 15. W

use here the option -s  of TestExpand to get all 60 traces leading to deadlocks, in the form o

monolithic LOTOS tree. Then, we could compare these traces with the ones found in the pr

Telepresence specification to verify that no new problem was introduced.

Second Rejection Test Case
This last test was not in the previous test suite (appendix D.II). We create it here in order to

that we have no additional error related to invalid scenarios due to communication be

systems (as presented in section 6.4.1). RejectTest2 tests that when an initiator (system 1

Contacts the responder (system 2), the latter does not get any Report of any kind.

Specification 20: Rejection test case 2 for Telepresence_2Systems

The TestExpand procedure returns reject, meaning that our specification does not add to 

problems we already encountered. Hence, this is another step in the conformance tes

Telepresence_2Systems w.r.t. Telepresence and the requirements.

process  RejectTest2[Contact1, Report2, Fail]: noexit  :=
(* Test for denied or timeout report when the door is closed (default) *)
   Contact1;
   Report2 ? Anything: Tag; Fail; stop
endproc  (* RejectTest2 *)
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lola> TestExpand -1 Fail RejectTest2 -i

 Composing behaviour and test :

    Analysed states       = 233
    Generated transitions = 232
    Duplicated states     = 0
    Deadlocks             = 67

    Process Test = rejecttest2
    Test result  = REJECT.

                   successes = 0
                       stops = 67
                       exits = 0
               cuts by depth = 0
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