
ELG 5372 Error 
Control Coding

Lecture 22: Soft Decision 
Decoding of Convolutional

Codes.



Likelihoods

• Consider the following channel
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AWGN Channel and Likelihoods
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Maximum Likelihood Sequence Estimation

• Suppose we receive r = (r0, r1, r2) = (1’’, 0’’, 0).
• In the hard decision case, this would be given to the 

decoder as (1,0,0).
• In the coded case, suppose that the only possible 

code sequences are (0, 0, 0), (0,1,1), (1,0,1) and 
(1,1,0).

• Assuming that 0 and 1 are transmitted with equal 
probability, the most likely codeword is the one that 
maximizes the following:
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Example

ri

ci

0’’’ 0’’ 0’ 0 1 1’ 1’’ 1’’’

0 0.47 0.25 0.139 0.085 0.0455 0.009 0.001 0.0005

1 0.0005 0.001 0.009 0.0455 0.085 0.139 0.25 0.47

Assume that 0 and 1 are transmitted with equal probability.



Example

• Then p(r|000) = 0.001×0.25×0.085 = 0.000021.
• p(r|010) = 0.001×0.001×0.085 = 8.5×10-9.
• p(r|101) = 0.25×0.25×0.0455 = 0.0028.
• p(r|110) = 0.25×0.001×0.085 = 0.000021.
• In hard decision case, the decoder would have 

determined that 000, 101 and 110 are all equally 
likely.



Log likelihood function

• The likelihood function is a product of conditional 
probabilities.  

• For long sequences, the resulting likelihoods will be 
small compared to 1.  

• To simplify, we use the log likelihood function.
• p(ri|ci) is expressed as log(p(ri|ci)) and  
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The most likely codeword maximizes (1)



Decoding Metrics

• M(ri|ci) is a function of the log likelihood function.
• Since the log of a probability is always negative, we will 

add a constant to all log likelihood functions so that they 
are all positive.

• Log likelihood functions may also have many digits after 
the decimal, so we multiply by another constant to yield 
metrics that can be approximated by whole numbers (or 
numbers that don’t require much memory).

• M(ri|ci) = a(log(p(ri|ci)+b).
• The path metric is
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ri

ci

0’’’ 0’’ 0’ 0 1 1’ 1’’ 1’’’

0 0.47 0.25 0.139 0.085 0.0455 0.009 0.001 0.0005

1 0.0005 0.001 0.009 0.0455 0.085 0.139 0.25 0.47

ri

ci

0’’’ 0’’ 0’ 0 1 1’ 1’’ 1’’’

0 -0.328 -0.612 -0.857 -1.07 -1.34 -2.05 -3 -3.3

1 -3.3 -3 -2.05 -1.34 -1.07 -0.857 -0.612 -0.328



ri

ci

0’’’ 0’’ 0’ 0 1 1’ 1’’ 1’’’

0 2.972 2.688 2.443 2.23 1.96 1.25 0.3 0

1 0 0.3 1.25 1.96 2.23 2.443 2.688 2.972

Add 3.3 to all then multiply by a constant an round (I used 20).

ri

ci

0’’’ 0’’ 0’ 0 1 1’ 1’’ 1’’’

0 59 54 49 45 39 25 6 0

1 0 6 25 39 45 49 54 59



Example

• Again consider r = (1’’, 0’’, 0).
• M(r|000) = 6+54+45 = 105
• M(r|011) = 6+6+39 = 51
• M(r|101) = 54+54+39 = 147
• M(r|110) = 54+6+45 = 105



Metrics applied to Viterbi Algorithm
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Metrics applied to Viterbi Algorithm

• If the encoder is reset to all zero state, then the 
decoded stream must end in all zero state.  Therefore 
the decoded path would be
– 00-10-01-10-01-10-01-00 (state transitions)
– 11, 10, 00, 10, 00, 10, 11 (code sequence)
– 1,0,1,0,1,0,0 (message)



Soft Decision Decoding

• In the previous example, we used quantized values 
for the received sequence.

• This is not pure soft decision decoding, but rather a 
compromise between soft decision and hard decision 
decoding.

• In soft decision decoding, infinite quantization is 
used (in other words, we can use the decision 
variable output or perhaps a log likelihood ratio).

• The code sequence that maximizes                 is also     
the code sequence that has the smallest Euclidean 
distance from r. 

 )|(
1
∏
=

L

i
ii crp



Euclidean Distance

• Let v = (v1, v2, v3, … vL) and let u = (u1, u2, …, uL).
• The Euclidean distance between v and u is:

• If c minimizes ED(r,c), then c also minimizes 
ED2(r,c) (since distances cannot be negative).
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Example
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Assuming a 1 is received as 1 and a 0 as -1 in the absence of noise.
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Code Transfer Function

Consider the rate ½ code G(D) = [1+D+D2, 1+D].  The state 
diagram is:

The code transfer function tells us how many paths there are
of weight d as well as the weight of the message sequences
that produce this path.
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Definition of a non-zero weight path

Any path that diverges and the remerges with the all-zero path



Transfer Function

• Find all the paths that diverge and then remerge with 
all-zero state
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This can be seen as a system with feedforward and feedback
loops.  The transfer function T(X,Y) is the “gain” of the system.



Mason’s Rule

• To find the transfer function of a system with 
multiple feedforward and feedback loops, we use 
Mason’s rule.

• Fi is the gain of the ith forward loop.  A forward loop 
goes from start state to end state without passing 
through a state more than once.

• The graph determinant is Δ.  It is given by:
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Mason’s Rule

• Cl is the gain of the lth loop.  A loop starts in a state 
and ends in that same state, without going through 
any intermediate state more than once.

• Ll and Lm are pairs of non touching loops.
• Ll, Lm, Ln are trios of non-touching loops.
• The cofactor of forward path i is Δi which is the same 

as Δ but we eliminate and loops that are touching the 
ith forward loop.



Forward paths

• In our example, we have two forward paths
• Fpath 1 = 00-10-01-00: F1 = XY5.
• Fpath 2 = 00-10-11-01-00: F2 = X2Y6.



Loops

• In our example, the are three loops:
• L1 = 10 – 01 – 10.  C1 = XY
• L2 = 11-11.  C2 = XY
• L3 = 10-11-01-10.  C3 = X2Y2



Graph Determinant

• L1 and L2 are non touching (they have no states in 
common).  This is the only pair of non-touching loops 
and there is no set of 3 loops that are non-touching 
loops.

• The graph determinant is Δ = 1-(C1+C2+C3)+(C1C2) = 
1-2XY-X2Y2+X2Y2 = 1-2XY.



Cofactors of Paths 1 and 2

• Fpath 1 does not touch loop 2.  Therefore Δ1 = 1-C2 = 
1-XY

• All loops touch Fpath2, therefore Δ2 = 1.



Transfer Function
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There is one path of weight 5.  It is produced by a message 
of weight 1.  There are 2 paths of weight 6 and both are produced
by messages of weight 2.  There are 4 paths of weight 7 and 
all are produced by messages of weight 3…
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