ELG 5372 Error Control Coding

uOttawa

L'Université canadienne Canada's university

Lecture 21: Polynomial, Rational and Systematic Encoders and Introduction to Decoding of Convolutional Codes.

Polynomial and Rational Encoders

- Every rational encoder has an equivalent basic encoder.
- This implies that it is sufficient to use only feedforward encoders to represent every code
- However, there may not be an equivalent basic systematic code.
- If a systematic code is desired (for example, Turbo codes), it may be necessary to use a rational encoder.

Invariant Factor Decomposition

- Let $\mathbf{G}(D)$ be a $k \times n$ polynomial matrix.
- $\mathbf{G}(D)$ can be written as $\mathbf{A}(D) \Gamma(D) \mathbf{B}(D)$, where $\mathbf{A}(D)$ is a $k \times k$ polynomial matrix and $\mathbf{B}(D)$ is an $n \times n$ polynomial matrix where $\operatorname{det}(\mathbf{A}(D))=\operatorname{det}(\mathbf{B}(D))=1$ and $\Gamma(D)$ is the $k \times n$ diagonal matrix given below:

$$
\Gamma(D)=\left[\begin{array}{ccccccc}
\gamma_{1}(D) & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & \gamma_{2}(D) & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & \gamma_{3}(D) & \cdots & 0 & 0 & 0 \\
0 & 0 & \cdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & \gamma_{k}(D) & \cdots & 0
\end{array}\right]
$$

Invariant Factor Decomposition 2

- The nonzero elements of $\Gamma(D)$ are polynomials called invariant factors of $\mathbf{G}(D)$.
- Then invariant factors satisfy the property that $\gamma_{i}(D)$ divides $\gamma_{i+1}(D)$.
- If $\mathbf{G}(D)$ is rational, $\mathbf{G}(D)=\mathbf{A}(D) \Gamma(D) \mathbf{B}(D)$ is still true, only $\Gamma(D)$ is now rational and takes the form

$$
\Gamma(D)=\left[\begin{array}{ccccccc}
\frac{\alpha_{1}(D)}{\beta_{1}(D)} & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & \frac{\alpha_{2}(D)}{\beta_{2}(D)} & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & \frac{\alpha_{3}(D)}{\beta_{3}(D)} & \cdots & 0 & 0 & 0 \\
0 & 0 & \cdots & \ddots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & \cdots & \frac{\alpha_{k}(D)}{\beta_{k}(D)} & \cdots & 0
\end{array}\right]
$$

Invariant Factor Decomposition 3

- Let us express $\mathbf{B}(D)$ as

$$
\mathbf{B}(D)=\left[\begin{array}{l}
\mathbf{G}^{\prime}(D) \\
\mathbf{B}_{2}(D)
\end{array}\right]
$$

- Where $\mathbf{G}^{\prime}(D)$ is a $k \times n$ polynomial matrix and $\mathbf{B}_{2}(D)$ is a $(n-k) \times n$ polynomial matrix.
- Since the last $(n-k)$ columns of $\Gamma(D)$ are zero, $\Gamma(D) \mathbf{B}(D)=\Gamma^{\prime}(D) \mathbf{G}^{\prime}(D)$

Invariant Factor Decomposition 4

- Where $\Gamma^{\prime}(D)$ is given by

$$
\Gamma^{\prime}(D)=\left[\begin{array}{ccccc}
\frac{\alpha_{1}(D)}{\beta_{1}(D)} & 0 & 0 & \cdots & 0 \\
0 & \frac{\alpha_{2}(D)}{\beta_{2}(D)} & 0 & \cdots & 0 \\
0 & 0 & \frac{\alpha_{3}(D)}{\beta_{3}(D)} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \frac{\alpha_{k}(D)}{\beta_{k}(D)}
\end{array}\right]
$$

Invariant Factor Decomposition 5

- Therefore, invariant factor decomposition states that for rational $\mathbf{G}(D)$, it can be expressed as $\mathbf{G}(D)=\mathbf{A}(D) \Gamma^{\prime}(D) \mathbf{G}^{\prime}(D)$.
- Since $\mathbf{A}(D) \Gamma^{\prime}(\mathrm{D})$ is non singular, $\mathbf{G}(D)$ and $\mathbf{G}^{\prime}(D)$ are equivalent encoders. Since $\mathbf{B}(D)$ is polynomial, so is $\mathbf{G}^{\prime}(D)$.
- Also, since $\operatorname{det}(\mathbf{B}(D))=1$, the right inverse of $\mathbf{B}(D)$ is polynomial. Since $\mathbf{G}^{\prime}(D)$ is part of $\mathbf{B}(D)$, it must also have a polynomial inverse. Thus $\mathbf{G}^{\prime}(D)$ is a basic encoder.
- Every rational encoder has an equivalent basic transfer function matrix

Constraint length and minimal encoders

- Let $\mathbf{G}(D)$ be a basic encoder.
- Let $v_{i}=\max _{j} \operatorname{deg}\left(g_{i j}(D)\right)$ denote the maximum degree of the polynomials in row i of $\mathbf{G}(D)$.
- The constraint length $v=v_{1}+v_{2}+\ldots+v_{k}$. This represents the number of memory elements required by the encoder.
- A minimal basic encoder is a basic encoder that has the smallest constraint length among all equivalent basic encoders.
- We are interested in equivalent basic encoders as they require the least amount of hardware and have the smallest number of states.

Encoder matrix decomposition

- In general a basic encoder matrix $\mathbf{G}(D)$ can be written as:

$$
\mathbf{G}(D)=\left[\begin{array}{cccc}
D^{v_{1}} & 0 & \cdots & 0 \\
0 & D^{v_{2}} & \cdots & 0 \\
: & : & \ddots & :
\end{array}\right] \mathbf{G}_{h}+\tilde{\mathbf{G}}(D)=\boldsymbol{\Lambda}(D) \mathbf{G}_{h}+\tilde{\mathbf{G}}(D)
$$

- Where \mathbf{G}_{n} is a binary matrix which contains a 1 indicating the position in each row where the highest degree term $D^{\text {vi }}$ occurs.

Example

$$
\mathbf{G}=\left[\begin{array}{ccc}
1 & D^{2} & D \\
D & 1 & 0
\end{array}\right]=\left[\begin{array}{cc}
D^{2} & 0 \\
0 & D
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & D \\
0 & 1 & 0
\end{array}\right]
$$

Basic Encoder Theorem 1 (BET1)

- Let $\mathbf{G}(D)$ be a $k \times n$ basic encoding matrix, then $G(D)$ is a minimal basic encoding matrix if
- The maximum degree of the $k \times k$ subdeterminants of $\mathbf{G}(D)$ is equal to v. (1)
- \mathbf{G}_{h} is full rank. (2)
- Statements (1) and (2) are equivalent.
- See proof on pages 466-467 in text.

Examples

$$
\begin{gathered}
\mathbf{G}_{1}=\left[\begin{array}{ccc}
1 & D^{2} & D \\
D & 1 & 0
\end{array}\right]=\left[\begin{array}{cc}
D^{2} & 0 \\
0 & D
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & D \\
0 & 1 & 0
\end{array}\right] \\
\mathbf{G}_{2}=\left[\begin{array}{ccc}
1 & 1+D^{2}+D^{3} & D+D^{2} \\
0 & D+D^{3} & D^{2}
\end{array}\right]=\left[\begin{array}{cc}
D^{3} & 0 \\
0 & D^{3}
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right]+\left[\begin{array}{ccc}
1 & 1+D^{2} & D+D^{2} \\
0 & D & D^{2}
\end{array}\right]
\end{gathered}
$$

Producing equivalent basic encoder of reduced constraint length

- Let \mathbf{G} be a basic encoder.
- If $\mathbf{G}_{h}(D)$ is rank deficient, then $G(D)$ is not a minimal basic code.
- Let \mathbf{g}_{i} be the row of greatest degree.
- Then $\mathbf{g}_{i}=\mathbf{g}_{i}+\sum_{j \neq i} D^{v_{i}-v_{d}} \mathbf{g}_{\mathbf{j}}$
- Determine row of maximum degree. If it is still \mathbf{g}_{i}, stop. Otherwise repeat above.
- See page 466-467 for proof.

Example cont'd

$$
\begin{aligned}
& \mathbf{G}_{2}=\left[\begin{array}{ccc}
1 & 1+D^{2}+D^{3} & D+D^{2} \\
0 & D+D^{3} & D^{2}
\end{array}\right] \\
& \mathbf{g}_{1}=\left[\begin{array}{lll}
1 & 1+D^{2}+D^{3} & D+D^{2}
\end{array}\right] \mathbf{g}_{2}=\left[\begin{array}{lll}
0 & D+D^{3} & D^{2}
\end{array}\right]
\end{aligned}
$$

Both have degree 3. Let $\mathbf{g}_{1}=\left[11+D^{2}+D^{3} D+D^{2}\right]+\left[0 D+D^{3} D^{2}\right]=$ [1 $1+D+D^{2} D$], which now has degree 2 .
Let $\mathbf{g}_{2}=\left[0 D+D^{3} D^{2}\right]+D\left[11+D+D^{2} D\right]=\left[\begin{array}{ll}D & D^{2}\end{array}\right]$
$\mathbf{G}_{3}=\left[\begin{array}{ccc}1 & 1+D+D^{2} & D \\ D & D^{2} & 0\end{array}\right]$
$\mathbf{g}_{1}=\left[\begin{array}{lll}1 & 1+D+D^{2} & D\end{array}\right] \mathbf{g}_{2}=\left[\begin{array}{lll}D & D^{2} & 0\end{array}\right]$
$\mathbf{G}_{4}=\left[\begin{array}{ccc}1+D & 1+D & D \\ D^{2} & D & D^{2}\end{array}\right]=\left[\begin{array}{cc}1+D & D \\ D^{2} & 1+D+D^{2}\end{array}\right] \mathbf{G}_{2}$

Decoding convolutional codes

- Several algorithms exist for the decoding of convolutional codes.
- Most common is Viterbi algorithm.
- Variation is the soft output Viterbi Algorithm (SOVA) which not only provides the decoded output but a reliability measure of each decoded symbol.
- Suboptimal decoding algorithms exist. These are used to reduce complexity, especially when the constraint length is large. Stack and Fano algorithms are of particular interest.

Viterbi Algorithm

- Originally proposed by Andrew Viterbi.
- Only later was it shown to provide the maximum likely code sequence given the received data.
- It is essentially a shortest path algorithm.

Viterbi algorithm for hard decision decoding

- Received data is "hard" (decisions rather than likelihoods are given to the decoder).
- The algorithm attempts to find the path that produces the code sequences that is closest in terms of Hamming distance.
- The algorithm uses the trellis diagram introduced in a previous lecture.

Example

- Consider the rate $1 / 2$ code $\mathbf{G}(D)=\left[1+D+D^{2} 1+D^{2}\right]$.

Example

Example

Example

Example

Example

$$
\begin{aligned}
& \text { If terminated } \mathbf{c}=11,10,00,01,01,11,00 \\
& M=1,0,1,1,0,0,0
\end{aligned}
$$

$$
\mathbf{r}=11, \quad 10, \quad 00, \quad 10, \quad 01, \quad 11, \quad 00
$$

