
ELG 5372 Error 
Control Coding

Lecture 21: Polynomial, Rational and 
Systematic Encoders and 

Introduction to Decoding of 
Convolutional Codes.



Polynomial and Rational Encoders

• Every rational encoder has an equivalent basic 
encoder.
– This implies that it is sufficient to use only 

feedforward encoders to represent every code
– However, there may not be an equivalent basic 

systematic code.
– If a systematic code is desired (for example, Turbo 

codes), it may be necessary to use a rational 
encoder.



Invariant Factor Decomposition

• Let G(D) be a k×n polynomial matrix.
• G(D) can be written as A(D)Γ(D)B(D), where A(D) is 

a k×k polynomial matrix and B(D) is an n×n
polynomial matrix where det(A(D)) = det(B(D)) = 1 
and Γ(D) is the k×n diagonal matrix given below:
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Invariant Factor Decomposition 2
• The nonzero elements of Γ(D) are polynomials called 

invariant factors of G(D).
• Then invariant factors satisfy the property that γi(D) 

divides γi+1(D).
• If G(D) is rational, G(D) = A(D)Γ(D)B(D) is still true, 

only Γ(D) is now rational and takes the form
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Invariant Factor Decomposition 3

• Let us express B(D) as

• Where G’(D) is a k×n polynomial matrix and B2(D) is 
a (n-k) × n polynomial matrix.

• Since the last (n-k) columns of Γ(D) are zero, 
Γ(D)B(D) = Γ’(D)G’(D)
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Invariant Factor Decomposition 4

• Where Γ’(D) is given by
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Invariant Factor Decomposition 5

• Therefore, invariant factor decomposition states that 
for rational G(D), it can be expressed as 
G(D)=A(D)Γ’(D)G’(D).

• Since A(D)Γ’(D) is non singular, G(D) and G’(D) are 
equivalent encoders.  Since B(D) is polynomial, so is 
G’(D).

• Also, since det(B(D)) = 1, the right inverse of B(D) is 
polynomial.  Since G’(D) is part of B(D), it must also 
have a polynomial inverse.  Thus G’(D) is a basic 
encoder.

• Every rational encoder has an equivalent basic 
transfer function matrix



Constraint length and minimal encoders

• Let G(D) be a basic encoder.
• Let vi = maxj deg(gij(D)) denote the maximum degree 

of the polynomials in row i of G(D).
• The constraint length v = v1+v2+…+vk.  This 

represents the number of memory elements required 
by the encoder.

• A minimal basic encoder is a basic encoder that has 
the smallest constraint length among all equivalent 
basic encoders.

• We are interested in equivalent basic encoders as 
they require the least amount of hardware and have 
the smallest number of states.



Encoder matrix decomposition

• In general a basic encoder matrix G(D) can be written 
as:

• Where Gh is a binary matrix which contains a 1 
indicating the position in each row where the highest 
degree term Dvi occurs.
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Example
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Basic Encoder Theorem 1 (BET1)

• Let G(D) be a k×n basic encoding matrix, then G(D) 
is a minimal basic encoding matrix if
– The maximum degree of the k×k subdeterminants

of G(D) is equal to v. (1)
– Gh is full rank. (2)

• Statements (1) and (2) are equivalent.
• See proof on pages 466-467 in text.



Examples
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Producing equivalent basic encoder of 
reduced constraint length 

• Let G be a basic encoder.
• If Gh(D) is rank deficient, then G(D) is not a minimal 

basic code.
• Let gi be the row of greatest degree.

– Then 

– Determine row of maximum degree.  If it is still gi, 
stop.  Otherwise repeat above.

• See page 466-467 for proof.
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Example cont’d
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Both have degree 3.  Let g1 = [1 1+D2+D3 D+D2]+[0 D+D3 D2] = 
[1 1+D+D2 D], which now has degree 2.
Let g2 = [0 D+D3 D2]+D[1 1+D+D2 D] = [D D2 0]
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Decoding convolutional codes

• Several algorithms exist for the decoding of 
convolutional codes.

• Most common is Viterbi algorithm.
• Variation is the soft output Viterbi Algorithm (SOVA) 

which not only provides the decoded output but a 
reliability measure of each decoded symbol.

• Suboptimal decoding algorithms exist.  These are 
used to reduce complexity, especially when the 
constraint length is large. Stack and Fano algorithms 
are of particular interest.



Viterbi Algorithm

• Originally proposed by Andrew Viterbi.  
• Only later was it shown to provide the maximum likely 

code sequence given the received data.
• It is essentially a shortest path algorithm.



Viterbi algorithm for hard decision decoding

• Received data is “hard” (decisions rather than 
likelihoods are given to the decoder).

• The algorithm attempts to find the path that produces 
the code sequences that is closest in terms of 
Hamming distance.

• The algorithm uses the trellis diagram introduced in a 
previous lecture.



Example

• Consider the rate ½ code G(D) = [1+D+D2 1+D2].
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If terminated c = 11,10, 00,01, 01,11,00
M = 1,0,1,1,0,0,0


	ELG 5372 Error Control Coding
	Polynomial and Rational Encoders
	Invariant Factor Decomposition
	Invariant Factor Decomposition 2
	Invariant Factor Decomposition 3
	Invariant Factor Decomposition 4
	Invariant Factor Decomposition 5
	Constraint length and minimal encoders
	Encoder matrix decomposition
	Example
	Basic Encoder Theorem 1 (BET1)
	Examples
	Producing equivalent basic encoder of reduced constraint length 
	Example cont’d
	Decoding convolutional codes
	Viterbi Algorithm
	Viterbi algorithm for hard decision decoding
	Example
	Example
	Example
	Example
	Example
	Example

