ELG 5372 Error Control Coding

uOttawa

L'Université canadienne Canada's university

Lecture 8: Parity Check Matrices and Decoding of Linear Block Codes

Parity Check Matrix

- Let C be an (n, k) linear block code over F_{q}.
- Let \mathbf{G} be the generator matrix of C.
- Let \mathbf{H} be the generator matrix of C^{\prime}, which is the (n, n k) dual code of C.
- Let \mathbf{c} be a codeword from C.
- Since $\mathbf{c}=\mathbf{m G}$, then $\mathbf{c H}^{T}=\mathbf{m G H} \mathbf{H}^{T}=\mathbf{0}_{1,(n-k)}$ where $\mathbf{0}_{i, j}$ is an $i \times j$ all zero matrix.
- The \mathbf{H} matrix can be used to check that \mathbf{c} is a valid codeword, hence it is called the parity check matrix of C.

Example

$\begin{aligned} \mathbf{G} & =\left[\begin{array}{lllllll}1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1\end{array}\right] \\ \mathbf{H} & =\left[\begin{array}{lllllll}1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]\end{aligned}$

$$
\begin{gathered}
{\left[\begin{array}{lllllll}
1 & 1 & 0 & 0 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]} \\
{\left[\begin{array}{lllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]}
\end{gathered}
$$

Parity check equations

$$
\mathbf{H}=\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

- Parity check matrix gives rise to a set of parity check equations
- $c_{0}+c_{2}+c_{3}+c_{4}=0, c_{0}+c_{1}+c_{2}+c_{5}=0, c_{1}+c_{2}+c_{3}+c_{6}=0$
- Or $c_{4}=c_{0}+c_{2}+c_{3}, c_{5}=c_{0}+c_{1}+c_{2}, c_{6}=c_{1}+c_{2}+c_{3}$.

Linear Block Code Theorem 1

- Let linear block code C have parity check matrix \mathbf{H}. The minimum distance of the code is equal to the smallest positive number of columns of \mathbf{H} which are linearly dependent.
- Proof

Let the column vectors of \mathbf{H} be designated $\mathbf{h}_{0}{ }^{\top}, \mathbf{h}_{1}{ }^{\top}, \ldots \mathbf{h}_{n-1}{ }^{\top}$, where \mathbf{h}_{i} is a $1 \times n$ vector. Let codeword $\mathbf{c}=\left[c_{0} c_{1} \ldots c_{n-1}\right]$ be a $1 \times n$ codeword of C. Then $\mathbf{c H} \mathbf{H}^{T}=c_{0} \mathbf{h}_{0}+c_{1} \mathbf{h}_{1}+\ldots c_{n-1} \mathbf{h}_{n-1}=\mathbf{0}_{1,(n-k)}$.

Let \mathbf{c} be a codeword of C of minimum weight. Therefore $H W(\mathbf{c})$
$=d_{\text {min }}$. Further, let \mathbf{c} be nonzero at indices $i_{1}, i_{2}, \ldots, i_{\text {dmin }}$. Then

Linear Block Code Theorem 1 cont’d

$c_{i 1} \mathbf{h}_{i 1}+c_{i 2} \mathbf{h}_{i 2}+\ldots+c_{i d m i n} \mathbf{h}_{i d m i n}=\mathbf{0}_{1,(n-k)}$. Therefore we know that we can find at least one linear combination of $d_{\text {min }}$ column vectors of H that add up to zero.

Consequently, if there were a linearly dependent set of column vectors of less than $d_{\text {min }}$ column vectors, then there would have to be a corresponding codeword of weight that is less that $d_{\text {min }}$.

Example of LBC Theorem 1

$$
\begin{aligned}
\mathbf{H} & =\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \\
& \uparrow \begin{array}{lllll}
\uparrow & \uparrow & & & \\
& \uparrow & \uparrow & & \uparrow \\
& \uparrow & \uparrow & & \\
& \uparrow
\end{array}
\end{aligned}
$$

Rank of a Matrix

- The rank of a matrix is the number of maximum number of linearly independent rows or columns of a matrix.
- The column rank is the maximum number of linearly independent columns
- The row rank is the maximum number of linearly independent rows
- Row rank = column rank.
- For a $(n-k) \times n \mathbf{H}$ matrix, the row rank is $(n-k)$.
- Therefore column rank = (n-k). Therefore we know that we cannot find a set of $n-k+1$ linearly independent column vectors in \mathbf{H}.

Singleton Bound

- We know that $d_{\text {min }}$ is the minimum number of linearly dependent column vectors in \mathbf{H} and form the previous slide, we know that the maximum number of linearly independent column vectors in \mathbf{H} is $n-k$.
- $d_{\text {min }} \leq n-k+1$.
- Any code that satisfies the Singleton Bound with equality is called a maximum separable (MDS) code.

Example $(4,2) 4$-ary code

$$
\mathbf{G}=\left[\begin{array}{cccc}
1 & 0 & \alpha^{2} & \alpha \\
0 & 1 & 1 & \alpha
\end{array}\right]
$$

\mathbf{m}	\mathbf{c}	\mathbf{m}	\mathbf{c}
00	0000	$\alpha 0$	$\alpha 01 \alpha^{2}$
01	011α	$\alpha 1$	$\alpha 101$
0α	$0 \alpha \alpha \alpha^{2}$	$\alpha \alpha$	$\alpha \alpha \alpha^{2} 0$
$0 \alpha^{2}$	$0 \alpha^{2} \alpha^{21}$	$\alpha \alpha^{2}$	$\alpha \alpha^{2} \alpha \alpha$
10	$10 \alpha^{2} \alpha$	$\alpha^{2} 0$	$\alpha^{2} 0 \alpha 1$
11	$11 \alpha 0$	$\alpha^{2} 1$	$\alpha^{2} 1 \alpha^{2} \alpha^{2}$
1α	$1 \alpha 11$	$\alpha^{2} \alpha$	$\alpha^{2} \alpha 0 \alpha$
$1 \alpha^{2}$	$1 \alpha^{2} 0 \alpha^{2}$	$\alpha^{2} \alpha^{2}$	$\alpha^{2} \alpha^{2} 10$

$$
d_{\min }=3=4-2+1
$$

Example cont'd

$$
\begin{aligned}
& \mathbf{H}=\left[\begin{array}{cccc}
\alpha^{2} & 1 & 1 & 0 \\
\alpha & \alpha & 0 & 1
\end{array}\right] \\
& \alpha\left[\begin{array}{c}
\alpha^{2} \\
\alpha
\end{array}\right]+\left[\begin{array}{l}
1 \\
\alpha
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Hamming Spheres

- Consider a t error correcting code.
- A code can correct t errors if $d_{\text {min }} \geq 2 t+1$.
- A non-codeword has distance of t or less from at least one codeword.
- The vectors of Hamming distance t or less away from a codeword form a "sphere" of radius t around the codeword. This is called a Hamming Sphere.
- There are $V_{q}(n, t)$ vectors of length n within a Hamming sphere of radius t, where

$$
V_{q}(n, t)=\sum_{i=0}^{t}(q-1)^{i}\binom{n}{i}
$$

(this number includes the given codeword).

Example

- Returning to the 4-ary example shown previously, let us consider codeword (0000).
- Using this codeword as the center of the Hamming sphere, there are 13 vectors in a Hamming sphere of radius 1 around this codeword
- 0000, 0001, 0010, 0100, 1000, $000 \alpha, 00 \alpha 0,0 \alpha 00, \alpha 000$, $000 \alpha^{2}, 00 \alpha^{2} 0,0 \alpha^{2} 00, \alpha^{2} 000$.
- The above vectors also fall into a Hamming sphere of radius 2 around 0000. All vectors of weight 2 also fall into this sphere ($0011,01101100,001 \alpha, \ldots$). There are 54 weight 2 length 4 vectors over GF(4). Therefore there are 67 vectors that fall into this sphere.

Hamming Bound

- For hard decision decoding, we can express the received word as $\mathbf{r}=\mathbf{c}+\mathbf{e}$, where \mathbf{e} is called the error pattern.
- The codeword \mathbf{c} is an element of C but \mathbf{e} is an element of $V_{q}{ }^{n}$ (of which C is a subspace), therefore r is an element of $V_{q}{ }^{n}$.
- $V_{q}{ }^{n}$ can be divided into Hamming spheres around codewords of C.
- For a t error correcting code, all error patterns of weight t or less can be corrected as long as $d_{\text {min }} \geq 2 t+1$.
- We can divide the elements of $V_{q}{ }^{n}$ into $M=q^{k}$ non-overlapping spheres of radius t. However, there may exist some elements in $V_{q}{ }^{n}$ whose Hamming distance from every codeword in C is greater than t.

Hamming Bound cont'd

- Therefore $M V_{q}(n, t) \leq q^{n}$.
- $V_{q}(n, t) \leq q^{n} / M \rightarrow \log _{q} V_{q}(n, t) \leq n-\log _{q} M$
- For linear block codes, $M=q k$, therefore $n-k \geq \log _{q} V_{q}(n, t)$.
- The Hamming bound states that if we want to design a t error correcting code, the amount of redundancy needed is greater than or equal to the log of the number of vectors in a Hamming sphere of radius t.
- Example Hamming $(7,4)$ is a one error correcting code.
$-V_{2}(7,1)=1+7=8$
- Then $n-k \geq 3$.
- In the Hamming $(7,4)$ case, $n-k=3$.

Hamming Bound example 2

- For our $(4,2) 4$-ary code, $d_{\text {min }}=3$, therefore $t=1$.
- For any general 1 error correcting code of length 4 over GF(4), we need $n-k \geq \log _{4} V_{4}(4,1)=\log _{4}(13)=$ 1.85.
- Therefore we need to choose $k=1$ or 2. ($k<2.15$).

Perfect Code

- A "perfect" code is a code that satisfies the Hamming bound with equality.
- This title does not imply that the code is the best possible code.
- It tells us that all elements in $V_{q}{ }^{n}$ fall into a Hamming sphere. Therefore a t error correcting code corrects all error patterns of weight t but it cannot correct any of weight $t+1$.
- Most block codes (linear and nonlinear) are not perfect.
- Hamming codes, Golay $(23,12)^{1}$ and odd length repetition codes are examples of perfect codes. See page 89 of text for complete list of perfect codes.
${ }^{1}$ this is a binary 3 error correcting code.

Error Detection and Error Correction with Hard Decisions

- Error detection
- $\mathbf{r}=\mathbf{c}+\mathbf{e}$
- $\mathbf{S}=\mathbf{r H}^{T}$ (this is called the syndrome).
$-\mathbf{S}=(\mathbf{c}+\mathbf{e}) \mathbf{H}^{T}=\mathbf{c} \mathbf{H}^{\top}+\mathbf{e H}^{T}=\mathbf{e H}^{T}$.
- When the error pattern is all zero (no error has occurred, then the syndrome is all zero).
- If the syndrome is not all zero, an error is detected.
- In automatic repeat request (ARQ) schemes, if the syndrome is non-zero, the receiver requests that the sender resend the codeword.

