
ELG 5372 Error 
Control Coding

Lecture 8: Parity Check 
Matrices and Decoding of 

Linear Block Codes



Parity Check Matrix

• Let C be an (n,k) linear block code over Fq.  
• Let G be the generator matrix of C.
• Let H be the generator matrix of C’, which is the (n,n-

k) dual code of C.
• Let c be a codeword from C.
• Since c = mG, then cHT = mGHT = 01,(n-k) where 0i,j is 

an i×j all zero matrix.
• The H matrix can be used to check that c is a valid 

codeword, hence it is called the parity check matrix of 
C.



Example
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Parity check equations

• Parity check matrix gives rise to a set of parity 
check equations

• c0+c2+c3+c4=0, c0+c1+c2+c5=0, c1+c2+c3+c6=0
• Or c4=c0+c2+c3, c5=c0+c1+c2, c6=c1+c2+c3.
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Linear Block Code Theorem 1

• Let linear block code C have parity check matrix H.  The 
minimum distance of the code is equal to the smallest positive 
number of columns of H which are linearly dependent.

– Proof
Let the column vectors of H be designated h0

T, h1
T, … hn-1

T, 
where hi is a 1×n vector. Let codeword c=[c0 c1 … cn-1] be a 1×n
codeword of C.  Then cHT = c0h0+c1h1+…cn-1hn-1 = 01,(n-k).

Let c be a codeword of C of minimum weight.  Therefore HW(c) 
= dmin.  Further, let c be nonzero at indices i1, i2, …, idmin.  Then



Linear Block Code Theorem 1 cont’d

ci1hi1+ci2hi2+…+cidminhidmin = 01,(n-k).  Therefore we know that we 
can find at least one linear combination of dmin column vectors of 
H that add up to zero.  

Consequently, if there were a linearly dependent set of column 
vectors of less than dmin column vectors, then there would have 
to be a corresponding codeword of weight that is less that dmin.



Example of LBC Theorem 1
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Rank of a Matrix
• The rank of a matrix is the number of maximum 

number of linearly independent rows or columns of a 
matrix.
– The column rank is the maximum number of 

linearly independent columns
– The row rank is the maximum number of linearly 

independent rows
– Row rank = column rank.

• For a (n-k) ×n H matrix, the row rank is (n-k). 
• Therefore column rank = (n-k).  Therefore we know 

that we cannot find a set of n-k+1 linearly 
independent column vectors in H. 



Singleton Bound

• We know that dmin is the minimum number of linearly 
dependent column vectors in H and form the previous 
slide, we know that the maximum number of linearly 
independent column vectors in H is n-k.
– dmin ≤ n-k+1.

• Any code that satisfies the Singleton Bound with 
equality is called a maximum separable (MDS) code.



Example (4,2) 4-ary code
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00 0000 α0 α01α2

01 011α α1 α101

0α 0ααα2 αα ααα20

0α2 0α2α21 αα2 αα2αα

10 10α2α α20 α20α1

11 11α0 α21 α21α2α2

1α 1α11 α2α α2α0α

1α2 1α20α2 α2α2 α2α210

dmin = 3 = 4-2+1



Example cont’d
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Hamming Spheres

• Consider a t error correcting code. 
• A code can correct t errors if dmin ≥ 2t+1.  
• A non-codeword has distance of t or less from at least one 

codeword.
• The vectors of Hamming distance t or less away from a codeword 

form a “sphere” of radius t around the codeword.  This is called a 
Hamming Sphere.

• There are Vq(n,t) vectors of length n within a Hamming sphere of 
radius t, where

(this number includes the given codeword).
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Example

• Returning to the 4-ary example shown previously, let us 
consider codeword (0000).
– Using this codeword as the center of the Hamming sphere, 

there are 13 vectors in a Hamming sphere of radius 1 
around this codeword

– 0000, 0001, 0010, 0100, 1000, 000α, 00α0, 0α00, α000, 
000α2, 00α20, 0α200, α2000.

– The above vectors also fall into a Hamming sphere of radius 
2 around 0000.  All vectors of weight 2 also fall into this 
sphere (0011, 0110 1100, 001α, …).  There are 54 weight 2 
length 4 vectors over GF(4). Therefore there are 67 vectors 
that fall into this sphere.



Hamming Bound

• For hard decision decoding, we can express the received word 
as r = c+e, where e is called the error pattern. 

• The codeword c is an element of C but e is an element of Vq
n (of 

which C is a subspace), therefore r is an element of Vq
n.

• Vq
n can be divided into Hamming spheres around codewords of 

C.
• For a t error correcting code, all error patterns of weight t or less 

can be corrected as long as dmin ≥ 2t+1.
• We can divide the elements of Vq

n into M = qk non-overlapping 
spheres of radius t.  However, there may exist some elements in 
Vq

n whose Hamming distance from every codeword in C is 
greater than t.  



Hamming Bound cont’d

• Therefore MVq(n,t) ≤ qn. 
• Vq(n,t) ≤ qn/M → logqVq(n,t) ≤ n - logqM
• For linear block codes, M = qk, therefore n-k ≥ logqVq(n,t).
• The Hamming bound states that if we want to design a t error 

correcting code, the amount of redundancy needed is greater 
than or equal to the log of the number of vectors in a Hamming 
sphere of radius t.

• Example Hamming (7,4) is a one error correcting code.
– V2(7,1) = 1+7 = 8
– Then n-k ≥ 3.  
– In the Hamming (7,4) case, n-k = 3.



Hamming Bound example 2

• For our (4,2) 4-ary code, dmin = 3, therefore t = 1.
• For any general 1 error correcting code of length 4 

over GF(4), we need n-k ≥ log4V4(4,1) = log4(13) = 
1.85.  

• Therefore we need to choose k = 1 or 2. (k<2.15).



Perfect Code

• A “perfect” code is a code that satisfies the Hamming bound 
with equality.
– This title does not imply that the code is the best possible 

code.
– It tells us that all elements in Vq

n fall into a Hamming sphere.  
Therefore a t error correcting code corrects all error patterns 
of weight t but it cannot correct any of weight t+1.

• Most block codes (linear and nonlinear) are not perfect.  
• Hamming codes, Golay (23,12)1 and odd length repetition codes 

are examples of perfect codes.  See page 89 of text for 
complete list of perfect codes.

1 this is a binary 3 error correcting code.



Error Detection and Error Correction with 
Hard Decisions

• Error detection
– r = c+e
– S = rHT (this is called the syndrome).
– S = (c+e)HT = cHT+eHT = eHT.
– When the error pattern is all zero (no error has occurred, 

then the syndrome is all zero).  
– If the syndrome is not all zero, an error is detected.
– In automatic repeat request (ARQ) schemes, if the syndrome 

is non-zero, the receiver requests that the sender resend the 
codeword.
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