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Parity Check Matrix

* Let Cbe an (n,k) linear block code over F,.
« Let G be the generator matrix of C.

« Let H be the generator matrix of C’, which is the (n,n-
k) dual code of C.

« Let c be a codeword from C.
- Since ¢ = mG, then cH"=mGH'" =0, ., where Q;; is
an /xj all zero matrix.

« The H matrix can be used to check that c is a valid
codeword, hence it is called the parity check matrix of
C.
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Parity check equations

1 011100
H=|/1 11 0 0 1 0
0111001

« Parity check matrix gives rise to a set of parity
check equations

* cytc,teytc,=0, cyte te,te=0, cite,teytcs=0
* Orc,=cytcy*tc,y, Cs=Cytc tC,, Cs=C +CytCsy.
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Linear Block Code Theorem 1

» Let linear block code C have parity check matrix H. The
minimum distance of the code is equal to the smallest positive
number of columns of H which are linearly dependent.

— Proof

Let the column vectors of H be designated h,’, h,’, ... h .7,
where h;is a 1xn vector. Let codeword c=[c, ¢, ... ¢,.4] be a 1xn
codeword of C. Then cH' = ¢yhg+cihy+...c,4h 1 =04 0.

Let ¢ be a codeword of C of minimum weight. Therefore HW(c)
=d,.,. Further, let c be nonzero at indices iy, iy, ..., iy,,- Then

min-*
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Linear Block Code Theorem 1 cont'd

CihytCohpt...+CiyminNigmin = O4 (k- Therefore we know that we
can find at least one linear combination of d_,, column vectors of
H that add up to zero.

Consequently, if there were a linearly dependent set of column
vectors of less than d,,, column vectors, then there would have
to be a corresponding codeword of weight that is less that d_,..
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Example of LBC Theorem 1
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Rank of a Matrix

The rank of a matrix is the number of maximum
number of linearly independent rows or columns of a

matrix.
— The column rank is the maximum number of
linearly independent columns
— The row rank is the maximum number of linearly
iIndependent rows
— Row rank = column rank.
* For a (n-k) xn H matrix, the row rank is (n-k).
* Therefore column rank = (n-k). Therefore we know

that we cannot find a set of n-k+1 linearly
iIndependent column vectors in H.
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Singleton Bound

* We know that d,,, is the minimum number of linearly
dependent column vectors in H and form the previous
slide, we know that the maximum number of linearly
Independent column vectors in H is n-k.

* Any code that satisfies the Singleton Bound with
equality is called a maximum separable (MDS) code.
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Example (4,2) 4-ary code

o 1

m C m C

00 0000 a0 a01a?
01 011a. al a101
Oa Oacia? o aao?0
Oa? Oa2a?1 ool aolo
10 1002t a0 2001
11 1100 a1 a?1ala2
1o 1011 ala, a?00a
102 102002 | o?0? | 020?10

d. =3=4-2+1

min
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Example cont’d
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Hamming Spheres

« Consider a t error correcting code.
« A code can correct t errors if d,,,, 2 2t+1.

A non-codeword has distance of t or less from at least one
codeword.

* The vectors of Hamming distance t or less away from a codeword
form a “sphere” of radius t around the codeword. This is called a
Hamming Sphere.

* There are V (n,f) vectors of length n within a Hamming sphere of
radius t, where

t (N
vq<n,t>=z<q—1>'(i]
i=0

(this number includes the given codeword).
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Example

* Returning to the 4-ary example shown previously, let us
consider codeword (0000).

— Using this codeword as the center of the Hamming sphere,
there are 13 vectors in a Hamming sphere of radius 1
around this codeword

— 0000, 0001, 0010, 0100, 1000, 000¢, 000, 000, 000,
000«?, 0020, 0200, ?000.

— The above vectors also fall into a Hamming sphere of radius
2 around 0000. All vectors of weight 2 also fall into this
sphere (0011, 0110 1100, 001¢, ...). There are 54 weight 2
length 4 vectors over GF(4). Therefore there are 67 vectors
that fall into this sphere.
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Hamming Bound

« For hard decision decoding, we can express the received word
as r = c+e, where e is called the error pattern.

* The codeword c is an element of C but e is an element of V" (of
which C is a subspace), therefore r is an element of Vq”.

V" can be divided into Hamming spheres around codewords of
C.

» For aterror correcting code, all error patterns of weight t or less
can be corrected as long as d,,,, 2 2t+1.

« We can divide the elements of V" into M = g% non-overlapping
spheres of radius t. However, there may exist some elements in
V,” whose Hamming distance from every codeword in C is
greater than t.

uOttawa




Hamming Bound cont’d

* Therefore MV (n,t) < q".
« V,nt)=q"'M— log,V, (n,t) = n-log,M
* Forlinear block codes, M = gk, therefore n-k 2 log,V,(n,{).

« The Hamming bound states that if we want to design a t error
correcting code, the amount of redundancy needed is greater
than or equal to the log of the number of vectors in a Hamming

sphere of radius .
« Example Hamming (7,4) is a one error correcting code.

- V,(71)=1+7=8
— Then n-k 2 3.
— In the Hamming (7,4) case, n-k = 3.
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Hamming Bound example 2

* Forour (4,2) 4-ary code, d,,, = 3, therefore t = 1.

« For any general 1 error correcting code of length 4
over GF(4), we need n-k 2 log,V,(4,1) = log,(13) =
1.85.

« Therefore we need to choose k=1 or 2. (k<2.15).
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Perfect Code

* A “perfect” code is a code that satisfies the Hamming bound
with equality.
— This title does not imply that the code is the best possible
code.

— It tells us that all elements in V" fall into a Hamming sphere.
Therefore a t error correcting code corrects all error patterns
of weight t but it cannot correct any of weight {+1.

* Most block codes (linear and nonlinear) are not perfect.

« Hamming codes, Golay (23,12)" and odd length repetition codes
are examples of perfect codes. See page 89 of text for
complete list of perfect codes.

' this is a binary 3 error correcting code.
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Error Detection and Error Correction with
Hard Decisions

* Error detection
— r =c+e
— S =rHT (this is called the syndrome).
— S=(c+te)H" =cH’+eH" = eH’.
— When the error pattern is all zero (no error has occurred,
then the syndrome is all zero).
— If the syndrome is not all zero, an error is detected.

— In automatic repeat request (ARQ) schemes, if the syndrome
IS non-zero, the receiver requests that the sender resend the
codeword.
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