

uOttawa

L'Université canadienne Canada's university

ELG 5372 Error Control Coding

Lecture 8: Parity Check Matrices and Decoding of Linear Block Codes

Université d'Ottawa | University of Ottawa

uOttawa.ca

Parity Check Matrix

- Let C be an (n,k) linear block code over F_q .
- Let **G** be the generator matrix of *C*.
- Let H be the generator matrix of C', which is the (n,n-k) dual code of C.
- Let **c** be a codeword from *C*.
- Since c = mG, then cH^T = mGH^T = 0_{1,(n-k)} where 0_{i,j} is an i×j all zero matrix.
- The H matrix can be used to check that c is a valid codeword, hence it is called the parity check matrix of C.

Example

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

Parity check equations

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

- Parity check matrix gives rise to a set of parity check equations
- $c_0 + c_2 + c_3 + c_4 = 0$, $c_0 + c_1 + c_2 + c_5 = 0$, $c_1 + c_2 + c_3 + c_6 = 0$
- Or $c_4 = c_0 + c_2 + c_3$, $c_5 = c_0 + c_1 + c_2$, $c_6 = c_1 + c_2 + c_3$.

Linear Block Code Theorem 1

• Let linear block code *C* have parity check matrix **H**. The minimum distance of the code is equal to the smallest positive number of columns of **H** which are linearly dependent.

- Proof

Let the column vectors of **H** be designated \mathbf{h}_0^T , \mathbf{h}_1^T , ... \mathbf{h}_{n-1}^T , where \mathbf{h}_i is a 1×n vector. Let codeword $\mathbf{c} = [c_0 \ c_1 \ \dots \ c_{n-1}]$ be a 1×*n* codeword of *C*. Then $\mathbf{c}\mathbf{H}^T = c_0\mathbf{h}_0 + c_1\mathbf{h}_1 + \dots c_{n-1}\mathbf{h}_{n-1} = \mathbf{0}_{1,(n-k)}$.

Let **c** be a codeword of *C* of minimum weight. Therefore $HW(\mathbf{c}) = d_{min}$. Further, let **c** be nonzero at indices $i_1, i_2, ..., i_{dmin}$. Then

Linear Block Code Theorem 1 cont'd

 $c_{i1}\mathbf{h}_{i1}+c_{i2}\mathbf{h}_{i2}+\ldots+c_{idmin}\mathbf{h}_{idmin} = \mathbf{0}_{1,(n-k)}$. Therefore we know that we can find at least one linear combination of d_{min} column vectors of H that add up to zero.

Consequently, if there were a linearly dependent set of column vectors of less than d_{min} column vectors, then there would have to be a corresponding codeword of weight that is less that d_{min} .

Example of LBC Theorem 1

Rank of a Matrix

- The rank of a matrix is the number of maximum number of linearly independent rows or columns of a matrix.
 - The column rank is the maximum number of linearly independent columns
 - The row rank is the maximum number of linearly independent rows
 - Row rank = column rank.
- For a $(n-k) \times n$ **H** matrix, the row rank is (n-k).
- Therefore column rank = (n-k). Therefore we know that we cannot find a set of n-k+1 linearly independent column vectors in H.

Singleton Bound

 We know that d_{min} is the minimum number of linearly dependent column vectors in H and form the previous slide, we know that the maximum number of linearly independent column vectors in H is n-k.

$$- d_{min} \le n - k + 1.$$

• Any code that satisfies the Singleton Bound with equality is called a maximum separable (MDS) code.

Example (4,2) 4-ary code

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & \alpha^2 & \alpha \\ 0 & 1 & 1 & \alpha \end{bmatrix}$$

m	С	m	С
00	0000	α0	α01α ²
01	011α	α1	α101
0α	0ααα ²	αα	ααα²0
0α²	$0\alpha^2\alpha^2$ 1	$\alpha \alpha^2$	αα²αα
10	10α²α	α² 0	α²0α1
11	11α0	α ² 1	$\alpha^2 1 \alpha^2 \alpha^2$
1α	1α11	$\alpha^2 \alpha$	$\alpha^2 \alpha 0 \alpha$
1α ²	1α ² 0α ²	$\alpha^2 \alpha^2$	$\alpha^2 \alpha^2 10$

$$d_{min} = 3 = 4 - 2 + 1$$

Example cont'd

$$\mathbf{H} = \begin{bmatrix} \alpha^2 & 1 & 1 & 0 \\ \alpha & \alpha & 0 & 1 \end{bmatrix}$$
$$\alpha \begin{bmatrix} \alpha^2 \\ \alpha \end{bmatrix} + \begin{bmatrix} 1 \\ \alpha \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Hamming Spheres

- Consider a *t* error correcting code.
- A code can correct *t* errors if $d_{min} \ge 2t+1$.
- A non-codeword has distance of *t* or less from at least one codeword.
- The vectors of Hamming distance *t* or less away from a codeword form a "sphere" of radius *t* around the codeword. This is called a Hamming Sphere.
- There are $V_q(n,t)$ vectors of length *n* within a Hamming sphere of radius *t*, where

$$V_q(n,t) = \sum_{i=0}^{t} (q-1)^i \binom{n}{i}$$

(this number includes the given codeword).

Example

- Returning to the 4-ary example shown previously, let us consider codeword (0000).
 - Using this codeword as the center of the Hamming sphere, there are 13 vectors in a Hamming sphere of radius 1 around this codeword
 - $0000, 0001, 0010, 0100, 1000, 000\alpha, 00\alpha0, 0\alpha00, \alpha000, 000\alpha^2, 00\alpha^20, 0\alpha^200, \alpha^2000.$
 - The above vectors also fall into a Hamming sphere of radius 2 around 0000. All vectors of weight 2 also fall into this sphere (0011, 0110 1100, 001α , ...). There are 54 weight 2 length 4 vectors over GF(4). Therefore there are 67 vectors that fall into this sphere.

Hamming Bound

- For hard decision decoding, we can express the received word as r = c+e, where e is called the error pattern.
- The codeword c is an element of C but e is an element of V_qⁿ (of which C is a subspace), therefore r is an element of V_aⁿ.
- *V_qⁿ* can be divided into Hamming spheres around codewords of C.
- For a *t* error correcting code, all error patterns of weight *t* or less can be corrected as long as *d_{min}* ≥ 2*t*+1.
- We can divide the elements of V_q^n into $M = q^k$ non-overlapping spheres of radius *t*. However, there may exist some elements in V_q^n whose Hamming distance from every codeword in *C* is greater than *t*.

Hamming Bound cont'd

- Therefore $MV_q(n,t) \leq q^n$.
- $V_q(n,t) \le q^n/M \to \log_q V_q(n,t) \le n \log_q M$
- For linear block codes, M = qk, therefore $n-k \ge \log_q V_q(n,t)$.
- The Hamming bound states that if we want to design a *t* error correcting code, the amount of redundancy needed is greater than or equal to the log of the number of vectors in a Hamming sphere of radius *t*.
- Example Hamming (7,4) is a one error correcting code.
 - $-V_2(7,1) = 1+7 = 8$
 - − Then $n-k \ge 3$.
 - In the Hamming (7,4) case, n-k = 3.

Hamming Bound example 2

- For our (4,2) 4-ary code, $d_{min} = 3$, therefore t = 1.
- For any general 1 error correcting code of length 4 over GF(4), we need *n*-*k* ≥ log₄V₄(4,1) = log₄(13) = 1.85.
- Therefore we need to choose k = 1 or 2. (k < 2.15).

Perfect Code

- A "perfect" code is a code that satisfies the Hamming bound with equality.
 - This title does not imply that the code is the best possible code.
 - It tells us that all elements in V_q^n fall into a Hamming sphere. Therefore a *t* error correcting code corrects all error patterns of weight *t* but it cannot correct any of weight *t*+1.
- Most block codes (linear and nonlinear) are not perfect.
- Hamming codes, Golay (23,12)¹ and odd length repetition codes are examples of perfect codes. See page 89 of text for complete list of perfect codes.

¹ this is a binary 3 error correcting code.

Error Detection and Error Correction with Hard Decisions

- Error detection
 - r = c+e
 - $\mathbf{S} = \mathbf{r}\mathbf{H}^{T}$ (this is called the syndrome).
 - $S = (c+e)H^{T} = cH^{T}+eH^{T} = eH^{T}.$
 - When the error pattern is all zero (no error has occurred, then the syndrome is all zero).
 - If the syndrome is not all zero, an error is detected.
 - In automatic repeat request (ARQ) schemes, if the syndrome is non-zero, the receiver requests that the sender resend the codeword.

