

uOttawa

L'Université canadienne Canada's university

ELG 5372 Error Control Coding

Lecture 7: Fundamentals of Linear Block Codes

Université d'Ottawa | University of Ottawa

uOttawa.ca

Basic Definitions

- $\mathbf{m} = (m_0, m_1, ..., m_{k-1})$ is the *q*-ary *k*-tuple information vector.
- $\mathbf{c} = (c_0, c_1, \dots, c_{n-1})$ is the *q*-ary *n*-tuple codeword vector.
- We say that **c** is an element of code C. ($\mathbf{c} \in C$)

An (*n*,*k*) block code C over an alphabet of *q* symbols is a set of *q^k n*-tuples called codewords. Associated with the code is an encoder which maps a message **m**_i, which is a *q*-ary *k*-tuple to its associated codeword, **c**_i.

- The vector space of all *n*-tuples from over field F_q is denoted as F_aⁿ.
 - Since F_q^n is the set of all possible *n*-tuples, then the dimension of F_q^n is *n*.
 - Let W be a k dimensional vector subspace of F_q^n .
 - Let W' be the set of all codewords in F_q^n that are orthogonal to all codewords in W. (**w**'.**w** = 0).
 - W' is called the dual space of W and it can be shown that it has dimension *n-k*. (see text page 79-80).

- The (n, k) block code C is a linear block code only if and only if its q^k codewords form a k dimensional vector subspace of F_q^n . The rate of the code is R = k/n.
 - This means that C is a closed set. Therefore the sum of any two codewords in C produces another codeword in C.

- The hamming weight of a codeword **c** is equal to the number of non-zero elements in the codeword.
 - Example: Hamming (7,4) code

codeword	HW(c)	codeword	HW(c)
0000000	0	1000110	3
0001101	3	1001011	4
0010111	4	1010001	3
0011010	3	1011100	4
0100011	3	1100101	4
0101110	4	1101000	3
0110100	3	1110010	4
0111001	4	1111111	7

Definition 5: Hamming Distance

- The hamming distance between two codewords in C is the number of positions in which the two codewords differ.
- $HD(\mathbf{c}_i, \mathbf{c}_j) = HW(\mathbf{c}_i \mathbf{c}_j)$
- For codes that form vector spaces on GF(2^m), c_i c_j = c_i + c_j.

Definition 6: Minimum Hamming Distance

- The minimum Hamming distance of code C is the smallest Hamming distnace between two distinct codewords in the code.
 - Since $HD(\mathbf{c}_i, \mathbf{c}_j) = HW(\mathbf{c}_i \mathbf{c}_j)$, then for linear block codes, $\mathbf{c}_i - \mathbf{c}_j =$ another non-zero codeword. Therefore, the minimum Hamming distance of the code is the minimum non-zero Hamming weight of the code.
 - For Hamming (7,4) example, $d_{min} = 3$.

Generator Matrix Description of Linear Block Codes

- Since a linear block code C is a k-dimensional vector space, there exist k linearly independent vectors which form a basis for C.
 - $\{ \mathbf{g}_0, \mathbf{g}_2, ..., \mathbf{g}_{k-1} \}$ form a basis for C.
 - All q^k codewords in C can be expressed as a linear combination of these basis vectors.
 - $-\mathbf{c}_{i} = m_{0}\mathbf{c}_{0} + m_{1}\mathbf{c}_{1} + \dots + m_{k-1}\mathbf{c}_{k-1}, \text{ where } m_{i} \text{ are } m$
- Let $\mathbf{m} = [m_0 \ m_1 \ \dots \ m_{k-1}]$ and $\mathbf{G} = \begin{bmatrix} \mathbf{g}_1 \\ \vdots \end{bmatrix}$, then $\mathbf{c} = \mathbf{mG}$.

Generator Matrix Description of Linear Block Codes (2)

- There are *q^k* distinct vectors for **m**, therefore there are *q^k* distinct codewords.
- There are q^k distinct information sequences, therefore, m is the information vector (or message).
- **G** provides the transformation from information to codeword, thus **G** is referred to as the code generator matrix.

$$\mathbf{G}_1 = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

m	C	m	C
000	000000	100	110110
001	111111	101	001001
010	011011	110	101101
011	100100	111	010010

$$\mathbf{G}_2 = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

m	C	m	C
000	000000	100	110110
001	100100	101	010010
010	011011	110	101101
011	111111	111	001001

Systematic Codes

• A code C is said to be systematic if the original message appears explicitly in the codeword.

• For a systematic linear block code, the generator matrix is called a systematic generator.

Systematic Generators

- G_{syst} takes the form [I_k | P] or [P | I_k], where I_k is a k × k identity matrix and P is a k × (n-k) matrix which generates parity symbols.
- For any given **G**, we can find **G**_{syst} by linear combinations of rows.

m	С	m	С
000	000000	100	100100
001	001001	101	101101
010	010010	110	110110
011	011011	111	111111

Generator of Dual Code

- Let C be a (*n*,*k*) linear block code with generator **G**.
- Let C' be the dual of C. In other words, C' is made up of all *n*-tuples that are orthogonal to all *n*-tuples in C.
- The basis vectors in C' are orthogonal to the basis vectors in C.
- C' will be a (*n*, *n*-*k*) linear block code.

How to find the generator of Dual Code

- Let **H** be the $(n-k) \times n$ generator matrix of C'.
- $\mathbf{G}\mathbf{H}^{T} = k \times (n-k)$ all 0 matrix.
- Recall that G_{syst} produces the same code as G.
- $\mathbf{G}_{syst} = [\mathbf{I}_k \mid \mathbf{P}]$
- If $\mathbf{H} = [\mathbf{P}^T | \mathbf{I}_{n-k}]$, then $\mathbf{G}_{syst}\mathbf{H}^T = \mathbf{P} + \mathbf{P} = 0$.
- This means $\mathbf{G}\mathbf{H}^T = \mathbf{0}$.

$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$
$$\mathbf{G}_{syst} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}, \ \mathbf{P} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}, \ \mathbf{GH}^{T} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

