uOttawa

ELG 5372 Error Control Coding

L'Université canadienne Canada's university

Lecture 7: Fundamentals of Linear Block Codes

Basic Definitions

- $\mathbf{m}=\left(m_{0}, m_{1}, \ldots, m_{k-1}\right)$ is the q-ary k-tuple information vector.
- $\mathbf{c}=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$ is the q-ary n-tuple codeword vector.
- We say that \mathbf{c} is an element of code $C .(\mathbf{c} \in C)$

Definition 1

- An (n, k) block code C over an alphabet of q symbols is a set of $q^{k} n$-tuples called codewords. Associated with the code is an encoder which maps a message \mathbf{m}_{i}, which is a q-ary k-tuple to its associated codeword, \mathbf{c}_{i}.

Definition 2

- The vector space of all n-tuples from over field F_{q} is denoted as $\mathrm{F}_{q}{ }^{n}$.
- Since $F_{q}{ }^{n}$ is the set of all possible n-tuples, then the dimension of $F_{q}{ }^{n}$ is n.
- Let W be a k dimensional vector subspace of $F_{q}{ }^{n}$.
- Let W' be the set of all codewords in $\mathrm{F}_{q}{ }^{n}$ that are orthogonal to all codewords in W. ($\mathbf{w} \cdot \mathbf{w}=0$).
- W^{\prime} is called the dual space of W and it can be shown that it has dimension $n-k$. (see text page 79-80).

Definition 3

- The (n, k) block code C is a linear block code only if and only if its q^{k} codewords form a k dimensional vector subspace of $\mathrm{F}_{q}{ }^{n}$. The rate of the code is $R=$ kln.
- This means that C is a closed set. Therefore the sum of any two codewords in C produces another codeword in C.

Definition 4

- The hamming weight of a codeword \mathbf{c} is equal to the number of non-zero elements in the codeword.
- Example: Hamming $(7,4)$ code

codeword	HW(c)	codeword	HW(c)
0000000	0	1000110	3
0001101	3	1001011	4
0010111	4	1010001	3
0011010	3	1011100	4
0100011	3	1100101	4
0101110	4	1101000	3
0110100	3	1110010	4
0111001	4	1111111	7

Definition 5: Hamming Distance

- The hamming distance between two codewords in C is the number of positions in which the two codewords differ.
- $\mathrm{HD}\left(\mathbf{c}_{i}, \mathbf{c}_{j}\right)=\operatorname{HW}\left(\mathbf{c}_{i}-\mathbf{c}_{j}\right)$
- For codes that form vector spaces on $\operatorname{GF}\left(2^{m}\right), \mathbf{c}_{i}-\mathbf{c}_{j}=$ $\mathbf{c}_{i}+\mathbf{c}_{j}$.

Definition 6: Minimum Hamming Distance

- The minimum Hamming distance of code C is the smallest Hamming distnace between two distinct codewords in the code.
- Since $\mathrm{HD}\left(\mathbf{c}_{i}, \mathbf{c}_{j}\right)=\mathrm{HW}\left(\mathbf{c}_{i}-\mathbf{c}_{j}\right)$, then for linear block codes, $\mathbf{c}_{i}-\mathbf{c}_{j}=$ another non-zero codeword. Therefore, the minimum Hamming distance of the code is the minimum non-zero Hamming weight of the code.
- For Hamming $(7,4)$ example, $d_{\text {min }}=3$.

Generator Matrix Description of Linear Block Codes

- Since a linear block code C is a k-dimensional vector space, there exist k linearly independent vectors which form a basis for C .
$-\left\{\mathbf{g}_{0}, \mathbf{g}_{2}, \ldots, \mathbf{g}_{k-1}\right\}$ form a basis for C.
- All q^{k} codewords in C can be expressed as a linear combination of these basis vectors.
$-\mathbf{c}_{i}=m_{0} \mathbf{c}_{0}+m_{1} \mathbf{c}_{1}+\ldots+m_{k-1} \mathbf{c}_{k-1}$, where m_{i} are elements in $\mathrm{GF}(q)$.
- Let $\mathbf{m}=\left[m_{0} m_{1} \ldots m_{k-1}\right]$ and $\mathbf{G}=\begin{gathered}\mathbf{g}_{1} \\ \vdots\end{gathered}$, then $\mathbf{c}=\mathbf{m G}$.

Generator Matrix Description of Linear Block Codes (2)

- There are q^{k} distinct vectors for \mathbf{m}, therefore there are q^{k} distinct codewords.
- There are q^{k} distinct information sequences, therefore, \mathbf{m} is the information vector (or message).
- G provides the transformation from information to codeword, thus \mathbf{G} is referred to as the code generator matrix.

Example

$$
\mathbf{G}_{1}=\left[\begin{array}{llllll}
1 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

\mathbf{m}	\mathbf{c}	\mathbf{m}	\mathbf{c}
000	000000	100	110110
001	111111	101	001001
010	011011	110	101101
011	100100	111	010010

Example 2

$$
\mathbf{G}_{2}=\left[\begin{array}{llllll}
1 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

\mathbf{m}	\mathbf{c}	\mathbf{m}	\mathbf{c}
000	000000	100	110110
001	100100	101	010010
010	011011	110	101101
011	111111	111	001001

Systematic Codes

- A code C is said to be systematic if the original message appears explicitly in the codeword.

\mathbf{m}	\mathbf{m}	\mathbf{p}	\mathbf{p}	\mathbf{m}

- For a systematic linear block code, the generator matrix is called a systematic generator.

Systematic Generators

- $\mathbf{G}_{\text {syst }}$ takes the form $\left[\mathbf{I}_{k} \mid \mathbf{P}\right]$ or $\left[\mathbf{P} \mid \mathbf{I}_{k}\right]$, where \mathbf{I}_{k} is a $k \times$ k identity matrix and \mathbf{P} is a $k \times(n-k)$ matrix which generates parity symbols.
- For any given \mathbf{G}, we can find $\mathbf{G}_{\text {syst }}$ by linear combinations of rows.

Example

$$
\begin{aligned}
& 3=1+3 \text { G } \mathbf{G}_{1}=\left[\begin{array}{llllll}
1 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right] \\
& \mathbf{G}_{2}=\left[\begin{array}{llllll}
1 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\mathbf{G}_{3}=\left[\begin{array}{llllll}
1 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]} \\
& \mathbf{G}_{\text {syst }}=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \quad 1=1+2
\end{aligned}
$$

Example

\mathbf{m}	\mathbf{c}	\mathbf{m}	\mathbf{c}
000	000000	100	100100
001	001001	101	101101
010	010010	110	110110
011	011011	111	111111

Generator of Dual Code

- Let C be a (n, k) linear block code with generator \mathbf{G}.
- Let C' be the dual of C. In other words, C' is made up of all n-tuples that are orthogonal to all n-tuples in C.
- The basis vectors in C' are orthogonal to the basis vectors in C.
- C^{\prime} will be a ($n, n-k$) linear block code.

How to find the generator of Dual Code

- Let \mathbf{H} be the $(\mathrm{n}-\mathrm{k}) \times \mathrm{n}$ generator matrix of C^{\prime}.
- $\mathbf{G H}^{\top}=k \times(n-k)$ all 0 matrix.
- Recall that $\mathbf{G}_{\text {syst }}$ produces the same code as G.
- $\mathbf{G}_{\text {syst }}=\left[I_{k} \mid P\right]$
- If $\mathbf{H}=\left[\mathbf{P}^{\top} \mid \mathbf{I}_{n-k}\right]$, then $\mathbf{G}_{\text {syst }} \mathbf{H}^{\top}=\mathbf{P}+\mathbf{P}=0$.
- This means $\mathbf{G H}^{\top}=0$.

Example

$$
\begin{gathered}
\mathbf{G}=\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1
\end{array}\right] \\
\mathbf{H}=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right], \mathbf{G H}^{T}=\left[\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1
\end{array}\right], \mathbf{P}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \\
0
\end{gathered} 1
$$

