ELG 5372 Error Control Coding

uOttawa

L'Université canadienne Canada's university

Lecture 6: (a) Factoring X^{n-1} and (b) Introduction to Linear Block Codes: Vector Spaces

Factoring X^{n-1}

- In GF $\left(p^{m}\right)$, the expression $X^{n}-1$ has n roots, $\beta_{1}, \beta_{2}, \ldots$, β_{n}.
- The order of these roots, $\operatorname{ord}\left(\beta_{i}\right)$ must divide n and n must divide $p^{m}-1$.
- If we wish to factor $X^{n}-1$ in $\operatorname{GF}(p)$, we need to find the minimal polynomials in $\operatorname{GF}\left(p^{m}\right)$ wrt $\operatorname{GF}(p)$.
- Consider X^{7+1} in GF(2).
- We need to determine the extension field of GF(2) in which there are at least 7 roots of this equation with order that divides 7. -> GF(8).

Factoring X^{n-1}

- Since all nonzero elements of GF(8) have order 1 or 7 , then β^{7} $1=0$ for $\beta=$ any non-zero element in $\mathrm{GF}(8)$.
- The minimal polynomials of $\mathrm{GF}(8)$ wrt to $\mathrm{GF}(2)$ are polynomials in $\operatorname{GF}(2)$ but have the nonzero elements of $\mathrm{GF}(8)$ as roots in GF(8).
$-\{1\}->X+1$
$-\left\{\alpha, \alpha^{2}, \alpha^{4}\right\}->(X+\alpha)\left(X+\alpha^{2}\right)\left(X+\alpha^{4}\right)=X^{3}+$ $\left(\alpha+\alpha^{2}+\alpha^{4}\right) X^{2}+\left(\alpha^{3}+\alpha^{5}+\alpha^{6}\right) X+\alpha^{7}=X^{3}+X+1$.
$-\left\{\alpha^{3}, \alpha^{5}, \alpha^{6}\right\}->\left(X+\alpha^{3}\right)\left(X+\alpha^{5}\right)\left(X+\alpha^{6}\right)=X^{3}+$ $\left(\alpha^{3}+\alpha^{5}+\alpha^{6}\right) X^{2}+\left(\alpha+\alpha^{2}+\alpha^{4}\right) X+\alpha^{7}=X^{3}+X^{2}+1$.
$-\left(X^{3}+X^{2}+1\right)\left(X^{3}+X+1\right)(X+1)=X^{7}+1$.

Factoring X^{n-1}

- Factoring $X^{n}-1$ when $n=p^{m}-1$ is simple as we only need to find the minimal polynomials of $\mathrm{GF}\left(p^{m}\right)$ wrt to $\mathrm{GF}(p)$.
- For example $X^{15}+1$ is equal to the multiplication of all minimal polynomials of $\mathrm{GF}(16)$ wrt $\mathrm{GF}(2)$.
- However, it is a little more complicated to factor $X^{n}-1$ when $n \neq$ $p^{m}-1$.
- For example to factor $\mathrm{X} 5+1$ in $\mathrm{GF}(2)$, we need to find an extension field in which there are nonzero elements of order 5 , or that divide 5.
- In GF(16), elements must have order 15, 5, 3, or 1.
- Therefore we choose this field in which to find the roots of $X^{5}+1$.

Factoring X^{n-1}

- We find an element of GF(16) that has order 5.
- The element α^{3} has order 5.
- The conjugacy class of a3 is $\left\{\alpha^{3}, \alpha^{6}, \alpha^{12}, \alpha^{9}\right\}$.
- The minimal polynomial corresponding to this group is $X^{4}+X^{3}+X^{2}+X+1$.
- There are no other elements in GF(16) that have order 5.
- The element 1 has order 1 which divides 5 .

Therefore $X+1$ must divide $X^{5}+1$.
$-X^{5}+1=\left(X^{4}+X^{3}+X^{2}+X+1\right)(X+1)$.

Squaring Polynomials in GF(2)

- Let $p(X)=a_{0}+a_{1} X+a_{2} X^{2}+\ldots+a_{m} X^{m}$.
- $p^{2}(X)=$?
- $\ln \operatorname{GF}(2),(a)^{2}=a$. Furthermore $(a+b)^{2}=$

$$
a^{2}+b^{2}+a b+a b=a^{2}+b^{2}
$$

- $\left[a_{0}+\left(a_{1} X+a_{2} X^{2}+\ldots+a_{m} X^{m}\right)\right]^{2}=a_{0}{ }^{2}+\left(a_{1} X+\right.$

$$
\left.a_{2} X^{2}+\ldots+a_{m} X^{m}\right)^{2}=a_{0}+.
$$

- $+\left(a_{1} X+a_{2} X^{2}+\ldots+a_{m} X^{m}\right)^{2}$
- $\left[a_{1} X+\left(a_{2} X^{2}+\ldots+a_{m} X^{m}\right)\right]^{2}=a_{1} X^{2}+\left(a_{2} X^{2}+\ldots+a_{m} X^{m}\right)^{2}$.
- Until we find $\left(a_{0}+a_{1} X+a_{2} X^{2}+\ldots+a_{m} X^{m}\right)^{2}=a_{0}+a_{1} X^{2}+$ $a_{2} X^{4}+\ldots+a_{m} X^{2 m}$.
- For example $X^{5}+1=X^{10}+X^{5}+X^{5}+1=X^{10}+1$.

List of Primitive Polynomials of Degree m

- $m=2$
$-X^{2}+X+1$
- $m=3$
$-X^{3}+X+1, X^{3}+X^{2}+1$
- $m=4$
$-X^{4}+X+1, X^{4}+X^{3}+1$
- $m=5$
$-X^{5}+X^{2}+1, X^{5}+X^{3}+1, X^{5}+X^{3}+X^{2}+X+1, X^{5}+X^{4}+X^{2}+X+1$
$-X^{5}+X^{4}+X^{3}+X+1, X^{5}+X^{4}+X^{3}+X^{2}+1$
- $m=6$
$-X^{6}+X+1, X^{6}+X^{4}+X^{3}+X+1, X^{6}+X^{5}+1, X^{6}+X^{5}+X^{2}+X+1$
$-X^{6}+X^{5}+X^{3}+X^{2}+1, X^{6}+X^{5}+X^{4}+X+1$

Introduction to Linear Block Codes: Vector Spaces

- Let V be a set of elements called vectors and let F be a field of elements called scalars. The addition operation + is defined between vectors. A scalar multiplication operation • is defined such that for any a in F and v in $V, a \cdot v$ is also in V. We say that V is a vector space over F if + and \cdot satisfy the following conditions:

1. V forms a commutative group under +
2. For any a in F and \mathbf{v} in $V, a \cdot \mathbf{v}$ is also in $V(a \cdot \mathbf{v}+b \cdot \mathbf{w}$ in also in V if a, b are in F and \mathbf{v} and \mathbf{w} are in V (from 1 and 2)).
3. + and \cdot distribute $(a+b) \cdot \mathbf{v}=a \cdot \mathbf{v}+b \cdot \mathbf{v}$ and $a \cdot(\mathbf{v}+\mathbf{w})=a \cdot \mathbf{v}$ $+a \cdot w$.
4. The operation \cdot is associative $(a \cdot b) \cdot \mathbf{v}=a \cdot(b \cdot \mathbf{v})$.

Example

- Let V be the set of all length 2 vectors over $\mathrm{GF}(4)$.
- $\mathrm{F}=\left\{0,1 \alpha, \alpha^{2}\right\}$
- $\mathrm{V}=\left\{(0,0),(0,1),(0, \alpha),\left(0, \alpha^{2}\right),(1,0),(1,1),(1, \alpha),\left(1, \alpha^{2}\right),(\alpha, 0),(\alpha\right.$, 1), $\left.(\alpha, \alpha),\left(\alpha, \alpha^{2}\right),\left(\alpha^{2}, 0\right),\left(\alpha^{2}, 1\right),\left(\alpha^{2}, \alpha\right),\left(\alpha^{2}, \alpha^{2}\right)\right\}$
- Vector addition is done according to GF(4) addition and $(a, b)+(c, d)=(a+c, b+d)$
- Scalar multiplication is done $a \cdot(b, c)=(a \cdot b, a \cdot c)$ and is done according to GF(4) multiplication.
- Therefore it is easy to show that V forms a commutative group over addition, that $a \cdot v$ is also in V , that addition and multiplication distribute and that multiplication is associative.

Linear Combinations

- Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ be vectors in vector space V on field F .
- Let $a_{1}, a_{2}, \ldots, a_{k}$ be scalars in field F.
- $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\ldots+a_{k} \mathbf{v}_{k}$ is a linear combination of the vectors.

$$
a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\cdots+a_{k} \mathbf{v}_{k}=\mathbf{m G}
$$

$$
\mathbf{m}=\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{k}
\end{array}\right]
$$

$$
\mathbf{G}=\left[\begin{array}{c}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\vdots \\
\mathbf{v}_{k}
\end{array}\right]
$$

Spanning Sets

- Let V be a vector space
- Let $G=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$, each in V , be a spanning set of V .
- G is a spanning set if all vectors in V can be written as a linear combination of the vectors in G .
- The set of all vectors obtained from linear combinations of G is called the span of $\mathrm{G}=\operatorname{span}(\mathrm{G})$.

Example of Spanning Sets

- $W=\left\{\mathbf{v}_{1}=(0,0,0), \mathbf{v}_{2}=(0,1,1), \mathbf{v}_{3}=(1,0,0)\right.$ and $\left.\mathbf{v}_{4}=(1,1,1)\right\}$ on GF(2)
- $G=\{(0,1,1),(1,0,0)\}=\left\{\mathbf{v}_{2}, \mathbf{v}_{3}\right\}$
- $0 \mathbf{v}_{2}+0 \mathbf{v}_{3}=\mathbf{v}_{1}$
- $0 v_{2}+1 v_{3}=v_{3}$
- $1 \mathbf{v}_{2}+0 \mathbf{v}_{3}=\mathbf{v}_{2}$
- $1 v_{1}+1 v_{3}=v_{4}$
- Therefore G is a spanning set of W since $\operatorname{span}(\mathrm{G})=$ W.

Example 2

- Let $G_{2}=\left\{\mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$. This is also a spanning set of W because $\operatorname{span}\left(G_{2}\right)=W$.
- However, there are multiple ways to express a vector in W as a linear combination of vectors in G_{2}.
- For example $\mathbf{v}_{4}=0 \mathbf{v}_{2}+0 \mathbf{v}_{3}+1 \mathbf{v}_{4}$ or $\mathbf{v}_{4}=1 \mathbf{v}_{2}+1 \mathbf{v}_{3}+0 \mathbf{v}_{4}$.
- This is because G_{2} contains vectors that are linearly dependent.
- Definition:
- The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly dependent if there exists a set of scalars $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ (except for the all 0 case) for which $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\ldots+a_{k} \mathbf{v}_{k}=0$.

Basis

- A spanning set for vector space V that has the smallest possible number of vectors in it is called a basis for V.
- A basis is formed by using only linearly independent vectors
- If one vector in G is linearly dependent on others in G, it can be removed from the set and the set still spans V .
- Example: V is the set of all binary vectors of length 3.
- $V=\{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0)$, $(1,1,1)\}$.
- Let $\mathrm{G}_{1}=\{(0,0,1),(0,1,0),(1,0,0)\}$
- Let $\mathrm{G}_{2}=\{(0,1,1),(1,1,0),(1,1,1)\}$
- Both G_{1} and G_{2} each form a basis for V .

Dimension of a Vector Space

- $\operatorname{Dim}(\mathrm{V})=$ number of vectors that form a basis for V .
- In the previous example. $\operatorname{Dim}(\mathrm{V})=3$.
- In the first example $\operatorname{Dim}(W)=2$.

Vector Subspace

- Let V be a vector space on F and let W be a subset of V . - If W forms a vector space, then W is a vector subspace of V .
- In the previous examples W is a subspace of V .

