ELG 5372 Error Control Coding

uOttawa

L'Université canadienne Canada's university

Lecture 5: Algebra 3: Irreducible, Primitive and Minimal Polynomials

Université d'Ottawa | University of Ottawa

Irreducible Polynomials

- When $f(X)$ is divided by $g(X)$ and $r(X)=0$, then $g(X)$ is a factor of $f(X)$ and we say that $f(X)$ is divisible by $g(X)$. $(g(X) \mid f(X))$
- If a polynomial $f(X)$ has no factors other than 1 and itself, then we say that the polynomial is irreducible.
- Furthermore, any reducible polynomial can be expressed as the multiplication of a group of irreducible polynomials much like any number can be factored into a multiplication of primes.

Factorization of Polynomials

- For $f(X)$ on $\mathrm{GF}(q)$ and β is an element of $\mathrm{GF}(q)$, if $f(\beta)=0$, then β is a root of $f(X)$ and $f(X)$ is divisible by $X-\beta$.
- Example
- On GF(2), if $f_{0}=0$ for any polynomial, then it is divisible by X.
- $f(X)=X+X^{2}$ has 0 as a root, therefore $f(X)=X(1+X)$. (as we can see, it also has 1 as a root.
- On GF(2), if $f(X)$ has an even number of terms, then $f(1)=0$. Therefore $(X+1)$ is a factor of $f(X)$.
- $f(X)=1+X+X^{3}+X^{4} . f(1)=1+1+1^{3}+1^{4}=1+1+1+1=0$.
- $f(X)=\left(1+X^{3}\right)(1+X)$. Furthermore, we can show that $1+X^{3}=$ $(1+X)\left(1+X+X^{2}\right)$.
$-1+X+X^{2}$ is a polynomial of degree 2 . It is irreducible in GF(2).

Factorization of Polynomials (2)

- Suppose we define $f(X)=1+X+X^{2}$ over GF(4).
- Then $f(0)=1, f(1)=1, f(\alpha)=1+\alpha+\alpha^{2}=\alpha^{2}+\alpha^{2}=0$ and $f\left(\alpha^{2}\right)=1+\alpha^{2}+\left(\alpha^{2}\right)^{2}=1+\alpha^{2}+\alpha=0$.
- Thus α and α^{2} are roots of $1+X+X^{2}$ in GF(4). Thus $1+X+X^{2}=(X-\alpha)\left(X-\alpha^{2}\right)=(X+\alpha)\left(X+\alpha^{2}\right)$.
- The conclusion here is that a polynomial that is irreducible in GF(p), is not necessarily irreducible in GF(p^{m}).

Theorem 8

- An irreducible polynomial of degree m on $\operatorname{GF}(p)$ divides $\quad X^{p^{m}-1}-1$
- For proof of theorem 8 see R.J. McEliece, Finite Fields for Computer Scientists and Engineers, Boston: Kluwer Academic Publishers, 1988.
- It will become apparent when we discuss minimal polynomials.

Example of Theorem 8

- We have seen that $1+X+X^{2}$ is irreducible in GF(2). Therefore according to Theorem 8, it must divide $1+X^{3}$.

$$
\begin{array}{r}
X ^ { 2 } + X + 1 \longdiv { X ^ { 3 } } \begin{array} { r }
{ X + 1 } \\
{ \frac { X ^ { 3 } + X ^ { 2 } + X } { X ^ { 2 } + X + 1 } } \\
{ \frac { X ^ { 2 } + X + 1 } { 0 } }
\end{array}
\end{array}
$$

Primitive Polynomials

- An irreducible polynomial on GF $(p), f(X)$, is said to be primitive if the smallest value of n for which it divides $X^{n}-1$ is $n=p^{m}-1$.
- In other words, although all irreducible polynomials divide X^{n}-1 where $n=p^{m}-1$, some polynomials also divide $X^{n}-1$ where $n<$ $p^{m}-1$. These polynomials are not primitive.
- $1+X+X^{2}$ is a primitive polynomial on GF(2), as it divides $X^{3}+1$ but it does not divide $X^{n}+1$ for $n<3$.
- $1+X+X^{4}$ is an irreducible polynomial in GF(2). It divides $X^{15}+1$, but it does not divide $X^{n}+1$ for $n<15$. Therefore it is primitive.
- $X^{4}+X^{3}+X^{2}+X+1$ is irreducible on GF(2). It divides $X^{15}+1$, but it also divides $X^{5}+1$. It is, therefore, not primitive.

Theorem 9

- An irreducible polynomial of degree m in $\operatorname{GF}(p)$ has roots in $\mathrm{GF}\left(p^{m}\right)$ that all have the same order. In other words, if $f(X)$ is a polynomial of degree m and is irreducible in $\operatorname{GF}(p)$, and if $f(\alpha)=\mathrm{f}(\beta)=0$ in $\operatorname{GF}\left(p^{m}\right)$, then $\operatorname{ord}(\alpha)=\operatorname{ord}(\beta)$.
- This will become evident when we discuss conjugacy classes and minimal polynomials.

Theorem 10

- Primitive polynomials of degree m in $G F(p)$ have roots in $\mathrm{GF}\left(p^{m}\right)$ which have order $p^{m}-1$. In other words, if $f(X)$ is primitive in $\mathrm{GF}(p)$, and $f(\alpha)=0$ in $\mathrm{GF}\left(p^{m}\right)$, then α has order $p^{m}-1$.
- Proof using theorems 8 and 9.

Consequence of Theorem 10

- If $f(X)$ is a primitive polynomial of degree m in $\operatorname{GF}(p)$ and α is a root of $f(X)$ in GF $\left(p^{m}\right)$, then a has order p^{m} 1 in $\operatorname{GF}\left(p^{m}\right)$ and is therefore a primitive element in GF(p^{m}).

Example

- GF(4) as an extension field of GF(2).
$-f(X)=X^{2}+X+1$ is a primitive polynomial of degree 2 in GF(2).
- $m=2$.
- The root of $f(X)$ in $\mathrm{GF}\left(2^{2}\right)$ is a primitive element of $\mathrm{GF}\left(2^{2}\right)$.
- Element α is a root of $\mathrm{f}(\mathrm{X})$ in $\mathrm{GF}(4)$ if $\alpha^{2}+\alpha+1=0$. Or $\alpha^{2}=\alpha+1$.
- Then $\alpha^{1}=\alpha, \alpha^{2}=\alpha+1$ and $\alpha^{3}=\alpha^{2} \alpha=\alpha^{2}+\alpha=\alpha+1+\alpha=$ $(1+1) \alpha+1=1$.

Example 2

- GF(8) as an extension field of GF(2).
- We need a primitive polynomial of degree 3.
- $X^{3}+X+1$ is irreducible and divides $X^{7}+1$ but does not divide $X^{n}+1$ for $n<7$. Therefore $X^{3}+X+1$ is primitive.
- The element α is a root if $\alpha^{3}=\alpha+1$.
- GF(8) is $\left\{0, \alpha^{1}=\alpha, \alpha^{2}=\alpha^{2}, \alpha^{3}=\alpha+1, \alpha^{4}=\alpha^{2}+\alpha, \alpha^{5}=\alpha^{3}+\alpha^{2}=\right.$ $\left.\alpha^{2}+\alpha+1, \alpha^{6}=\alpha^{3}+\alpha^{2}+\alpha=\alpha^{2}+1, \alpha^{7}=\alpha^{3}+\alpha=1\right\}$.
- Vectorially, GF(8) = \{(0,0,0), $(0,0,1),(0,1,0),(1,0,0),(0,1,1)$, (1,1,0), (1,1,1), (1,0,1)\}.

Minimal Polynomials and Conjugate Elements

- A minimal polynomial is defined as follows:
- Let α be an element in the field $\operatorname{GF}\left(q^{m}\right)$. The minimal polynomial of α with respect to $\mathrm{GF}(q)$ is the smallest degree non-zero polynomial $p(X)$ in $\mathrm{GF}(q)$ such that $p(\alpha)=0$ in $\operatorname{GF}\left(q^{m}\right)$.

Properties of Minimal Polynomials

- For each element α in $\mathrm{GF}\left(q^{m}\right)$ there exists a unique, non-zero polynomial $p(X)$ of minimal degree in $\operatorname{GF}(q)$ such that the following are true:

1. $p(\alpha)=0$ in $\operatorname{GF}\left(q^{m}\right)$
2. The degree of $p(X)$ is less than or equal to m
3. $f(\alpha)=0$ implies that $f(X)$ is a multiple of $p(X)$.
4. $p(X)$ is irreducible in $\operatorname{GF}(q)$.

Conjugates of field elements

- Let β be an element of $\mathrm{GF}\left(q^{m}\right)$.
- $\quad \beta^{q^{i}}$ is a conjugate of β, where i is an integer.
- Theorem 11
- The conjugacy class of β is made up of the sequence $\beta, \beta^{q}, \beta^{q^{2}}, \beta^{q^{3}}, \ldots, \beta^{q^{d-1}}$
- If we continue the sequence $\beta^{d}=\beta$ and this is the first element of the sequence to be repeated.
- d divides m.

See S.B. Wicker, Error Control Systems for Digital Communication and Storage, Upper Saddle River, NJ: Prentice Hall, 1995, pages 55-56 for proof.

Example

- Conjugacy class of elements in GF(8) wrt GF(2)
- \{1\}
$-\left\{\alpha, \alpha^{2}, \alpha^{4}\right\}$
- $\left\{a^{3}, \alpha^{6}, \alpha^{5}\right\}$
- Conjugacy class of elements in GF(16) wrt GF(4)
- \{1\}
$-\left\{\alpha, \alpha^{4}\right\},\left\{\alpha^{2}, \alpha^{8}\right\},\left\{\alpha^{3}, \alpha^{12}\right\},\left\{\alpha^{5}\right\}$
$-\left\{\alpha^{6}, \alpha^{9}\right\},\left\{\alpha^{7}, \alpha^{13}\right\},\left\{\alpha^{10}\right\},\left\{\alpha^{11}, \alpha^{14}\right\}$

Theorem 12

- Let β, which is an element in $\mathrm{GF}\left(q^{m}\right)$, have a minimal polynomial $p(X)$ with respect to $\operatorname{GF}(q)$.
- The roots of $\mathrm{p}(X)$ in $\mathrm{GF}\left(q^{m}\right)$ are the conjugates of β with respect to GF(q).

From Theorem 12 we find that if $p(X)$ is a minimal polynomial of β in $\operatorname{GF}\left(q^{m}\right)$ wrt $\operatorname{GF}(q)$, then

$$
p(X)=\prod_{i=0}^{d-1}\left(X-\beta^{q^{i}}\right)
$$

Example

- Minimal polynomials of GF(4) wrt GF(2):
- \{1\} -> X+1
$-\left\{\alpha, \alpha^{2}\right\}->(X+\alpha)\left(X+\alpha^{2}\right)=X^{2}+\left(\alpha+\alpha^{2}\right) X+\alpha^{3}=X^{2}+X+1$
- Minimal polynomials of GF(8) wrt GF(2)
- \{1\} -> X+1
$-\left\{\alpha, \alpha^{2}, \alpha^{4}\right\}->(X+\alpha)\left(X+\alpha^{2}\right)\left(X+\alpha^{4}\right)=X^{3}+$ $\left(\alpha+\alpha^{2}+\alpha^{4}\right) X^{2}+\left(\alpha^{3}+\alpha^{5}+\alpha^{6}\right) X+\alpha^{7}=X^{3}+X+1$.
$-\left\{\alpha^{3}, \alpha^{5}, \alpha^{6}\right\}->\left(X+\alpha^{3}\right)\left(X+\alpha^{5}\right)\left(X+\alpha^{6}\right)=X^{3}+$ $\left(\alpha^{3}+\alpha^{5}+\alpha^{6}\right) X^{2}+\left(\alpha+\alpha^{2}+\alpha^{4}\right) X+\alpha^{7}=X^{3}+X^{2}+1$.

