ELG 5372 Error Control Coding

Lecture 4: Algebra 2: Fields and Polynomials

Fields

A field is a set of elements on which we can perform addition, subtraction, multiplication and division without leaving the set.

Formal Definition of a Field

- Let F be a set of elements on which two binary operations called addition ' + ' and multiplication ' x ' are defined. The set is a field under these two operations if the following conditions are satisfied:

1. F is a commutative group under addition. The identity element with respect to addition is called the zero element of F and is denoted by 0 .
2. The nonzero elements of $F\{\{F\}-0\}$ form a commutative group under multiplication. The multiplicative identity is termed the unity element in F and is denoted by 1.
3. Multiplication is distributive over addition. In other words, for a, b, c in $F, a \times(b+c)=a \times b+a \times c$.

Some Notation

For a in $F,-a$ is the additive inverse of a.
${ }^{\circ}$ Example: in GF(3) if $a=1,-a=2$.
For a in $F, 1 / a$ is the multiplicative inverse of a.

- Example: in GF(3) if $a=2,1 / a=2$.

This will become evident as we progress through the lecture.

Properties of Fields

For every element a in $F, a \times 0=0 \times a=0$.
2. For every two non-zero elements a, b in F, $a \times b \neq 0$.
3. For a, b in $F, a \times b=0$ for $a \neq 0$ implies $b=0$.
4. For any two elements in a field $-(a \times b)=(-a)$ $\times b=a \times(-b)$.
5. For $a \neq 0, a \times b=a \times c$ implies that $b=c$.

Galois Field 2 (GF(2)): The Binary Field

- A binary field can be constructed under modulo-2 addition and modulo-2 multiplication.

+	0	1
0	0	1
1	1	0

\times	0	1
0	0	0
1	0	1

Modulo-2 Addition
Modulo-2 Multiplication

GF (p)

Using the same idea as GF(2), we can generate any Galois field with a prime number, p, of elements over modulo- p addition and multiplication.

Example GF(3)

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

\times	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

Modulo-3 Addition
Modulo-3 Multiplication

Extension Fields GF(pm)

We cannot construct finite fields simply by using modulo arithmetic.

- For example, GF(4) is not $0,1,2,3$ using modulo-4 addition and multiplication.
- GF(4) can be constructed by considering it as 2 dimensional GF(2).
- $\operatorname{GF}(4)=\{(0,0),(0,1),(1,0),(1,1)\}$.
- We say that GF(4) is an extension field of GF(2).

Characteristic of a Field

- Consider a finite field of q elements, GF(q).
- Let $t_{k}=\sum_{i=1}^{k} 1$.
- Let λ be the smallest value of k for which $t_{k}=$ 0.
- Then λ is called the characteristic of the field GF(q).
- For example, in GF(2), $\lambda=2$ (since $1+1=0$). In $G F(3), 1+1+1=0$, thus $\lambda=3$.

Theorem 5

The characteristic of a field is always a prime number.

Order of an element in GF(q)

Suppose α is a nonzero element in $\mathrm{GF}(q)$. Since the non-zero elements in a field form a closed set under multiplication, then α^{2}, α^{3}, $\alpha^{4} \ldots$ are also elements in $\operatorname{GF}(q)$.
The order of element α in $\operatorname{GF}(q)$ is the smallest integer, $\operatorname{ord}(\alpha)$, for which $\operatorname{cord}^{\operatorname{rd}(\alpha)}=1$.

Example GF(3)

$G F(3)=\{0,1,2\}$
1: $1^{1}=1$, therefore $\operatorname{ord}(1)=1$.

- 2: $2^{1}=2,2^{2}=4 \bmod 3=1$, therefore $\operatorname{ord}(2)$
$=2$.

Theorem 6

Let α be a non-zero element in GF(q). Then $\alpha^{q-1}=1$.

Theorem 7

Let α be an element in $\mathrm{GF}(q)$. Then $\operatorname{ord}(\alpha)$ divides $q-1 .(\operatorname{ord}(\alpha) \mid q-1)$

Primitive Elements

- Any element in GF(q) whose order is $q-1$ is a primitive element of $\mathrm{GF}(q)$.
- For example, in GF(3), element 2 has order 2. Thus 2 is a primitive element of $\mathrm{GF}(3)$.
- Let α be a primitive element in GF(q), then the series $\alpha^{1}, \alpha^{2}, \ldots, \alpha^{q-1}$ produces q - 1 distinct non-zero elements in GF(q).
- In other words, the $q-1$ successive powers of a primitive element α produce all of the non-zero elements in GF(q). Thus GF(q) = $\left\{0, \alpha, \alpha^{2}, \ldots, \alpha^{q-1}\right\}$.

Example GF(4)

$0=(0,0), 1=(0,1), \alpha=(1,0)$ and $\alpha^{2}=(1,1)$.

- In other words, $\alpha^{2}=\alpha+1$ (*).
- If α is the primitive, then $\operatorname{ord}(\alpha)=3$.
- $\alpha^{3}=\alpha^{2} \alpha=(\alpha+1) \alpha=\alpha^{2}+\alpha=\alpha+1+\alpha=$
$(1,0)+(0,1)+(1,0)=(1+0+1,0+1+0)=(0,1)$.
- Primitive element is defined by (*).
- How do we define the primitive of a field?
- Special type of polynomial: primitive polynomial.

Polynomials over GF(q)

The polynomial $f(X)=f_{0}+f_{1} X+f_{2} X^{2}+\ldots$ $+f_{n} X^{n}$ is a polynomial of degree n over $\mathrm{GF}(q)$ if the coefficients f_{i} come from $\mathrm{GF}(q)$ and obey $\mathrm{GF}(q)$ arithmetic.
Suppose $f(X)$ and $g(X)$ are two polynomials over $G F(q)$ and are given by (assume $m<n$):

$$
\begin{aligned}
& f(X)=f_{o}+f_{1} X+\ldots+f_{n} X^{n} \\
& g(X)=g_{o}+g_{1} X+\ldots+g_{m} X^{m}
\end{aligned}
$$

Addition of polynomials

$$
\begin{aligned}
f(X)+g(X)= & \left(f_{o}+g_{o}\right)+\left(f_{1}+g_{1}\right) X+\ldots+\left(f_{m}+g_{m}\right) X^{m} \\
& +f_{m+1} X^{m+1}+\ldots+f_{n} X^{n}
\end{aligned}
$$

Where all additions are performed as defined in GF(q)

Multiplication of polynomials

$$
f(X) g(X)=c_{0}+c_{1} X+\ldots c_{n+m} X^{n+m}
$$

$$
\begin{array}{ll}
c_{0} & =f_{0} g_{0} \\
c_{1} & =f_{0} g_{1}+f_{1} g_{0} \\
c_{2} & =f_{0} g_{2}+f_{1} g_{1}+f_{2} g_{0} \\
\vdots & \vdots \\
c_{n+m} & =f_{n} g_{m}
\end{array}
$$

Examples

Polynomials in GF(2)

$$
\begin{aligned}
& f(X)=1+X+X^{3} \\
& g(X)=1+X^{2}
\end{aligned}
$$

- $f(X)+g(X)=(1+1)+(1+0) X+(0+1) X^{2}+$ $(1+0) X^{3}=X+X^{2}+X^{3}$ $f(X) g(X)=\left(1+X+X^{3}\right) \times\left(1+X^{2}\right)=1+X^{2}+$ $X+X^{3}+X^{3}+X^{5}=1+X+X^{2}+(1+1) X^{3}$ $+X^{5}=1+X+X^{2}+X^{5}$.

Examples

Polynomials in GF(4)

$$
\begin{aligned}
& f(X)=1+\alpha X+\alpha X^{2} \\
& g(X)=1+\alpha^{2} X
\end{aligned}
$$

Properties of Polynomials over GF (q)

Commutative

$$
\begin{aligned}
& a(X)+b(X)=b(X)+a(X) \\
& a(X) b(X)=b(X) a(X)
\end{aligned}
$$

Associative

$$
\begin{aligned}
& a(X)+[b(X)+c(X)]=[a(X)+b(X)]+c(X) \\
& a(X)[b(X) c(X)]=[a(X) b(X)] c(X)
\end{aligned}
$$

Distributive

$$
a(X)[b(X)+c(X)]=a(X) b(X)+a(X) c(X)
$$

Polynomial Division

When we divide $f(X)$ by $g(X)$, we get two new polynomials; $q(X)$ is the quotient and $r(X)$ is the remainder.

- The degree of the remainder, $r(X)$ is smaller than the degree of $g(X)$.

$$
\begin{aligned}
& \begin{array}{lll}
X^{3}+1 \\
X^{5}+ & +1 \\
X^{2} & +X^{2} & +1
\end{array} \\
& \begin{array}{lll}
X^{5} & +X^{3} \\
& X^{3}+X^{2} & +1 \\
X^{3}+ & +1 \\
X^{2} &
\end{array}
\end{aligned}
$$

