

uOttawa

L'Université canadienne Canada's university

ELG 5372 Error Control Coding

Lecture 17: Berlekamp-Massey Algorithm for Binary BCH Codes

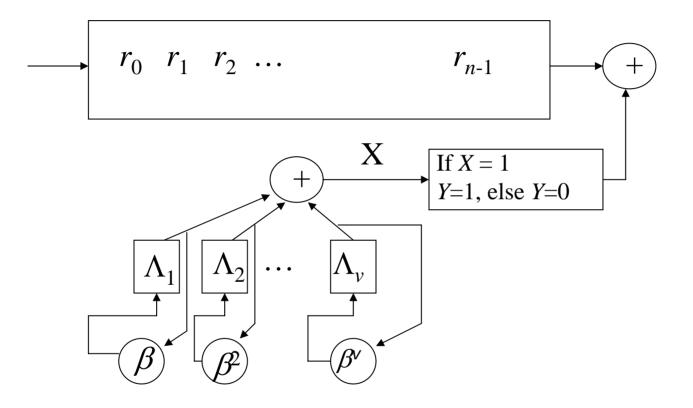
Université d'Ottawa | University of Ottawa

uOttawa.ca

Chien Search

- If $\Lambda(\beta) = 0$, then r_{n-i} is in error.
- This means that $\Lambda(\beta)+1=1$.
- $X(\beta^{i}) = \Lambda_{1}\beta^{i} + \Lambda_{2}\beta^{2i} + \dots \Lambda_{v}\beta^{vi}$.
- If $X(\beta) = 1$, $c_{n-i} = r_{n-i} + 1$, else $c_{n-i} = r_{n-i}$.
- If the Chien Search fails to find *v* roots of a error locator polynomial of degree *v*, then the error pattern is an uncorrectable error pattern.

Chien Search 2



- Peterson's method involves straightforward linear algebra, but it is computationally complex to implement.
- Should **A** be singular, the last two rows and columns are deleted and the determinant of the new **A** must be computed again.
- Thus, the Peterson method starts with a big problem and works it down to a small problem (thus if it is a small problem to begin with, the most computationally complex step is done for nothing).
- The Berlekamp-Massey algorithm starts with a small problem and works up to a large problem.
- Complexity of Peterson algorithm is proportional to v^3 , while that of Berlekamp-Massey algorithm is proportional to v^2 .

• It was observed from Newton's identities that

$$S_j = -\sum_{i=1}^{\nu} \Lambda_i S_{j-i}, \quad j = \nu + 1, \nu + 2, \dots, 2t$$
 (*)

- (*) describes the output of a linear feedback shift register with coefficients Λ₁, Λ₂, ..., Λ_ν.
- Given a sequence $S_1, S_2, ..., S_{2t}$, we can determine the LFSR coefficients.

- In the Berlekamp-Massey algorithm, we build the LFSR that produces the entire sequence by successively modifying an existing LFSR to produce increasingly longer sequences.
- We start with a LFSR that can produce S_1 , then we check to see if that LFSR can produce $\{S_1, S_2\}$.
 - If so, no modification is necessary.
 - If not, then we need to modify the current LFSR to produce a new one that can produce the sequence.
- We repeat until we have a LFSR that produces the sequence $\{S_1, S_2, \dots, S_{2t}\}$.

- Let *k* be the iteration index of the algorithm and let *L_k* be the length of the LFSR on iteration *k*.
- Let Λ^(k)(x) be the error locator polynomial at iteration k.
 Λ^(k)(x) = 1 + Λ^(k)₁x + Λ^(k)₂x² + ... + Λ^(k)_Lx^{L_i}
- At iteration k, we have a LFSR capable of producing sequence {S₁, S₂, ..., S_k}.

$$S_{j} = -\sum_{i=1}^{L_{k}} \Lambda_{i}^{(k)} S_{j-i}, \quad j = L_{k} + 1, \dots, k$$

• Suppose after *k*-1 iterations, we have $\Lambda^{(k-1)}(x)$. On iteration *k*, we compute:

$$\hat{S}_{k} = -\sum_{i=1}^{L_{k-1}} \Lambda_{i}^{(k-1)} S_{k-i} \qquad (**)$$

- If this is equal to S_k , then the error locator polynomial is good to produce the sequence $\{S_1, S_2, ..., S_k\}$ and no changes are needed. Therefore $\Lambda^{(k)}(x) = \Lambda^{(k-1)}(x)$.
- If (**) is not equal to S_k , then the polynomial needs to be modified.
- This discrepancy is $d_k = S_k \hat{S}_k = S_k + \sum_{i=1}^{L_{k-1}} \Lambda_i^{(k-1)} S_{k-i}$

$$d_k = S_k - \hat{S}_k = \sum_{k=0}^{L_{k-1}} \Lambda_i^{(k-1)} S_{k-i}$$

Let us produce a new polynomial $\Lambda^{(k)}(x) = \Lambda^{(k-1)}(x) + Ax^{l}\Lambda^{(m-1)}(x)$, where *A* is some element in the field, *l* is an integer and $\Lambda^{(m-1)}(x)$ is one of the prior error locator polynomials associated with an non-zero discrepancy d_m .

Let us compute the new discrepancy using this new polynomial.

$$d'_{k} = \sum_{i=0}^{L_{k-1}} \Lambda_{i}^{(k-1)} S_{k-i} + A \sum_{i=0}^{L_{m-1}} \Lambda_{i}^{(m-1)} S_{k-i-l} = d_{k} + A d_{m} \text{ if we select } l = k - m$$

By choosing $A = -d_m^{-1}d_k$, $d_k^* = 0$. Thus, new polynomial produces $\{S_1, S_2, ..., S_k\}$. Proof in text to show that this algorithm produces shortest LFSR.

Example

- Consider the two error correcting binary (15,7) BCH code. The generator polynomial has roots α , α^2 , α^3 and α^4 .
- Let $r(x) = x^2 + x^5$.

•
$$S_1 = \alpha$$
, $S_2 = \alpha^2$, $S_3 = \alpha^{13}$ and $S_4 = \alpha^4$.

Example Cont'd

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	k	S _k	d_k	<i>c</i> (<i>x</i>)	L	<i>p</i> (x)	d _m
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	1	1	0	1	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	α	α	1+ <i>α</i> x	0	1	1
$\alpha^{8}. \qquad \stackrel{1)}{\overset{1}{}} \alpha^{8} \alpha^{14} = 1 + \alpha x + \alpha^{7} x^{2}.$	2	α^2	0	1+ <i>α</i> x	1	1	α
4 α^4 $\alpha^4 + \alpha^{14} + 1 + \alpha x + \alpha^7 x^2$. 2 $1 + \alpha x = \alpha^8$	3	α ¹³	$\alpha^{13} + \alpha^3 = \alpha^8.$	$^{1)}\alpha^{8}\alpha^{14} =$	2	1+ <i>α</i> x	α
$\alpha^{s} = 0$	4	α4	$\alpha^4 + \alpha^{14} + \alpha^9 = 0$	$1+\alpha x+\alpha^7 x^2$.	2	1+ <i>α</i> x	α ⁸

Simplification for binary codes

• Since S_{2k} is not independent of S_k , every even iteration of the Berlekamp-Massey algorithm will result in $d_k = 0$. Thus, we can skip every even iteration.

