
ELG 5372 Error 
Control Coding

Lecture 16: Decoding of BCH 
and RS Codes  



Algebraic Decoding of BCH and RS Codes

• The algebraic decoding of BCH and RS codes has the following 
general steps:
– Computation of the syndrome
– Determination of an error location polynomial.  The roots of 

this polynomial provide the location of the errors.  There are 
many algorithms for finding this polynomial (Peterson’s, 
Berlekamp-Massey, Peterson-Gorenstein-Zierler etc)

– Determination of roots of error locator polynomial.  Usally
done by Chien search

– For non-binary BCH and RS codes, error values must be 
found (usually using Forney’s algorithm).



Computation of Syndrome

• For all examples, we will assume narrow-sense BCH 
or RS codes.

• We know that α, α2, …, α2t are roots of g(x), therefore 
they are roots of c(x) as well.

• Therefore c(α) = c(α2) = … = c(α2t).
• The received polynomial r(x) = c(x)+e(x).
• Let Sj = r(αj) = c(αj)+e(αj) = e(αj) for j = 1, 2, …, 2t.
• The values S1, S2, …, S2t are the syndromes of the 

received polynomial.



Computation of Syndrome
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Suppose that r(x) has v errors in it and that they 
are in positions i1, i2, …, iv.  Then (*) becomes:
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Computation of Syndrome for Binary Codes

• For binary codes eil = 1.  Therefore (**) becomes

• If we know Xl, then we know the location of the 
error.  
– For example, if X1= α2, then by definition, i1 = 2 

and the error is in digit r2.
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The Error Locator Polynomial for Binary BCH 
Codes

• We obtain the following set of equations:

• The equations are said to be power-sum 
symmetric functions and it gives us a set of 2t
equations with v unknowns.
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The Error Locator Polynomial for Binary BCH 
Codes

• The set of power symmetric functions is a solvable 
set of functions (for v ≤ t).  However, it is 
computationally complex.

• Therefore a new polynomial is introduced.  This is 
the error locator polynomial:

• Xl
-1 is a root of this polynomial.
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Finding the Error Locator Polynomial
Let us consider the case when v = 2.

2
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Λ1 = -(X1+X2) and Λ2 = X1X2
We can see that S1+Λ1 = 0
S2 = X1

2+X2
2, S2+2Λ2 = (X1

2+2X1X2+X2
2) = (X1+X2)2

S2+S1Λ1+2Λ2 = 0
Also S3+Λ1S2+Λ2S1 = 0
And S4+Λ1S3+Λ2S2 = 0



Finding the Error Locator Polynomial 2

• We can extend this to arbitrary v:
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Finding the Error Locator Polynomial 3
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Peterson-Gorenstein-Zierler Algorithm

• Set v = t
• Form Mv and determine if Mv is invertible (compute 

det(Mv), if det(Mv) = 0, Mv is not invertible.
– If not invertible, it means there are less than t

errors
– Set v = t-1 and repeat step

• Once Mv is invertible, compute Λ = Mv
-1(-S)



Example

• Consider the binary (15,7) BCH code.
• This is a two error correcting code.
• Suppose r(x) = x7.
• S1 = α7, S2 = α14, S3 = α6, S4 = α13, 
• Assume v = 2
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Example cont’d

• Therefore we assume that v = 1
• M1 = [α7]
• Then a7Λ1 = -α14

• Or Λ1 = -α7.
• The error locator polynomial is Λ(x) = 1-α7x (or 

1+α7x).  This has root x = α8.  Therefore X1
-1 = α8, or 

X1 = α7.  Error position is r7 in r(x).  Therefore c(x) 
=r(x)-x7 = 0.



Example 2

• For the same code, assume that r(x) = x2+x5.
• S1 = α2+α5 = α, S2 = α4+α10 = α2, S3 = α6+1 = α13

and S4 = α8+α5 = α4.
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Example 2 cont’d

• Therefore Λ(x) = α7x2+αx+1 = (α2x+1)(α5x+1)
• The roots are X1

-1 = α13 and X2
-1 = α10.  Therefore X1

= a2 and X2 = α5.  
• This means r2 and r5 are incorrect.
• c(x) = r(x)+x2+x5 = 0.



Simplifications for Binary Codes

• For GF(2m), (X+Y)2 = (X2+Y2).  
• Therefore S2j = Sj

2.
• Also nX = 0 if n is even and nX = X if n is odd.



Newton’s Identities
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Newton’s identities minus redundant 
equations
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Newton’s identities minus redundant 
equations in matrix form

• AΛ = -S
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Peterson Algorithm

• Assume there are t errors.  If there are in fact t errors, A is 
invertible.  
– If A not invertible, delete last two rows and last two columns 

and repeat
• Once A is invertible, Λ = A-1(-S).



Coefficients for Error Locator Polynomial for 
small number of errors

• Using Peterson’s algorithm, explicit expressions for Λi have 
been computed for codes that can correct a small number of 
errors.

• 1 error correcting, Λ1 = S1

• 2 error correcting, Λ1 = S1 and Λ2 = (S3+S1
3)/S1.

• 3 error correcting, Λ1 = S1 and Λ2 = (S1
2S3+S5)/(S1

3+S3), Λ3 = 
(S1

3+S3)+S1Λ2.
• Others can be found on page 252 of text.
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