# uOttawa 

# ELG 5372 Error Control Coding 

L'Université canadienne Canada's university

## Lecture 16: Decoding of BCH and RS Codes

## Algebraic Decoding of BCH and RS Codes

- The algebraic decoding of BCH and RS codes has the following general steps:
- Computation of the syndrome
- Determination of an error location polynomial. The roots of this polynomial provide the location of the errors. There are many algorithms for finding this polynomial (Peterson's, Berlekamp-Massey, Peterson-Gorenstein-Zierler etc)
- Determination of roots of error locator polynomial. Usally done by Chien search
- For non-binary BCH and RS codes, error values must be found (usually using Forney's algorithm).


## Computation of Syndrome

- For all examples, we will assume narrow-sense BCH or RS codes.
- We know that $\alpha, \alpha^{2}, \ldots, \alpha^{2 t}$ are roots of $g(x)$, therefore they are roots of $c(x)$ as well.
- Therefore $c(\alpha)=c\left(\alpha^{2}\right)=\ldots=c\left(\alpha^{2 t}\right)$.
- The received polynomial $r(x)=c(x)+e(x)$.
- Let $S_{j}=r\left(\alpha^{j}\right)=\mathrm{c}\left(\alpha^{j}\right)+e\left(\alpha^{j}\right)=e\left(\alpha^{d}\right)$ for $j=1,2, \ldots, 2 t$.
- The values $S_{1}, S_{2}, \ldots, S_{2 t}$ are the syndromes of the received polynomial.


## Computation of Syndrome

$$
\begin{equation*}
S_{j}=\sum_{i=1}^{n} e_{i}\left(\alpha^{j}\right)^{i}=\sum_{i=1}^{n} e_{i} \alpha^{i j} \tag{*}
\end{equation*}
$$

Suppose that $r(x)$ has $v$ errors in it and that they are in positions $i_{1}, i_{2}, \ldots, i_{v}$. Then ( ${ }^{*}$ ) becomes:

$$
\begin{aligned}
& S_{j}=\sum_{l=1}^{v} e_{i_{l}}\left(\alpha^{j}\right)^{i_{l}}=\sum_{l=1}^{v} e_{i_{l}}\left(\alpha^{i_{l}}\right)^{j}=\sum_{l=1}^{v} e_{i_{l}} X_{l}^{j} \\
& \text { where } X_{l}=\alpha^{i_{l}} \text { and } j=1,2, \ldots, 2 t
\end{aligned}
$$

## Computation of Syndrome for Binary Codes

- For binary codes $e_{i l}=1$. Therefore (**) becomes

$$
\begin{aligned}
& S_{j}=\sum_{l=1}^{v} X_{l}^{j} \\
& \text { where } X_{l}=\alpha^{i_{l}} \text { and } j=1,2, \ldots, 2 t
\end{aligned}
$$

- If we know $X_{l}$, then we know the location of the error.
- For example, if $X_{1}=\alpha^{2}$, then by definition, $i_{1}=2$ and the error is in digit $r_{2}$.


## The Error Locator Polynomial for Binary BCH Codes

- We obtain the following set of equations:

$$
\begin{aligned}
& S_{1}=X_{1}+X_{2}+\ldots+X_{v} \\
& S_{2}=X_{1}^{2}+X_{2}^{2}+\ldots+X_{v}^{2} \\
& \vdots \\
& S_{2 t}=X_{1}^{2 t}+X_{2}^{2 t}+\ldots+X_{v}^{2 t}
\end{aligned}
$$

- The equations are said to be power-sum symmetric functions and it gives us a set of $2 t$ equations with $v$ unknowns.


## The Error Locator Polynomial for Binary BCH Codes

- The set of power symmetric functions is a solvable set of functions (for $v \leq t$ ). However, it is computationally complex.
- Therefore a new polynomial is introduced. This is the error locator polynomial:

$$
\Lambda(x)=\prod_{l=1}^{v}\left(1-X_{l} x\right)=\Lambda_{v} x^{v}+\Lambda_{v-1} x^{v-1}+\ldots+\Lambda_{1} x+1
$$

- $X_{I}^{-1}$ is a root of this polynomial.


## Finding the Error Locator Polynomial

Let us consider the case when $v=2$.
$\Lambda(x)=\left(1-X_{1} x\right)\left(1-X_{2} x\right)=1-\left(X_{1}+X_{2}\right) x+X_{1} X_{2} x^{2}$
$\Lambda_{1}=-\left(X_{1}+X_{2}\right)$ and $\Lambda_{2}=X_{1} X_{2}$
We can see that $S_{1}+\Lambda_{1}=0$
$S_{2}=X_{1}^{2}+X_{2}^{2}, S_{2}+2 \Lambda^{2}=\left(X_{1}^{2}+2 X_{1} X_{2}+X_{2}^{2}\right)=\left(X_{1}+X_{2}\right)^{2}$
$S_{2}+S_{1} \Lambda_{1}+2 \Lambda_{2}=0$
Also $S_{3}+\Lambda_{1} S_{2}+\Lambda_{2} S_{1}=0$
And $S_{4}+\Lambda_{1} S_{3}+\Lambda_{2} S_{2}=0$

## Finding the Error Locator Polynomial 2

- We can extend this to arbitrary $v$ :

$$
\begin{array}{ccc}
k=1 & : & S_{1}+\Lambda_{1}=0 \\
k=2 & : & S_{2}+S_{1} \Lambda_{1}+2 \Lambda_{2}=0 \\
\vdots & & \\
k=v & : & S_{v}+S_{v-1} \Lambda_{1}+S_{v-2} \Lambda_{2}+\ldots+v \Lambda_{v}=0 \\
k=v+1 & : & S_{v+1}+S_{v} \Lambda_{1}+S_{v-1} \Lambda_{2}+\ldots+S_{1} \Lambda_{v}=0 \\
k=v+2 & : & S_{v+2}+S_{v+1} \Lambda_{1}+S_{v} \Lambda_{2}+\ldots+S_{2} \Lambda_{v}=0 \\
\vdots & & \\
k=2 t & & S_{2 t}+S_{2 t-1} \Lambda_{1}+S_{v-1} \Lambda_{2}+\ldots+S_{2 t-v} \Lambda_{v}=0
\end{array}
$$

These are Newton's identities

## Finding the Error Locator Polynomial 3

Let $v=t$

$$
\left[\begin{array}{ccccc}
S_{1} & S_{2} & S_{3} & \cdots & S_{v} \\
S_{2} & S_{3} & S_{4} & \cdots & S_{v+1} \\
S_{3} & S_{4} & S_{5} & \cdots & S_{v+2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
S_{v} & S_{v+1} & S_{v+2} & \cdots & S_{2 v-1}
\end{array}\right]\left[\begin{array}{c}
\Lambda_{v} \\
\Lambda_{v-1} \\
\Lambda_{v-2} \\
\vdots \\
\Lambda_{1}
\end{array}\right]=-\left[\begin{array}{c}
S_{v+1} \\
S_{v+2} \\
S_{v+3} \\
\vdots \\
S_{2 v}
\end{array}\right]
$$

$M_{v} \Lambda=-S$

## Peterson-Gorenstein-Zierler Algorithm

- Set $v=t$
- Form $\mathbf{M}_{v}$ and determine if $\mathbf{M}_{v}$ is invertible (compute $\operatorname{det}\left(\mathbf{M}_{v}\right)$, if $\operatorname{det}\left(\mathbf{M}_{v}\right)=0, \mathbf{M}_{v}$ is not invertible.
- If not invertible, it means there are less than $t$ errors
- Set $v=t-1$ and repeat step
- Once $\mathbf{M}_{\mathrm{v}}$ is invertible, compute $\Lambda=\mathbf{M}_{\mathrm{v}}{ }^{-1}(-\mathbf{S})$


## Example

- Consider the binary $(15,7) \mathrm{BCH}$ code.
- This is a two error correcting code.
- Suppose $r(x)=x^{7}$.
- $S_{1}=\alpha^{7}, S_{2}=\alpha^{14}, S_{3}=\alpha^{6}, S_{4}=\alpha^{13}$,
- Assume $v=2$

$$
\mathbf{M}_{2}=\left[\begin{array}{cc}
\alpha^{7} & \alpha^{14} \\
\alpha^{14} & \alpha^{6}
\end{array}\right], \operatorname{det}\left(\mathbf{M}_{2}\right)=\alpha^{13}-\alpha^{13}=0
$$

## Example cont'd

- Therefore we assume that $v=1$
- $\mathbf{M}_{1}=\left[\alpha^{7}\right]$
- Then $a^{7} \Lambda_{1}=-\alpha^{14}$
- Or $\Lambda_{1}=-\alpha^{7}$.
- The error locator polynomial is $\Lambda(x)=1-\alpha^{7} x$ (or $1+\alpha^{7} x$ ). This has root $x=\alpha^{8}$. Therefore $X_{1}^{-1}=\alpha^{8}$, or $X_{1}=\alpha^{7}$. Error position is $r_{7}$ in $r(x)$. Therefore $c(x)$ $=r(x)-x^{7}=0$.


## Example 2

- For the same code, assume that $r(x)=x^{2}+x^{5}$.
- $\mathrm{S}_{1}=\alpha^{2}+\alpha^{5}=\alpha, \mathrm{S}_{2}=\alpha^{4}+\alpha^{10}=\alpha^{2}, \mathrm{~S}_{3}=\alpha^{6}+1=\alpha^{13}$ and $S_{4}=\alpha^{8}+\alpha^{5}=\alpha^{4}$.

$$
\mathbf{M}_{2}=\left[\begin{array}{cc}
\alpha & \alpha^{2} \\
\alpha^{2} & \alpha^{13}
\end{array}\right], \operatorname{det}\left(\mathbf{M}_{2}\right)=\alpha^{14}-\alpha^{4}=\alpha^{9}
$$

$$
\mathbf{M}_{2}^{-1}=\frac{1}{\alpha^{9}}\left[\begin{array}{ll}
\alpha^{13} & \alpha^{2} \\
\alpha^{2} & \alpha
\end{array}\right]=\left[\begin{array}{ll}
\alpha^{4} & \alpha^{8} \\
\alpha^{8} & \alpha^{7}
\end{array}\right]
$$

$$
\Lambda=\left[\begin{array}{l}
\Lambda_{2} \\
\Lambda_{1}
\end{array}\right]=\left[\begin{array}{cc}
\alpha^{4} & \alpha^{8} \\
\alpha^{8} & \alpha^{7}
\end{array}\right]\left[\begin{array}{c}
\alpha^{13} \\
\alpha^{4}
\end{array}\right]=\left[\begin{array}{c}
\alpha^{7} \\
\alpha
\end{array}\right]
$$

## Example 2 cont'd

- Therefore $\Lambda(x)=\alpha^{7} x^{2}+\alpha x+1=\left(\alpha^{2} x+1\right)\left(\alpha^{5} x+1\right)$
- The roots are $X_{1}^{-1}=\alpha^{13}$ and $X_{2}^{-1}=\alpha^{10}$. Therefore $X_{1}$ $=a^{2}$ and $X_{2}=\alpha^{5}$.
- This means $r_{2}$ and $r_{5}$ are incorrect.
- $c(x)=r(x)+x^{2}+x^{5}=0$.


## Simplifications for Binary Codes

- For GF $\left(2^{m}\right),(X+Y)^{2}=\left(X^{2}+Y^{2}\right)$.
- Therefore $S_{2 j}=S_{j}{ }^{2}$.
- Also $n X=0$ if $n$ is even and $n X=X$ if $n$ is odd.


## Newton's Identities

$$
\begin{array}{ccc}
k=1 & : & S_{1}+\Lambda_{1}=0 \\
k=2 & : & S_{2}+S_{1} \Lambda_{1}+2 \Lambda_{2}=0 \\
\vdots & & \\
k=v & : & S_{v}+S_{v-1} \Lambda_{1}+S_{v-2} \Lambda_{2}+\ldots+v \Lambda_{v}=0 \\
k=v+1 & : & S_{v+1}+S_{v} \Lambda_{1}+S_{v-1} \Lambda_{2}+\ldots+S_{1} \Lambda_{v}=0 \\
k=v+2 & : & S_{v+2}+S_{v+1} \Lambda_{1}+S_{v} \Lambda_{2}+\ldots+S_{2} \Lambda_{v}=0 \\
\vdots & & \\
k=2 t & & S_{2 t}+S_{2 t-1} \Lambda_{1}+S_{v-1} \Lambda_{2}+\ldots+S_{2 t-v} \Lambda_{v}=0
\end{array}
$$

All the even equations are redundant

Newton's identities minus redundant equations

$$
\begin{array}{ccc}
k=1 & : & S_{1}+\Lambda_{1}=0 \\
k=3 & : & S_{3}+S_{2} \Lambda_{1}+S_{1} \Lambda_{2}+\Lambda_{3}=0 \\
\vdots & & \\
k=2 t-1 & : & S_{2 t-1}+S_{2 t-2} \Lambda_{1}+\ldots+S_{t-1} \Lambda_{t}=0
\end{array}
$$

Newton's identities minus redundant equations in matrix form

- $\mathrm{A} \Lambda=-\mathrm{S}$
$\left[\begin{array}{ccccccc}1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ S_{2} & S_{1} & 1 & 0 & \cdots & 0 & 0 \\ S_{4} & S_{3} & S_{2} & S_{1} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ S_{2 t-4} & S_{2 t-5} & S_{2 t-6} & S_{2 t-7} & \cdots & S_{t-2} & S_{t-3} \\ S_{2 t-2} & S_{2 t-3} & S_{2 t-4} & S_{2 t-5} & \cdots & S_{t} & S_{t-1}\end{array}\right]\left[\begin{array}{c}\Lambda_{1} \\ \Lambda_{2} \\ \vdots \\ \Lambda_{t}\end{array}\right]=-\left[\begin{array}{c}S_{1} \\ S_{3} \\ \vdots \\ S_{2 t-1}\end{array}\right]$


## Peterson Algorithm

- Assume there are $t$ errors. If there are in fact $t$ errors, $\mathbf{A}$ is invertible.
- If A not invertible, delete last two rows and last two columns and repeat
- Once $\mathbf{A}$ is invertible, $\Lambda=\mathbf{A}^{-1}(-\mathbf{S})$.


## Coefficients for Error Locator Polynomial for small number of errors

- Using Peterson's algorithm, explicit expressions for $\Lambda_{i}$ have been computed for codes that can correct a small number of errors.
- 1 error correcting, $\Lambda_{1}=S_{1}$
- 2 error correcting, $\Lambda_{1}=S_{1}$ and $\Lambda_{2}=\left(S_{3}+S_{1}{ }^{3}\right) / S_{1}$.
- 3 error correcting, $\Lambda_{1}=S_{1}$ and $\Lambda_{2}=\left(S_{1}{ }^{2} S_{3}+S_{5}\right) /\left(S_{1}{ }^{3}+S_{3}\right), \Lambda_{3}=$ $\left(S_{1}{ }^{3}+S_{3}\right)+S_{1} \Lambda_{2}$.
- Others can be found on page 252 of text.

