

uOttawa

L'Université canadienne Canada's university

ELG 5372 Error Control Coding

Lecture 16: Decoding of BCH and RS Codes

Université d'Ottawa | University of Ottawa

uOttawa.ca

Algebraic Decoding of BCH and RS Codes

- The algebraic decoding of BCH and RS codes has the following general steps:
 - Computation of the syndrome
 - Determination of an error location polynomial. The roots of this polynomial provide the location of the errors. There are many algorithms for finding this polynomial (Peterson's, Berlekamp-Massey, Peterson-Gorenstein-Zierler etc)
 - Determination of roots of error locator polynomial. Usally done by Chien search
 - For non-binary BCH and RS codes, error values must be found (usually using Forney's algorithm).

Computation of Syndrome

- For all examples, we will assume narrow-sense BCH or RS codes.
- We know that α, α², ..., α^{2t} are roots of g(x), therefore they are roots of c(x) as well.
- Therefore $c(\alpha) = c(\alpha^2) = \dots = c(\alpha^{2t})$.
- The received polynomial r(x) = c(x)+e(x).
- Let $S_j = r(\alpha^j) = c(\alpha^j) + e(\alpha^j) = e(\alpha^j)$ for j = 1, 2, ..., 2t.
- The values S_1 , S_2 , ..., S_{2t} are the syndromes of the received polynomial.

Computation of Syndrome

$$S_{j} = \sum_{i=1}^{n} e_{i} \left(\alpha^{j} \right)^{i} = \sum_{i=1}^{n} e_{i} \alpha^{ij}$$
 (*)

Suppose that r(x) has v errors in it and that they are in positions $i_1, i_2, ..., i_v$. Then (*) becomes:

$$S_{j} = \sum_{l=1}^{\nu} e_{i_{l}} \left(\alpha^{j} \right)^{i_{l}} = \sum_{l=1}^{\nu} e_{i_{l}} \left(\alpha^{i_{l}} \right)^{j} = \sum_{l=1}^{\nu} e_{i_{l}} X_{l}^{j} \qquad (**)$$

where $X_{l} = \alpha^{i_{l}}$ and $j = 1, 2, ..., 2t$

Computation of Syndrome for Binary Codes

• For binary codes $e_{il} = 1$. Therefore (**) becomes

$$S_j = \sum_{l=1}^{\nu} X_l^{j}$$

where $X_l = \alpha^{i_l}$ and j = 1, 2, ..., 2t

- If we know X_i, then we know the location of the error.
 - For example, if $X_1 = \alpha^2$, then by definition, $i_1 = 2$ and the error is in digit r_2 .

The Error Locator Polynomial for Binary BCH Codes

• We obtain the following set of equations:

$$\begin{split} S_1 &= X_1 + X_2 + \ldots + X_v \\ S_2 &= X_1^2 + X_2^2 + \ldots + X_v^2 \\ \vdots \\ S_{2t} &= X_1^{2t} + X_2^{2t} + \ldots + X_v^{2t} \end{split}$$

• The equations are said to be power-sum symmetric functions and it gives us a set of 2*t* equations with *v* unknowns.

The Error Locator Polynomial for Binary BCH Codes

- The set of power symmetric functions is a solvable set of functions (for v ≤ t). However, it is computationally complex.
- Therefore a new polynomial is introduced. This is the error locator polynomial:

$$\Lambda(x) = \prod_{l=1}^{\nu} (1 - X_l x) = \Lambda_{\nu} x^{\nu} + \Lambda_{\nu-1} x^{\nu-1} + \dots + \Lambda_1 x + 1$$

• X_{l}^{-1} is a root of this polynomial.

Finding the Error Locator Polynomial

Let us consider the case when v = 2.

$$\begin{split} \Lambda(x) &= (1 - X_1 x)(1 - X_2 x) = 1 - (X_1 + X_2)x + X_1 X_2 x^2 \\ \Lambda_1 &= -(X_1 + X_2) \text{ and } \Lambda_2 = X_1 X_2 \\ \text{We can see that } S_1 + \Lambda_1 &= 0 \\ S_2 &= X_1^2 + X_2^2, S_2 + 2\Lambda^2 = (X_1^2 + 2X_1 X_2 + X_2^2) = (X_1 + X_2)^2 \\ S_2 + S_1 \Lambda_1 + 2\Lambda_2 &= 0 \\ \text{Also } S_3 + \Lambda_1 S_2 + \Lambda_2 S_1 &= 0 \\ \text{And } S_4 + \Lambda_1 S_3 + \Lambda_2 S_2 &= 0 \end{split}$$

Finding the Error Locator Polynomial 2

• We can extend this to arbitrary *v*:

$$\begin{array}{rcl} k = 1 & : & S_1 + \Lambda_1 = 0 \\ k = 2 & : & S_2 + S_1\Lambda_1 + 2\Lambda_2 = 0 \\ \vdots \\ k = v & : & S_v + S_{v-1}\Lambda_1 + S_{v-2}\Lambda_2 + \dots + v\Lambda_v = 0 \\ k = v + 1 & : & S_{v+1} + S_v\Lambda_1 + S_{v-1}\Lambda_2 + \dots + S_1\Lambda_v = 0 \\ k = v + 2 & : & S_{v+2} + S_{v+1}\Lambda_1 + S_v\Lambda_2 + \dots + S_2\Lambda_v = 0 \\ \vdots \\ k = 2t & S_{2t} + S_{2t-1}\Lambda_1 + S_{v-1}\Lambda_2 + \dots + S_{2t-v}\Lambda_v = 0 \end{array}$$

These are Newton's identities

Finding the Error Locator Polynomial 3

Let v = t

 $\mathbf{M}_{v}\mathbf{\Lambda} = -\mathbf{S}$

Peterson-Gorenstein-Zierler Algorithm

- Set *v* = *t*
- Form M_v and determine if M_v is invertible (compute det(M_v), if det(M_v) = 0, M_v is not invertible.
 - If not invertible, it means there are less than t errors
 - Set v = t-1 and repeat step
- Once $\mathbf{M}_{\mathbf{v}}$ is invertible, compute $\Lambda = \mathbf{M}_{v}^{-1}(-\mathbf{S})$

Example

- Consider the binary (15,7) BCH code.
- This is a two error correcting code.
- Suppose $r(x) = x^7$.
- $S_1 = \alpha^7$, $S_2 = \alpha^{14}$, $S_3 = \alpha^6$, $S_4 = \alpha^{13}$,
- Assume v = 2

$$\mathbf{M}_2 = \begin{bmatrix} \alpha^7 & \alpha^{14} \\ \alpha^{14} & \alpha^6 \end{bmatrix}, \ \det(\mathbf{M}_2) = \alpha^{13} - \alpha^{13} = 0$$

Example cont'd

- Therefore we assume that v = 1
- $\mathbf{M}_1 = [\alpha^7]$
- Then $a^7\Lambda_1 = -\alpha^{14}$
- Or $\Lambda_1 = -\alpha^7$.
- The error locator polynomial is $\Lambda(x) = 1 \alpha^7 x$ (or $1 + \alpha^7 x$). This has root $x = \alpha^8$. Therefore $X_1^{-1} = \alpha^8$, or $X_1 = \alpha^7$. Error position is r_7 in r(x). Therefore $c(x) = r(x) x^7 = 0$.

Example 2

• For the same code, assume that $r(x) = x^2 + x^5$.

•
$$S_1 = \alpha^2 + \alpha^5 = \alpha$$
, $S_2 = \alpha^4 + \alpha^{10} = \alpha^2$, $S_3 = \alpha^6 + 1 = \alpha^{13}$
and $S_4 = \alpha^8 + \alpha^5 = \alpha^4$.
 $\mathbf{M}_2 = \begin{bmatrix} \alpha & \alpha^2 \\ \alpha^2 & \alpha^{13} \end{bmatrix}$, $\det(\mathbf{M}_2) = \alpha^{14} - \alpha^4 = \alpha^9$
 $\mathbf{M}_2^{-1} = \frac{1}{\alpha^9} \begin{bmatrix} \alpha^{13} & \alpha^2 \\ \alpha^2 & \alpha \end{bmatrix} = \begin{bmatrix} \alpha^4 & \alpha^8 \\ \alpha^8 & \alpha^7 \end{bmatrix}$
 $\Lambda = \begin{bmatrix} \Lambda_2 \\ \Lambda_1 \end{bmatrix} = \begin{bmatrix} \alpha^4 & \alpha^8 \\ \alpha^8 & \alpha^7 \end{bmatrix} \begin{bmatrix} \alpha^{13} \\ \alpha^4 \end{bmatrix} = \begin{bmatrix} \alpha^7 \\ \alpha \end{bmatrix}$

Example 2 cont'd

- Therefore $\Lambda(x) = \alpha^7 x^2 + \alpha x + 1 = (\alpha^2 x + 1)(\alpha^5 x + 1)$
- The roots are $X_1^{-1} = \alpha^{13}$ and $X_2^{-1} = \alpha^{10}$. Therefore X_1 = a^2 and $X_2 = \alpha^5$.
- This means r_2 and r_5 are incorrect.

•
$$c(x) = r(x) + x^2 + x^5 = 0.$$

Simplifications for Binary Codes

- For $GF(2^m)$, $(X+Y)^2 = (X^2+Y^2)$.
- Therefore $S_{2j} = S_j^2$.
- Also nX = 0 if *n* is even and nX = X if *n* is odd.

Newton's Identities

k = 1 : $S_1 + \Lambda_1 = 0$ $S_2 + S_1 \Lambda_1 + 2\Lambda_2 = 0$ k=2 : • k = v : $S_{v} + S_{v-1}\Lambda_{1} + S_{v-2}\Lambda_{2} + \dots + v\Lambda_{v} = 0$ k = v + 1 : $S_{v+1} + S_v \Lambda_1 + S_{v-1} \Lambda_2 + \dots + S_1 \Lambda_v = 0$ k = v + 2 : $S_{v+2} + S_{v+1}\Lambda_1 + S_v\Lambda_2 + \dots + S_2\Lambda_v = 0$. k = 2t $S_{2t} + S_{2t-1}\Lambda_1 + S_{\nu-1}\Lambda_2 + \dots + S_{2t-\nu}\Lambda_{\nu} = 0$ All the even equations are redundant

Newton's identities minus redundant equations

$$\begin{array}{rcl} k=1 & : & S_1 + \Lambda_1 = 0 \\ k=3 & : & S_3 + S_2 \Lambda_1 + S_1 \Lambda_2 + \Lambda_3 = 0 \\ \vdots \\ k=2t-1 & : & S_{2t-1} + S_{2t-2} \Lambda_1 + \ldots + S_{t-1} \Lambda_t = 0 \end{array}$$

Newton's identities minus redundant equations in matrix form

• $A\Lambda = -S$

Peterson Algorithm

- Assume there are *t* errors. If there are in fact *t* errors, **A** is invertible.
 - If A not invertible, delete last two rows and last two columns and repeat
- Once **A** is invertible, $\Lambda = \mathbf{A}^{-1}(-\mathbf{S})$.

Coefficients for Error Locator Polynomial for small number of errors

- Using Peterson's algorithm, explicit expressions for Λ_i have been computed for codes that can correct a small number of errors.
- 1 error correcting, $\Lambda_1 = S_1$
- 2 error correcting, $\Lambda_1 = S_1$ and $\Lambda_2 = (S_3 + S_1^3)/S_1$.
- 3 error correcting, $\Lambda_1 = S_1$ and $\Lambda_2 = (S_1^2 S_3 + S_5)/(S_1^3 + S_3)$, $\Lambda_3 = (S_1^3 + S_3) + S_1 \Lambda_2$.
- Others can be found on page 252 of text.

