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Algebraic Decoding of BCH and RS Codes

» The algebraic decoding of BCH and RS codes has the following
general steps:

— Computation of the syndrome

— Determination of an error location polynomial. The roots of
this polynomial provide the location of the errors. There are
many algorithms for finding this polynomial (Peterson’s,
Berlekamp-Massey, Peterson-Gorenstein-Zierler etc)

— Determination of roots of error locator polynomial. Usally
done by Chien search

— For non-binary BCH and RS codes, error values must be
found (usually using Forney’s algorithm).
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Computation of Syndrome

* For all examples, we will assume narrow-sense BCH

or RS codes.

« We know that «, o2, ..., & are roots of g(x), therefore
they are roots of c(x) as well.

« Therefore c(a) = c(a?) = ... = c(a?).

* The received polynomial r(x) = c(x)+e(x).

« Let S, =r(d) = c(d)+e(d) = e(cd) forj=1,2, ..., 2t.

 Thevalues S,, S,, ..., S, are the syndromes of the
received polynomial.

uOttawa



Computation of Syndrome

s;=Yelalf =Yeal
=1

=1

Suppose that r(x) has v errors in it and that they

are in positions iy, I, ..., I,. Then (*) becomes:
ool =S =S xi o
1=1 1=1 1=1

where X, =" and j=1,2, ..., 2t
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Computation of Syndrome for Binary Codes

* For binary codes e; = 1. Therefore (**) becomes
v :
Sj =X X{
where X, = a"and j=12,.., 2t

 If we know X, then we know the location of the
error.
— For example, if X,= &2, then by definition, i, = 2
and the error is in digit r,.
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The Error Locator Polynomial for Binary BCH
Codes

« We obtain the following set of equations:

_y?2 2 2

So = X{ + X5 +...+ X
2t 2t 2t
Sor = X + X5 +..+ X

 The equations are said to be power-sum
symmetric functions and it gives us a set of 2t
equations with v unknowns.
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The Error Locator Polynomial for Binary BCH
Codes

* The set of power symmetric functions is a solvable
set of functions (for v <t). However, it is
computationally complex.

* Therefore a new polynomial is introduced. This is
the error locator polynomial:

Vv
AX) =TTA= X %) =AY +A, X+ o+ Agx+1
-1

« X/ 1is a root of this polynomial.
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Finding the Error Locator Polynomial

Let us consider the case when v = 2.

AX) = (1= X X)A= XX) =1—(Xq + X)X+ X XX

Ay = -(X+X,) and A, = X, X,

We can see that S;+A; =0

S, = Xy#HX5?, S,12A% = (X 242X X+ X57) = (X +Xy)?
S,+S5;A+2A,=0

Also S;+A;S,+A,S; =0

And S;+A,S;+A,S, =0
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Finding the Error Locator Polynomial 2

» We can extend this to arbitrary v:

_________ k :VSv""Sv—lAl"'Sv—ZAZ"'"'VAv:O

k=v+2 : S,,+S,4A{+S, Ay +..+S,A, =0

These are Newton’s identities
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Finding the Error Locator Polynomial 3

Letv=t

SV+1

M,A = -S

Sv+2

S2v—1_

Sv+1
Sv+2

Sv+3




Peterson-Gorenstein-Zierler Algorithm

¢« Setv=t
 Form M, and determine if M, is invertible (compute
det(M,), if det(M,) = 0, M, is not invertible.
— If not invertible, it means there are less than t
errors

— Set v =t-1 and repeat step
« Once M, is invertible, compute A = M, '(-S)
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Example

« Consider the binary (15,7) BCH code.
« This is a two error correcting code.

« Suppose r(x) = x’.

« S,=a,S,=a% S;=0°S,=a’?,

e Assumev =2

M, = “ | detM,) =a® - =0
a

uOttawa



Example cont’d

* Therefore we assume thatv = 1

M, =[]

« Thena’A, =-a'

« OrA,=-.

* The error locator polynomial is A(x) = 1-a’x (or
1+a’x). This has root x = a8. Therefore X, = &8, or
X, = «a’. Error position is r; in r(x). Therefore c(x)
=r(x)-x" = 0.
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Example 2

« For the same code, assume that r(x) = x2+x>.
« S,=atar=a,S,= d*ta'% = o?, S;= P+ = o3
and S, = o®+a° = .
2
M, :{ “« ¢ },det(l\/lz) =o' —a* =d°

2 1
a a3

3 1 a13 a2 a4 a8
Mz =—5| = 8 7
a (04 a a a
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Example 2 cont'd

« Therefore A(X) = a’X?+ax+1 = (a?x+1)(a°x+1)

« The roots are X;1 = o' and X, = ¢'°. Therefore X,
=a?and X, = a5

* This means r, and r; are incorrect.

e C(X) = r(x)+x2+x°> =0.




Simplifications for Binary Codes

« For GF(2m), (X+Y)?2 = (X2+Y?2).
» Therefore S,, = S&.
e AlsonX=0ifniseven and nX = X if nis odd.




Newton’s ldentities

k=v Sy +S, A +S, ,A,+...+VA, =0

K=v+2 S, +S, A +S, Ay, +...+5,A, =0
k —_ 2t SZt + SZt—lAl + SV—].AZ +...+ SZt—VAV —_ O

All the even equations are redundant
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Newton’s identities minus redundant

eguations




Newton’s identities minus redundant
eguations in matrix form

 AA=-S
1 0 0 o - 0 0 |
82 Sl 1 O °cc O O _Al | i Sl |
S4 S3 Sz Sl 1 e 0 A2 _ 83
S2t—4 SZt—S SZt—G SZt—7 o St—Z St—3 _At i _SZt—l_
_SZt—Z SZt—B S2t—4 S2t—5 o St St—l_
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Peterson Algorithm

« Assume there are t errors. If there are in factt errors, A is
invertible.

— If A not invertible, delete last two rows and last two columns
and repeat

« Once A is invertible, A = A 1(-S).
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Coefficients for Error Locator Polynomial for
small number of errors

» Using Peterson’s algorithm, explicit expressions for A; have
been computed for codes that can correct a small number of
errors.

* 1 error correcting, A, =S,

« 2 error correcting, A, =S, and A, = (S;+S,3)/S,.

« 3 error correcting, A, =S, and A, = (S,2S5;+S:)/(S3+S3), A,
(S1°+S;5)+S A,

» Others can be found on page 252 of text.
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