

uOttawa

L'Université canadienne Canada's university

ELG 5372 Error Control Coding

Lecture 15: Decoding of Cyclic Codes and Intro to BCH codes

Université d'Ottawa | University of Ottawa

uOttawa.ca

Meggitt Decoder

Consider the decoder shown below

Meggitt Decoder 2

- The Meggitt decoder shifts the received word (and its corresponding syndrome) until a syndrome corresponding to a error in the first bit (ie en-1(x) ≠ 0).
- Then it corrects that error and adjusts the syndrome and continues shifting until all errors are corrected.

- Consider the (7,4) single error correcting code for which $g(x) = x^3+x+1$.
- As we saw, for $e(x) = x^6$, $s(x) = x^2+1$. $s_0=1$, $s_1=0$ and $s_2=1$.
- Therefore the decoder shifts the received word until the syndrome x^2+1 is detected $(s_0s_1's_2)$.
- Let us assume that the received word is $r(x) = x^2$.

Since syndrome = 0, just shift out remaining bits.

Meggitt Decoder

- The syndrome correction after an error is corrected allows the decoder to search for more errors in the event of a multiple error correcting code.
- The error pattern detection circuit has to be hardwired to search for all error patterns in which the MSB is in error.

BCH and RS codes

- BCH codes are named for Bose, Ray-Chaudhuri and Hocquenghem who developed a means of designing cyclic codes with a specified design distance.
- RS code are named for their inventors as well.
- It was later determined that these codes are related and their decoding algorithms are quite similar.

Designing BCH codes

- BCH codes can be specified by a generator polynomial.
- A BCH code over GF(q) of length *n* with $d_{min} \ge \delta + 1$:
 - Determine the smallest m such that $GF(q^m)$ has an *n*th root of unity β .
 - Select a nonnegative integer b (usually b = 1).
 - Write down a list of δ consecutive powers of β : β^{b} , β^{b+1} , β^{b+2} ,..., $\beta^{b+\delta-1}$.
 - Find the associated minimal polynomials for each of these elements wrt GF(q). These minimal polynomials may not be distinct.
 - The generator polynomial g(x) = LCM of the minimal polynomials found above.

- We wish to design a binary BCH code of length 9 capable of correcting 2 errors (we want d_{min} ≥ 5).
- In GF(64), $\beta = \alpha^7$ has order 9.
- Let us choose b = 1, $\delta = 4$.
- Therefore we need to find the minimal polynomials of α^7 , α^{14} , α^{21} , α^{28} .
- The elements α^7 , α^{14} , and α^{28} are all in the same conjugacy class, therefore they share the same minimal polynomial -> x^6+x^3+1 .
- The remaining element has minimal polynomial x^2+x+1 .
- Therefore $g(x) = LCM(x^6+x^3+1, x^6+x^3+1, x^2+x+1, x^6+x^3+1) = (x^6+x^3+1)(x^2+x+1)=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1.$ $(d_{min} = 8)$

Example cont'd

- Suppose we had chosen b = 2.
- Our list of elements becomes

$$- (\alpha^7)^2 = \alpha^{14}, (\alpha^7)^3 = \alpha^{21}, (\alpha^7)^4 = \alpha^{28}, (\alpha^7)^5 = \alpha^{35}.$$

- The generator polynomial is still $g(x) = x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$.
- Still a (9,1) repetition code.

- We want to design a binary BCH code of length 15 with $d_{min} \ge 5$.
- In GF(16), α has order 15.
 - The list of 4 elements is: α , α^2 , α^3 , α^4 .
 - $x^4 + x + 1$
 - $x^4 + x^3 + x^2 + x + 1$
 - $g(x) = x^8 + x^7 + x^6 + x^4 + 1$
 - − Since g(x) is a codeword of weight 5, we know that $d_{min} \le 5$ and from the BCH bound, $d_{min} \ge 5$, therefore $d_{min} = 5$ for this (15,7) code.

Definitions

- A BCH code is said to be narrow sense if b = 1.
- A BCH code is said to be primitive if the root of its generator polynomial (β) is a primitive element in GF(q^m). This is only the case when n = q^m-1.
- BCH Bound: For generator polynomial g(x), δ is the number of consecutive powers of the *n*th root of unity β that are roots of g(x). Then d_{min} ≥ δ+1. See proof of this bound on pages 237-239 of text.

- Design a binary BCH code of length 7 that corrects one error (*d_{min}* ≥ 3)
 - Choose α which has order 7 in GF(8): α , α^2 from GF(8).
 - $-g(x) = x^3 + x + 1$
 - -g(x) is the primitive polynomial used to generate GF(8).
 - This is the Hamming (7,4) code.
 - All Hamming codes use the primitive polynomial as their generator matrix. They all have two consecutive powers of α as roots, therefore $d_{min} \ge 3$ (actually $d_{min} = 3$ for all Hamming codes).

Non Binary BCH Codes

- Codes are constructed on GF(q) where $q \neq 2$.
- For example, suppose we wanted to design a 4-ary code of length 15.
 - Need to find minimal polynomials of GF(16) wrt GF(4).

- $\{1\} \rightarrow (x+1)$
- $\{\alpha, \alpha^4\} \rightarrow (x^2 + x + \alpha^5)$
- $\{\alpha^2, \alpha^8\} \rightarrow (\mathbf{x}^2 + \mathbf{x} + \alpha^{10})$
- $\{\alpha^3, \alpha^{12}\} \rightarrow (\mathbf{x}^2 + \alpha^{10}\mathbf{x} + 1)$
- $\{\alpha^5\} \rightarrow (X + \alpha^5)$
- $\{\alpha^6, \alpha^9\} \rightarrow (X^2 + \alpha^5 X + 1)$
- $\{\alpha^7, \alpha^{13}\} \rightarrow (\mathbf{X}^2 + \alpha^5 \mathbf{X} + \alpha^5)$
- $\{\alpha^{10}\} \rightarrow (x + \alpha^{10})$
- $\{\alpha^{11}, \alpha^{14}\} \rightarrow (\mathbf{x}^{2} + \alpha^{10}\mathbf{x} + \alpha^{10})$
- $\ \alpha^5 \text{ and } \alpha^{10} \text{ are elements in GF(16) with order 3, they are } \alpha \text{ and } \alpha^2 \text{ of GF(4).}$

- Design a 4-ary BCH code of length 15 with $d_{min} \ge 5$.
- Choose α , α^2 , α^3 , α^4 .
- $g(x) = (x^2 + x + \alpha)(x^2 + x + \alpha^2)(x^2 + \alpha^2 x + 1) = (x^6 + x^5 + \alpha^2 x^4 + x^3 + \alpha x + \alpha^2).$
- The code is a (15,9) code.
- Rate = 9/15
- For the Binary BCH code with $d_{min} \ge 5$, rate = 7/15.

Reed Solomon Codes

- An RS code is a *q*-ary BCH code of length *q*-1.
- We need minimal polynomials of GF(q) wrt GF(q).
- Conjugacy class is β , β^q , β^{q2} ...

 $\Box \beta^q = \beta.$

 Conjugacy classes contain 1 element and minimal polynomial is in the form (*x*-β).

- Design a 16-ary length 15 RS code with $d_{min} \ge 5$.
- $g(x) = (x+\alpha)(x+\alpha^2)(x+\alpha^3)(x+\alpha^4) = x^4 + a^{13}x^3 + \alpha^6x^2 + \alpha^3x + a^{10}$.
- Since there are no extraneous roots, $k = n \delta$, therefore $\delta = n k$ and $d_{min} \ge n - k + 1$.
- But Singleton bound states that $d_{min} \le n-k+1$.
- Therefore $d_{min} = n-k+1$.

