
ELG 5372 Error 
Control Coding

Lecture 15: Decoding of Cyclic 
Codes and Intro to BCH codes  



Meggitt Decoder

• Consider the decoder shown below
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Meggitt Decoder 2

• The Meggitt decoder shifts the received word (and its 
corresponding syndrome) until a syndrome corresponding to a 
error in the first bit (ie en-1(x) ≠ 0).  

• Then it corrects that error and adjusts the syndrome and 
continues shifting until all errors are corrected.



Example

• Consider the (7,4) single error correcting code for which g(x) = 
x3+x+1.

• As we saw, for e(x) = x6, s(x) = x2+1. s0=1, s1=0 and s2=1.
• Therefore the decoder shifts the received word until the 

syndrome x2+1 is detected (s0s1’s2).
• Let us assume that the received word is r(x) = x2.
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Example

Gate 1 is then
switched off
and Gates 2
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on.
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Rnew(x) = 
r(x)+x6.
s’new(x) =
(xr(x)+xx6)
mod(x7+1) = 
s’(x)+1

Since syndrome = 0, just shift out remaining bits.



Meggitt Decoder

• The syndrome correction after an error is corrected 
allows the decoder to search for more errors in the 
event of a multiple error correcting code.  

• The error pattern detection circuit has to be 
hardwired to search for all error patterns in which the 
MSB is in error.



BCH and RS codes

• BCH codes are named for Bose, Ray-Chaudhuri and 
Hocquenghem who developed a means of designing cyclic 
codes with a specified design distance.

• RS code are named for their inventors as well.
• It was later determined that these codes are related and their 

decoding algorithms are quite similar.



Designing BCH codes

• BCH codes can be specified by a generator polynomial.
• A BCH code over GF(q) of length n with dmin ≥ δ+1:

– Determine the smallest m such that GF(qm) has an nth root 
of unity β.

– Select a nonnegative integer b (usually b = 1).
– Write down a list of δ consecutive powers of β: βb, βb+1, 

βb+2,…, βb+δ-1.
– Find the associated minimal polynomials for each of these 

elements wrt GF(q).  These minimal polynomials may not be 
distinct.

– The generator polynomial g(x) = LCM of the minimal 
polynomials found above.



Example

• We wish to design a binary BCH code of length 9 capable of 
correcting 2 errors (we want dmin ≥ 5).

• In GF(64), β = α7 has order 9.
• Let us choose b = 1, δ = 4.
• Therefore we need to find the minimal polynomials of α7, α14, 

α21, α28.
• The elements α7, α14, and α28 are all in the same conjugacy

class, therefore they share the same minimal polynomial -> 
x6+x3+1.

• The remaining element has minimal polynomial x2+x+1.
• Therefore g(x) = LCM(x6+x3+1, x6+x3+1, x2+x+1, x6+x3+1) = 

(x6+x3+1)(x2+x+1)=x8+x7+x6+x5+x4+x3+x2+x+1. (dmin = 8)



Example cont’d

• Suppose we had chosen b = 2.
• Our list of elements becomes

– (α7)2 = α14, (α7)3 = α21, (α7)4 = α28, (α7)5=α35.
– The generator polynomial is still g(x) = x8 + x7 + x6 + x5 + x4 + 

x3 + x2 + x + 1.
– Still a (9,1)  repetition code.



Example 2

• We want to design a binary BCH code of length 15 with dmin ≥ 5.
• In GF(16), α has order 15.

– The list of 4 elements is: α, α2, α3, α4.
– x4+x+1
– x4+x3+x2+x+1
– g(x) = x8+x7+x6+x4+1
– Since g(x) is a codeword of weight 5, we know that dmin ≤5 

and from the BCH bound, dmin ≥ 5, therefore dmin = 5 for this 
(15,7) code.



Definitions

• A BCH code is said to be narrow sense if b = 1.
• A BCH code is said to be primitive if the root of its 

generator polynomial (β) is a primitive element in 
GF(qm).  This is only the case when n = qm-1.

• BCH Bound:  For generator polynomial g(x), δ is the 
number of consecutive powers of the nth root of unity 
β that are roots of g(x).  Then dmin ≥ δ+1. See proof of 
this bound on pages 237-239 of text.



Example 3

• Design a binary BCH code of length 7 that corrects one error 
(dmin ≥ 3)
– Choose α which has order 7 in GF(8): α, α2 from GF(8).
– g(x) = x3+x+1
– g(x) is the primitive polynomial used to generate GF(8).  
– This is the Hamming (7,4) code.
– All Hamming codes use the primitive polynomial as their 

generator matrix.  They all have two consecutive powers of α
as roots, therefore dmin ≥ 3 (actually dmin = 3 for all Hamming 
codes).



Non Binary BCH Codes

• Codes are constructed on GF(q) where q ≠ 2.
• For example, suppose we wanted to design a 4-ary code of 

length 15.  
– Need to find minimal polynomials of GF(16) wrt GF(4).



Example

• {1} → (x+1)
• {α, α4} → (x2+x+α5)
• {α2, α8} → (x2+x+α10)
• {α3, α12} → (x2+α10x+1)
• {α5} → (x+α5)
• {α6, α9} → (x2+α5x+1)
• {α7, α13} → (x2+α5x+α5)
• {α10} → (x+α10)
• {α11, α14} → (x2+α10x+α10)

α5 and α10 are elements in GF(16) with order 3, they are α and 
α2 of GF(4).



Example

• Design a 4-ary BCH code of length 15 with dmin ≥ 5.
• Choose α, α2, α3, α4.
• g(x) = (x2+x+α)(x2+x+α2) (x2+α2x+1) = (x6+x5+α2x4+x3+αx+α2).
• The code is a (15,9) code.
• Rate = 9/15
• For the Binary BCH code with dmin ≥ 5, rate = 7/15.



Reed Solomon Codes

• An RS code is a q-ary BCH code of length q-1.
• We need minimal polynomials of GF(q) wrt GF(q).
• Conjugacy class is β, βq, βq2 …

βq = β.
• Conjugacy classes contain 1 element and minimal 

polynomial is in the form (x-β).



Example

• Design a 16-ary length 15 RS code with dmin ≥ 5.
• g(x) = (x+α)(x+α2)(x+α3)(x+α4) = x4+a13x3+α6x2+α3x+a10.
• Since there are no extraneous roots, k = n-δ., therefore δ = n-k

and dmin ≥ n-k+1.
• But Singleton bound states that dmin ≤ n-k+1.  
• Therefore dmin = n-k+1.
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