uOttawa

ELG 5372 Error Control Coding

L'Université canadienne Canada's university

Lecture 15: Decoding of Cyclic Codes and Intro to BCH codes

Université d'Ottawa | University of Ottawa

Meggitt Decoder

- Consider the decoder shown below

Meggitt Decoder 2

- The Meggitt decoder shifts the received word (and its corresponding syndrome) until a syndrome corresponding to a error in the first bit (ie en-1 $(x) \neq 0$).
- Then it corrects that error and adjusts the syndrome and continues shifting until all errors are corrected.

Example

- Consider the $(7,4)$ single error correcting code for which $g(x)=$ $x^{3}+x+1$.
- As we saw, for $e(x)=x^{6}, s(x)=x^{2}+1 . s_{0}=1, s_{1}=0$ and $s_{2}=1$.
- Therefore the decoder shifts the received word until the syndrome $x^{2}+1$ is detected ($s_{0} s_{1} s_{2}$).
- Let us assume that the received word is $r(x)=x^{2}$.

Example

Initially gate 1

Example

Example

Gate 1 is then switched off and Gates 2 are switched on.

Example

IIII uOttawa

Example

Example

Example

Here we add x^{6} to the shifted received word to correct the error. We must adjust the syndrome to account for the change

Example

$$
\begin{aligned}
& R_{\text {new }}(x)= \\
& r(x)+x^{6} . \\
& s_{n \text { new }}^{\prime}(x)= \\
& \left(x r(x)+x x^{6}\right) \\
& \bmod \left(x^{7}+1\right)= \\
& s^{\prime}(x)+1
\end{aligned}
$$

Since syndrome $=0$, just shift out remaining bits.

Meggitt Decoder

- The syndrome correction after an error is corrected allows the decoder to search for more errors in the event of a multiple error correcting code.
- The error pattern detection circuit has to be hardwired to search for all error patterns in which the MSB is in error.

BCH and RS codes

- BCH codes are named for Bose, Ray-Chaudhuri and Hocquenghem who developed a means of designing cyclic codes with a specified design distance.
- RS code are named for their inventors as well.
- It was later determined that these codes are related and their decoding algorithms are quite similar.

Designing BCH codes

- BCH codes can be specified by a generator polynomial.
- A BCH code over $\operatorname{GF}(q)$ of length n with $d_{\text {min }} \geq \delta+1$:
- Determine the smallest m such that $\mathrm{GF}\left(q^{m}\right)$ has an nth root of unity β.
- Select a nonnegative integer b (usually $b=1$).
- Write down a list of δ consecutive powers of β : β^{b}, β^{b+1}, $\beta^{b+2}, \ldots, \beta^{b+\delta-1}$.
- Find the associated minimal polynomials for each of these elements wrt GF(q). These minimal polynomials may not be distinct.
- The generator polynomial $g(x)=$ LCM of the minimal polynomials found above.

Example

- We wish to design a binary BCH code of length 9 capable of correcting 2 errors (we want $d_{\text {min }} \geq 5$).
- In GF(64), $\beta=\alpha^{7}$ has order 9 .
- Let us choose $b=1, \delta=4$.
- Therefore we need to find the minimal polynomials of α^{7}, α^{14}, α^{21}, α^{28}.
- The elements α^{7}, α^{14}, and α^{28} are all in the same conjugacy class, therefore they share the same minimal polynomial -> $x^{6}+x^{3}+1$.
- The remaining element has minimal polynomial $x^{2}+x+1$.
- Therefore $g(x)=\operatorname{LCM}\left(x^{6}+x^{3}+1, x^{6}+x^{3}+1, x^{2}+x+1, x^{6}+x^{3}+1\right)=$ $\left(x^{6}+x^{3}+1\right)\left(x^{2}+x+1\right)=x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1$. $\left(d_{\text {min }}=8\right)$

Example cont'd

- Suppose we had chosen $b=2$.
- Our list of elements becomes
$-\left(\alpha^{7}\right)^{2}=\alpha^{14},\left(\alpha^{7}\right)^{3}=\alpha^{21},\left(\alpha^{7}\right)^{4}=\alpha^{28},\left(\alpha^{7}\right)^{5}=\alpha^{35}$.
- The generator polynomial is still $g(x)=x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+$ $x^{3}+x^{2}+x+1$.
- Still a $(9,1)$ repetition code.

Example 2

- We want to design a binary BCH code of length 15 with $d_{\text {min }} \geq 5$.
- In GF(16), α has order 15.
- The list of 4 elements is: $\alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}$.
- $x^{4}+x+1$
$-x^{4}+x^{3}+x^{2}+x+1$
$-g(x)=x^{8}+x^{7}+x^{6}+x^{4}+1$
- Since $g(x)$ is a codeword of weight 5 , we know that $d_{\text {min }} \leq 5$ and from the BCH bound, $d_{\text {min }} \geq 5$, therefore $d_{\text {min }}=5$ for this $(15,7)$ code.

Definitions

- A BCH code is said to be narrow sense if $b=1$.
- A BCH code is said to be primitive if the root of its generator polynomial (β) is a primitive element in $\mathrm{GF}\left(q^{m}\right)$. This is only the case when $n=q^{m}-1$.
- BCH Bound: For generator polynomial $g(x), \delta$ is the number of consecutive powers of the nth root of unity β that are roots of $g(x)$. Then $d_{\text {min }} \geq \delta+1$. See proof of this bound on pages 237-239 of text.

Example 3

- Design a binary BCH code of length 7 that corrects one error ($d_{\min } \geq 3$)
- Choose α which has order 7 in GF(8): α, α^{2} from GF(8).
$-g(x)=x^{3}+x+1$
$-g(x)$ is the primitive polynomial used to generate GF(8).
- This is the Hamming $(7,4)$ code.
- All Hamming codes use the primitive polynomial as their generator matrix. They all have two consecutive powers of α as roots, therefore $d_{\text {min }} \geq 3$ (actually $d_{\text {min }}=3$ for all Hamming codes).

Non Binary BCH Codes

- Codes are constructed on $\operatorname{GF}(q)$ where $q \neq 2$.
- For example, suppose we wanted to design a 4-ary code of length 15.
- Need to find minimal polynomials of GF(16) wrt GF(4).

Example

- $\{1\} \rightarrow(x+1)$
- $\left\{\alpha, \alpha^{4}\right\} \rightarrow\left(x^{2}+x+\alpha^{5}\right)$
- $\left\{\alpha^{2}, \alpha^{8}\right\} \rightarrow\left(\mathrm{x}^{2}+\mathrm{x}+\alpha^{10}\right)$
- $\left\{\alpha^{3}, \alpha^{12}\right\} \rightarrow\left(\mathrm{x}^{2}+\alpha^{10} \mathrm{x}+1\right)$
- $\left\{\alpha^{5}\right\} \rightarrow\left(x+\alpha^{5}\right)$
- $\left\{\alpha^{6}, \alpha^{9}\right\} \rightarrow\left(\mathrm{x}^{2}+\alpha^{5} \mathrm{x}+1\right)$
- $\left\{\alpha^{7}, \alpha^{13}\right\} \rightarrow\left(\mathrm{x}^{2}+\alpha^{5} \mathrm{x}+\alpha^{5}\right)$
- $\left\{\alpha^{10}\right\} \rightarrow\left(x+\alpha^{10}\right)$
- $\left\{\alpha^{11}, \alpha^{14}\right\} \rightarrow\left(x^{2}+\alpha^{10} x+\alpha^{10}\right)$
$\square \alpha^{5}$ and α^{10} are elements in $\operatorname{GF}(16)$ with order 3, they are α and α^{2} of GF(4).

Example

- Design a 4-ary BCH code of length 15 with $d_{\text {min }} \geq 5$.
- Choose $\alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}$.
- $g(x)=\left(\mathrm{x}^{2}+\mathrm{x}+\alpha\right)\left(\mathrm{x}^{2}+\mathrm{x}+\alpha^{2}\right)\left(\mathrm{x}^{2}+\alpha^{2} \mathrm{x}+1\right)=\left(x^{6}+x^{5}+\alpha^{2} x^{4}+x^{3}+\alpha x+\alpha^{2}\right)$.
- The code is a $(15,9)$ code.
- Rate = 9/15
- For the Binary BCH code with $d_{\text {min }} \geq 5$, rate $=7 / 15$.

Reed Solomon Codes

- An RS code is a q-ary BCH code of length $q-1$.
- We need minimal polynomials of GF(q) wrt GF(q).
- Conjugacy class is $\beta, \beta^{q}, \beta^{q 2} \ldots$
$\square \beta^{q}=\beta$.
- Conjugacy classes contain 1 element and minimal polynomial is in the form $(x-\beta)$.

Example

- Design a 16-ary length 15 RS code with $d_{\text {min }} \geq 5$.
- $g(x)=(x+\alpha)\left(x+\alpha^{2}\right)\left(x+\alpha^{3}\right)\left(x+\alpha^{4}\right)=x^{4}+a^{13} x^{3}+\alpha^{6} x^{2}+\alpha^{3} x+a^{10}$.
- Since there are no extraneous roots, $k=n-\delta$., therefore $\delta=n-k$ and $d_{\text {min }} \geq n-k+1$.
- But Singleton bound states that $d_{\text {min }} \leq n-k+1$.
- Therefore $d_{\text {min }}=n-k+1$.

