

uOttawa

L'Université canadienne Canada's university

ELG 5372 Error Control Coding

Lecture 14: Shift Registers for Encoding and Decoding of Cyclic Codes

Université d'Ottawa | University of Ottawa

uOttawa.ca

Register State and Polynomial Representation

• State of register is the contents of the storage devices

- State = 1001
- A delay of n time units is represented as x^n .
- The polynomial output by the above circuit is $1+x^3+x^4$. (First element first representation). Or $1+x+x^4$ (last element first representation).

Polynomial Multiplication

- Let $a(x) = a_0 + a_1 x + ... + a_m x^m$ and $g(x) = g_0 + g_1 x + ... + g_n x^n$
- Let $b(x) = a(x)g(x) = g_0a(x) + xg_1a(x) + x^2g_2a(x) + \dots + x^ng_na(x)$.

Last element first implementation

Example

- Let $g(x) = 1 + x + x^4$ in GF(2)[x].
- Let $a(x) = 1 + x + x^3$.
- Then $b(x) = 1 + x^2 + x^3 + x^5 + x^7$.

Polynomial Multiplication First Element First

• To implement the multiplier for First element first processing, reverse the order of the coefficients of g(x) in the register.

Polynomial Division

 Computing polynomial division, and more importantly, computing the remainder after division are important tasks in encoding cyclic codes.

q(x)

Example

- Let $g(x) = x^5 + x^2 + 1$ in GF(2)[x].
- We wish to find a(x) = q(x)g(x)+d(x). Let $a(x) = x^8+x^2+1$.
- We can see that $a(x) = (x^3+1)g(x)+x^3$.

$1 + x^3$

Joint multiplication-division

- Note that a multiplier circuit is essentially an FIR filter and a division circuit is essentially an IIR filter.
- If we wanted a circuit to compute $a(x) \times (p_1(x)/p_2(x))$, we could cascade a multiplier circuit followed by a division circuit.
- For example, the circuit with response x^2+1/x^3+x+1 is

Non-Systematic Encoding of Cyclic Codes

- Non-Systematic encoding of cyclic codes is simply polynomial multiplication.
- The encoder for a (7,4) cyclic code generated by $g(x) = x^3+x+1$ is:

Systematic Encoding of Cyclic Codes

- Here we will use a switched circuit.
- We need a divider circuit to compute the remainder of x^{n-k}m(x)/g(x).
- There are two parts: 1) message part of codeword, 2) calculation of parity symbols of codeword.

Systematic Encoding of Cyclic Codes

Initially all switches to x until message word is completely entered, then all switches to y.

Message $m(x) = x^3 + x^2 + 1$

Over next three cycles, the remainder will shift out of the register

Syndrome decoding

- Let us define the syndrome as the remainder in the following equation:
 - r(x) = q(x)g(x)+s(x), where r(x) = c(x)+e(x).
 - $S(x) = S_0 + S_1 x + \dots + S_{n-k-1} x^{n-k-1}.$
- Let $r^{R}(x)$ be the right cyclic shift of r(x). - $r^{R}(x) = xr(x) \mod(x^{n}-1)$.

Cyclic Coding Theorem 2

- For r(x) having syndrome s(x), r^R(x) has syndrome s'(x) = xs(x) mod g(x).
- Proof
 - r(x) = q(x)g(x) + s(x)
 - $r^{R}(x) = xr(x) (x^{n} 1)r_{n-1}.$
 - $r^{R}(x) = q'(x)g(x) + s'(x) = x(q(x)g(x) + s(x)) (x^{n} 1)r_{n-1}$
 - $x^{n} 1 = g(x)h(x).$
 - Therefore $q'(x)g(x)+s'(x) = x(q(x)g(x)+s(x))-g(x)h(x)r_{n-1}$
 - $xs(x) = (q'(x)-xq(x)+h(x)r_{n-1})g(x)+s'(x).$
 - Therefore, s'(x) is the remainder when we divide xs(x) by g(x).

Syndrome calculation

- Assume that we transmit 0000000 for the cyclic code with generator $g(x) = x^3 + x + 1$.
- If we receive 1000000 (r(x) = 1), s(x) = 1
- For r(x) = x, s(x) = x
- For $r(x) = x^2$, $s(x) = x^2$
- For r(x) = x³, s(x) = x+1
- For $r(x) = x^4$, $s(x) = x^2 + x^4$
- For $r(x) = x^5$, $s(x) = x^2+x+1$
- For $r(x) = x^6$, $s(x) = x^2 + 1$
- For systematic codes, when the error is in the parity bits, the syndrome is equal to the error polynomial e(x).

