
ELG 5372 Error 
Control Coding

Lecture 14: Shift Registers for 
Encoding and Decoding of 

Cyclic Codes  



Register State and Polynomial 
Representation

• State of register is the contents of the storage devices

• State = 1001
• A delay of n time units is represented as xn.  
• The polynomial output by the above circuit is 1+x3+x4. (First 

element first representation).  Or 1+x+x4 (last element first 
representation).

1 1 0 0 1 output



Polynomial Multiplication

• Let a(x) = a0+a1x+…+amxm and g(x) = g0+g1x+…+gnxn

• Let b(x) = a(x)g(x) = g0a(x)+xg1a(x)+x2g2a(x)+…+xngna(x). 

a(x)

g0 g1 g2

…

gn

+ + … + b(x)

Last element first implementation



Example

• Let g(x) = 1+x+x4 in GF(2)[x].
• Let a(x) = 1+x+x3.
• Then b(x) = 1+x2+x3+x5+x7.



Example cont’d
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Example cont’d
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Example cont’d
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Example cont’d
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Example cont’d
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Example cont’d
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Example cont’d

+ +0 0 1 0

0

0
0 0

0110101
0



Example cont’d
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Polynomial Multiplication First Element First

• To implement the multiplier for First element first processing, 
reverse the order of the coefficients of g(x) in the register.

am, am-1, …, a0

gn gn-1 gn-2

…

g0

+ + … + b(x)



Polynomial Division

• Computing polynomial division, and more importantly, 
computing the remainder after division are important tasks in 
encoding cyclic codes.

a(x)

Last element first
+ + +…

gn
-1
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r0 r1 rn-1



Example

• Let g(x) = x5+x2+1 in GF(2)[x].
• We wish to find a(x) = q(x)g(x)+d(x).  Let a(x) = 

x8+x2+1.
• We can see that a(x) = (x3+1)g(x)+x3.



Example cont’d
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Example cont’d

++ 00101

0

0

0

a2=1 1 1



Example cont’d
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Example cont’d
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Example cont’d
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Joint multiplication-division

• Note that a multiplier circuit is essentially an FIR filter and a 
division circuit is essentially an IIR filter.

• If we wanted a circuit to compute a(x) × (p1(x)/p2(x)), we could 
cascade a multiplier circuit followed by a division circuit.

• For example, the circuit with response x2+1/x3+x+1 is

+ ++



Non-Systematic Encoding of Cyclic Codes

• Non-Systematic encoding of cyclic codes is simply polynomial 
multiplication.

• The encoder for a (7,4) cyclic code generated by g(x) = x3+x+1 
is: 

+ +



Systematic Encoding of Cyclic Codes

• Here we will use a switched circuit.  
• We need a divider circuit to compute the remainder of 

xn-km(x)/g(x).
• There are two parts: 1) message part of codeword, 2) 

calculation of parity symbols of codeword.



Systematic Encoding of Cyclic Codes

+ + … + +
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x

y

x

x

y

m0, m1, …, mk-1

y
Codeword register

Initially all switches to x until message word is completely entered, 
then all switches to y.



Example (7,4) code, g(x) = x3+x+1

Message m(x) = x3+x2+1
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Example (7,4) code, g(x) = x3+x+1
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Example (7,4) code, g(x) = x3+x+1
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Example (7,4) code, g(x) = x3+x+1
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Example (7,4) code, g(x) = x3+x+1
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Over next three cycles, 
the remainder will shift out of the register



Example (7,4) code, g(x) = x3+x+1
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Example (7,4) code, g(x) = x3+x+1
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Example (7,4) code, g(x) = x3+x+1
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Syndrome decoding

• Let us define the syndrome as the remainder in the 
following equation:
– r(x) = q(x)g(x)+s(x), where r(x) = c(x)+e(x).
– s(x) = s0+s1x+…+sn-k-1xn-k-1.

• Let rR(x) be the right cyclic shift of r(x).
– rR(x) = xr(x) mod(xn-1).



Cyclic Coding Theorem 2

• For r(x) having syndrome s(x), rR(x) has syndrome s’(x) = xs(x) 
mod g(x).

• Proof
– r(x) = q(x)g(x)+s(x)
– rR(x) = xr(x)-(xn-1)rn-1.
– rR(x) = q’(x)g(x)+s’(x) = x(q(x)g(x)+s(x))-(xn-1)rn-1

– xn-1 = g(x)h(x).
– Therefore q’(x)g(x)+s’(x) = x(q(x)g(x)+s(x))-g(x)h(x)rn-1

– xs(x) = (q’(x)-xq(x)+h(x)rn-1)g(x)+s’(x).
– Therefore, s’(x) is the remainder when we divide xs(x) by 

g(x).



Syndrome calculation

• Assume that we transmit 0000000 for the cyclic code with 
generator g(x) = x3+x+1.

• If we receive 1000000 (r(x) = 1), s(x) = 1
• For r(x) = x, s(x) = x
• For r(x) = x2, s(x) = x2

• For r(x) = x3, s(x) = x+1
• For r(x) = x4, s(x) = x2+x
• For r(x) = x5, s(x) = x2+x+1
• For r(x) = x6, s(x) = x2+1
• For systematic codes, when the error is in the parity bits, the 

syndrome is equal to the error polynomial e(x).
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