ELG 5372 Error Control Coding

uOttawa

L'Université canadienne Canada's university

Lecture 14: Shift Registers for Encoding and Decoding of Cyclic Codes

Université d'Ottawa | University of Ottawa

Register State and Polynomial Representation

- State of register is the contents of the storage devices

- State = 1001
- A delay of n time units is represented as x^{n}.
- The polynomial output by the above circuit is $1+x^{3}+x^{4}$. (First element first representation). Or $1+x+x^{4}$ (last element first representation).

Polynomial Multiplication

- Let $a(x)=a_{0}+a_{1} x+\ldots+a_{m} x^{m}$ and $g(x)=g_{0}+g_{1} x+\ldots+g_{n} x^{n}$
- Let $b(x)=a(x) g(x)=g_{0} a(x)+x g_{1} a(x)+x^{2} g_{2} a(x)+\ldots+x^{n} g_{n} a(x)$.

Last element first implementation

Example

- Let $g(x)=1+x+x^{4}$ in $\operatorname{GF}(2)[x]$.
- Let $a(x)=1+x+x^{3}$.
- Then $b(x)=1+x^{2}+x^{3}+x^{5}+x^{7}$.

Example cont'd

䍏u Ottawa

Example cont'd

䍏u Ottawa

Example cont'd

䍏u Ottawa

Example cont'd

$$
a_{0}=1
$$

uIII uttawa

Example cont'd

䍏u Ottawa

Example cont'd

IIII uOttawa

Example cont'd

IIII uOttawa

Example cont'd

$1+x^{2}+x^{3}+x^{5}+x^{7}$

Polynomial Multiplication First Element First

- To implement the multiplier for First element first processing, reverse the order of the coefficients of $g(x)$ in the register.

Polynomial Division

- Computing polynomial division, and more importantly, computing the remainder after division are important tasks in encoding cyclic codes.

Example

- Let $g(x)=x^{5}+x^{2}+1$ in $\operatorname{GF}(2)[x]$.
- We wish to find $a(x)=q(x) g(x)+d(x)$. Let $a(x)=$ $x^{8}+x^{2}+1$.
- We can see that $a(x)=\left(x^{3}+1\right) g(x)+x^{3}$.

Example cont'd

$a_{4} \quad a_{5} \quad a_{6} \quad a_{7} \quad a_{8}$

Example cont'd

Example cont'd

Example cont'd

J oint multiplication-division

- Note that a multiplier circuit is essentially an FIR filter and a division circuit is essentially an IIR filter.
- If we wanted a circuit to compute $a(x) \times\left(p_{1}(x) / p_{2}(x)\right)$, we could cascade a multiplier circuit followed by a division circuit.
- For example, the circuit with response $x^{2}+1 / x^{3}+x+1$ is

Non-Systematic Encoding of Cyclic Codes

- Non-Systematic encoding of cyclic codes is simply polynomial multiplication.
- The encoder for a $(7,4)$ cyclic code generated by $g(x)=x^{3}+x+1$ is:

Systematic Encoding of Cyclic Codes

- Here we will use a switched circuit.
- We need a divider circuit to compute the remainder of $x^{n-k} m(x) / g(x)$.
- There are two parts: 1) message part of codeword, 2) calculation of parity symbols of codeword.

Systematic Encoding of Cyclic Codes

Initially all switches to x until message word is completely entered, then all switches to y .

Example $(7,4)$ code, $g(x)=x^{3}+x+1$

Message $m(x)=x^{3}+x^{2}+1$

Example $(7,4)$ code, $g(x)=x^{3}+x+1$

IIII uOttawa

Example $(7,4)$ code, $g(x)=x^{3}+x+1$

Example $(7,4)$ code, $g(x)=x^{3}+x+1$

Example $(7,4)$ code, $g(x)=x^{3}+x+1$

Over next three cycles, the remainder will shift out of the register

Example $(7,4)$ code, $g(x)=x^{3}+x+1$

11010

Example $(7,4)$ code, $g(x)=x^{3}+x+1$

Example $(7,4)$ code, $g(x)=x^{3}+x+1$

Syndrome decoding

- Let us define the syndrome as the remainder in the following equation:

$$
\begin{aligned}
& -r(x)=q(x) g(x)+s(x), \text { where } r(x)=c(x)+e(x) \\
& -s(x)=s_{0}+s_{1} x+\ldots+s_{n-k-1} x^{n-k-1}
\end{aligned}
$$

- Let $r^{R}(x)$ be the right cyclic shift of $r(x)$.
$-r^{R}(x)=x r(x) \bmod \left(x^{n}-1\right)$.

Cyclic Coding Theorem 2

- For $r(x)$ having syndrome $s(x), r^{R}(x)$ has syndrome $s^{\prime}(x)=x s(x)$ $\bmod g(x)$.
- Proof
$-r(x)=q(x) g(x)+s(x)$
$-r^{R}(x)=x r(x)-\left(x^{n}-1\right) r_{n-1}$.
$-r^{R}(x)=q^{\prime}(x) g(x)+s^{\prime}(x)=x(q(x) g(x)+s(x))-\left(x^{n}-1\right) r_{n-1}$
- $x^{n}-1=g(x) h(x)$.
- Therefore $q^{\prime}(x) g(x)+s^{\prime}(x)=x(q(x) g(x)+s(x))-g(x) h(x) r_{n-1}$
$-x s(x)=\left(q^{\prime}(x)-x q(x)+h(x) r_{n-1}\right) g(x)+s^{\prime}(x)$.
- Therefore, $s^{\prime}(x)$ is the remainder when we divide $x s(x)$ by $g(x)$.

Syndrome calculation

- Assume that we transmit 0000000 for the cyclic code with generator $g(x)=x^{3}+x+1$.
- If we receive $1000000(r(x)=1), s(x)=1$
- For $r(x)=x, s(x)=x$
- For $r(x)=x^{2}, s(x)=x^{2}$
- For $r(x)=x^{3}, s(x)=x+1$
- For $r(x)=x^{4}, s(x)=x^{2}+x$
- For $r(x)=x^{5}, s(x)=x^{2}+x+1$
- For $r(x)=x^{6}, s(x)=x^{2}+1$
- For systematic codes, when the error is in the parity bits, the syndrome is equal to the error polynomial $e(x)$.

